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Abstract

Token sequences are often used as the in-
put for Convolutional Neural Networks
(CNNs) in natural language processing.
However, they might not be an ideal repre-
sentation for time expressions, which are
long, highly varied, and semantically com-
plex. We describe a method for represent-
ing time expressions with single pseudo-
tokens for CNNs. With this method, we
establish a new state-of-the-art result for a
clinical temporal relation extraction task.

1 Introduction

Convolutional Neural Networks (CNNs) utilize
convolving filters and pooling layers for explor-
ing and subsampling a feature space, and show
excellent results in tasks such as semantic pars-
ing (Yih et al., 2014), search query retrieval (Shen
et al., 2014), sentence modeling (Kalchbrenner
et al., 2014), and many other natural language pro-
cessing (NLP) tasks (Collobert et al., 2011).

Token sequences are often used as the input for
a CNN model in NLP. Each token is represented as
a vector. Such vectors could be either word embed-
dings trained on the fly (Kalchbrenner et al., 2014),
pre-trained on a corpus (Pennington et al., 2014;
Mikolov et al., 2013), or one-hot vectors that index
the token into a vocabulary (Johnson and Zhang,
2014). CNN filters then act as n-grams over contin-
uous representations. Subsequent network layers
learn to combine these n-gram filters to detect pat-
terns in the input sequence.

This token vector sequence representation has
worked for many NLP tasks, but has not been well-
studied for temporal relation extraction. Time ex-
pressions are complex linguistic expressions that
are challenging to represent because of their length
and variety. For example, for the time expressions
in the THYME (Styler IV et al., 2014) colon can-
cer training corpus, there are 3,833 occurrences of

Figure 1: CNN with encoded timex

2,014 unique expressions of which 1,624 (80.6%)
are multi-token, 1,104 span three or more tokens,
and some span as many as 10 tokens. CNNs, which
represent meaning through fragments of word se-
quences, might struggle to compose these frag-
ments to represent the meaning of time expressions.
For example, can a CNN properly generalize that
May 7 as a date is closer to April 30 than May
20? Can it embed years like 2012 and 2040 to rec-
ognize that the former was in the past, while the
latter is in the future? Time normalization systems
can handle such phenomena, but they are complex
and language-specific, and often require signifi-
cant manual effort to re-engineer for a new domain
(Strötgen and Gertz, 2013; Bethard, 2013).

Fortunately, not all tasks require full time nor-
malization, so if the CNN can at least embed a
meaningful subset of the time expression seman-
tics, it may still be helpful in such tasks. An open
question then, is how to best feed time expressions
to the CNN so that it can usefully generalize over
them as part of its solution to a larger task.

We propose representing time expressions as sin-
gle pseudo-tokens, with single vector representa-
tions (as in Figure 1), that encode easily extractable
information about the time expression that is valu-
able for the task of temporal relation extraction.
The benefits are two-fold: 1) Only minimal linguis-
tic preprocessing is required: off-the-shelf time
expression identifiers are available with low over-



A
EVENT

surgery is scheduled on
TIME

Mar 11 .
⇓

1: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 mar 11 〈/t〉 .
2: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈timex〉 〈/t〉 .
3: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈date〉 〈/t〉 .
4: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈nn cd〉 〈/t〉 .
5: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈date nn cd〉 〈/t〉 .
6: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 〈index 721〉 〈/t〉 .
7: a 〈e〉 surgery 〈/e〉 is scheduled on 〈t〉 mar 11 〈date〉 〈/t〉 .
8: 〈o〉 〈o〉 〈o〉 〈o〉 〈o〉 〈b〉 〈i〉 〈o〉 〈o〉
9: 〈o〉 〈o〉 〈o〉 〈o〉 〈o〉 〈b date〉 〈i date〉 〈o〉 〈o〉
10: a 〈e1〉 surgery 〈/e1〉 is 〈e2〉 scheduled 〈/e2〉 on .

Figure 2: Representations of an input sequence

head and high accuracy (Miller et al., 2015). 2)
CNN filters are more effective because they oper-
ate over the time expression as one unit. The filter
process can thus focus on the informative surround-
ing context to catch generalizable patterns instead
of being trapped within lengthy time expressions.

We explored a variety of one-tag representations
for time expressions, from very specific to very
general. We also experimented with other ways to
inject temporal information into the CNN models
and compared them with our one-tag representa-
tions. We picked a challenging learning task where
time expressions are critical cues for evaluating our
proposed representation: clinical temporal relation
extraction. The identification of temporal relations
in medical text has been drawing growing attention
because of its potential to dramatically increase the
understanding of many medical phenomena such
as disease progression, longitudinal effects of med-
ications, a patient’s clinical course, and its many
clinical applications such as question answering
(Das and Musen, 1995; Kahn et al., 1990), clinical
outcomes prediction (Schmidt et al., 2005), and
the recognition of temporal patterns and timelines
(Zhou and Hripcsak, 2007; Lin et al., 2014).

Through experiments, we not only demonstrate
the usefulness of one-tag representations for time
expressions, but also establish a new state-of-the-
art result for clinical temporal relation extraction.

2 Methods

We trained two CNN-based classifiers for recog-
nizing two types of within-sentence temporal re-
lations, event-event and event-time relations, as
they usually call for different temporal cues (Lin
et al., 2016a). The input to our classifiers was
manually annotated (gold) events and time expres-
sions during both training and testing stages. That

way we isolated the task of time expression rep-
resentation for temporal relation extraction from
the tasks of event and time expression recognition.
We adopted the same xml-tag marked-up token se-
quence representation and model setup as (Dligach
et al., 2017). Figure 2(1) illustrates the marked-up
token sequence for an event-time instance, in which
the event is marked by 〈e〉 and 〈/e〉 and the time
expression is marked by 〈t〉 and 〈/t〉. Event-event
instances are handled similarly, e.g. a 〈e1〉 surgery
〈/e1〉 is 〈e2〉 scheduled 〈/e2〉 on march 11.

We tried different ways of representing a time ex-
pression as a one-token tag. The most coarse option
would be to represent all time expressions with one
universal tag, 〈timex〉, as in Figure 2(2). For more
granular options, we experimented with these addi-
tional representations: 1) The time class1 of a time
expression, as in Figure 2(3), where the time ex-
pression, Mar 11, is represented by its class, 〈date〉.
2) The Penn Treebank POS tags of the tokens in a
time expression, as in Figure 2(4), where the time
expression, Mar 11, is represented by concatenat-
ing two POS tags, 〈nn cd〉. 3) The combination of
time class and POS tags, as in Figure 2(5), where
the time expression is represented by 〈date nn cd〉.
4) A fine-grained representation that assigns an
index to each unique time expression, as in Fig-
ure 2(6), where the time expression is represented
by 〈index 721〉, the index used every time the time
expression Mar 11 appears. For event-event rela-
tions, where time expressions are not part of the
relational arguments, we tried removing the time
expressions altogether, as in Figure 2(10), where
Mar 11 has been removed.

To show the contribution of one-tag represen-
tations versus adding new information to the sys-
tem, we explored incorporating temporal informa-
tion by adding time-class tags to the original to-
ken sequences (Figure 2(7)) and adding BIO tags
with/without time classes for time expression (Fig-
ure 2(8,9)) alongside the original token sequences.

We used the same CNN architecture as the
CNN used in (Dligach et al., 2017), and fo-
cused on extracting the contains relation. The
word embeddings were randomly initialized2 and

1We used the standard clinical domain classification
(Styler IV et al., 2014), where the classes are date (e.g., next
Friday, this month), time (e.g. 3:00 pm), duration (e.g., five
years), quantifier (e.g. twice, four times), prepostexp (e.g.,
preoperative, post-surgery), and set (e.g., twice monthly).

2Our preliminary experiments showed better results for
randomly-initialized embeddings than several pre-trained em-
beddings. One-hot vectors were too slow for processing.



Model Event-time relations Event-event relations
P R F1 P R F1

THYME system 0.583 0.810 0.678 0.569 0.574 0.572
1. CNN tokens 0.660 0.775 0.713 0.566 0.522 0.543
2. CNN <timex> 0.697 0.710 0.703 0.681 0.397 0.501
3. CNN time class tags 0.705 0.759 0.731 0.582 0.495 0.535
4. CNN POS tags 0.727 0.710 0.719 0.619 0.462 0.529
5. CNN time class+ POS tags 0.709 0.747 0.727 0.553 0.521 0.537
6. CNN indexed time expressions 0.692 0.727 0.709 0.645 0.429 0.516
7. CNN token + time class tags 0.749 0.626 0.682 0.437 0.589 0.502
8. CNN token + BIO tags 0.691 0.708 0.700 0.570 0.423 0.486
9. CNN token + BIO-time class tags 0.713 0.726 0.719 0.428 0.542 0.478
10. CNN remove all time expressions n/a n/a n/a 0.635 0.446 0.524

Table 1: Event-time and event-event contains relation on the dev set (all notes included)

learned through training. For the combined to-
ken and BIO sequence input, we used two em-
bedding/convolutional branches: one for the token
sequence, and one for the BIO sequence; the result-
ing vectors were concatenated into the same dense,
dropout and final softmax layers. All models were
implemented in Keras 1.0.4 (Chollet, 2015) with
Theano (Theano Development Team, 2016) back-
end. Models were trained with a batch size of 50,
a dropout rate of 0.25, RMSprop optimizer, and a
learning rate of 0.0001, on a GTX Titan X GPU.
Our code will be made publicly available.

3 Evaluation Methodology and Results

We tested our new representations of time expres-
sions on the THYME corpus (Styler IV et al., 2014).
We followed the evaluation setup of Clinical Temp-
Eval 2016 (Bethard et al., 2016). The THYME
corpus contains a colon cancer set and a brain can-
cer set. The colon cancer set was our main focus.
Models were trained on the colon cancer training
set, hyper-parameters were tuned on the colon can-
cer development set. Finally, the best models were
re-trained using the best hyper-parameters on the
combined training and development sets, tested and
compared on the colon cancer test set.

As a secondary validation set, we also consid-
ered the brain cancer portion of the THYME corpus.
The models were re-trained on the brain cancer
training and development sets (using the best hyper-
parameters found for colon cancer) and tested on
the brain cancer test set.

For results on the test sets, we used the official
Clinical TempEval evaluation scripts (with closure-
enhanced precision, recall, and F1-score).

Table 1 shows performance on the colon devel-
opment set for the THYME system and the various
methods of representing time expressions to CNN
models. The order of representation settings is iden-
tical to that in Figure 2. For event-time relations,
all our neural models outperformed the state-of-
the-art THYME system’s F1. Three one-tag tempo-
ral representations with moderate granularity, time
class (Table 1(3)), POS tags (Table 1(4)), and time
class plus POS tags (Table 1(5)), performed better
than the token sequence CNN baseline (Table 1(1)),
with the time class tag representation achieving
the highest score (Table 1(3)). CNNs were better
able to leverage time class information in our tag-
based representation (Table 1(3)), than adding time
class information to the original token sequence
(Table 1(7)) or adding a separate time-class neural
embedding (Table 1(9)).

For event-event relations, none of the neural
models performed as well as the state-of-the-art
THYME system. The CNN token-based model had
similar performance as some of the one-tag tem-
poral representations (Table 1(3,4,5)). Removing
the time expression entirely (Table 1(10)) did not
hurt performance much, confirming that time ex-
pressions were not critical cues for within-sentence
event-event relation reasoning (Xu et al., 2013).
Thus, on the colon test set, we evaluated the contri-
bution of encoding time expressions on the event-
time CNN model only. For the event-event part, we
used the THYME event-event system, so that our
results were directly comparable with the outcomes
of Clinical TempEval 2016 (Bethard et al., 2016)
and the performance of the THYME system (Lin
et al., 2016a,b). As for the Brain cancer data, we



Corpus Model contains relations
P R F1 p-value

Colon cancer Top Clinical TempEval 2016 system 0.588 0.559 0.573
THYME system 0.669 0.534 0.594
CNN (tokens) event-time + THYME event-event 0.654 0.576 0.612
CNN (encode) event-time + THYME event-event 0.662 0.585 0.621 0.03

Brain cancer CNN (tokens) event-time 0.765 0.371 0.500
CNN (encode) event-time 0.726 0.429 0.539 0.0002

Table 2: Performance on both Colon and Brain test sets with the Clinical TempEval evaluation.

only evaluated on the event-time CNN models, so
that we could directly assess the contribution of
encoding time expressions as time class tags.

The top 4 rows of Table 2 show performance on
the colon cancer test set for the best model from
Clinical TempEval 2016, the THYME system, our
CNN model with tokens only, and our CNN model
where time expressions are encoded with time class
tags. (To allow comparison with prior work, the
event-time relation predictions made by our CNN
models were coupled with the event-event relation
predictions from the THYME system.) The bottom
two rows of Table 2 show performance on the brain
cancer test set. On both colon and brain corpora,
the encoded CNN model outperformed the regu-
lar CNN model significantly, based on a Wilcoxon
signed-rank test over document-by-document com-
parisons, as in (Cherry et al., 2013).

4 Discussion

The CNN filters in the first layers are designed to
detect the presence of highly discriminative pat-
terns. For the event-time relation extraction task,
one such pattern signaling a contains relation is
“on Mar 11, 2014” as in Figure 1. However, a more
generalizable pattern should be – “on DATE”. Our
time-class tag representation provided such infor-
mation and contributed towards generalizability.
A size-two filter can easily capture such a useful
pattern, instead of picking up less generalizable pat-
terns like “on March” or “11 ,” (shown in Figure 1).
For a time-sensitive learning task, especially the
event-time relation extraction, our time encoding
technique has been proved effective on two corpora.
We hypothesize the contribution is from generaliz-
ability and efficient filter computation.

Our method did not work for event-event rela-
tions because time expressions are not critical cues
for such relations. CNN models as a whole did
not outperform the conventional THYME event-

event system, as confirmed by Dligach et al. (2017).
Event-event relations have lower inter-annotator
agreement and usually leverage more of the syn-
tactic information and event properties (Xu et al.,
2013), which are not perfectly captured by token
sequences. The class imbalance issues are more
severe for event-event relations than for event-time
relations as well (Dligach et al., 2017). These likely
lead to a lower performance for event-event CNNs.
In the future, we will investigate methods to im-
prove the event-event model including incorporat-
ing syntactic information and event properties into
a deep neural framework, and positive instance
augmentation Yu and Jiang (2016).

Word embeddings trained by conventional meth-
ods such as word2vec and GloVe did not prove to
be useful in our preliminary experiments. This is
likely due to (1) lack of sufficiently large publicly
available domain-specific corpora, and (2) inability
of the conventional methods to capture the seman-
tic properties of events that are key for the relation
extraction task (such as event durations).

Currently, when we combined our encoded
CNN-based event-time model with the THYME
event-event model, we achieved the state-of-the-
art performance (0.621F) on the colon cancer data.
The best 2016 Clinical TempEval system achieved
0.573F (Bethard et al. (2016); row 1 of Table 2), the
result of the THYME system was 0.594F (Lin et al.
(2016b); row 2 of Table 2), while our best com-
bined model reached 0.621F, significantly higher
(p=0.03) than the 0.612F of the combination of a
regular CNN event-time model and the THYME
event-event model. Note that the number of gold
event-time contains relation instances is similar
to the number of gold event-event contains rela-
tions (Lin et al., 2016a). Having a better event-time
model indeed made the difference.

The conventional machine learning world has
focused on heavy feature engineering, while the



new deep learning world has called for minimal-
istic pre-processing as input to powerful learners.
We propose a new direction to combine the best of
both worlds – infusing some knowledge into the
learner input. For CNN models, multi-word time
expressions are imperfectly represented in the to-
ken sequence representation. With a little engineer-
ing, we can encapsulate the time expressions in one
tag with different granularities. Our experiments
show that this small change still takes minimum
linguistic preprocessing but delivers a significant
performance boost for a temporal relation extrac-
tion task. There are other multi-token named enti-
ties (locations, organizations, etc.) where it may be
hard to generalize over their multiple tokens. We
believe our encoding strategy is likely to benefit
tasks where critical linguistic information resides
in phrases or multi-word units.

Acknowledgments

The study was funded by R01LM10090 (THYME),
R01GM103859 (iPGx), and U24CA184407 (Deep-
Phe). The content is solely the responsibility of the
authors and does not necessarily represent the offi-
cial views of the National Institutes of Health. The
Titan X GPU used for this research was donated by
the NVIDIA Corporation.

References
Steven Bethard. 2013. A synchronous context free

grammar for time normalization. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Seattle, Washington, USA, pages
821–826. http://www.aclweb.org/anthology/D13-
1078.

Steven Bethard, Guergana Savova, Wei-Te Chen, Leon
Derczynski, James Pustejovsky, and Marc Verhagen.
2016. Semeval-2016 task 12: Clinical tempeval.
Proceedings of SemEval pages 1052–1062.

Colin Cherry, Xiaodan Zhu, Joel Martin, and Berry
de Bruijn. 2013. la recherche du temps perdu:
extracting temporal relations from medical text in
the 2012 i2b2 nlp challenge. Journal of the Ameri-
can Medical Informatics Association 20(5):843–848.
https://doi.org/10.1136/amiajnl-2013-001624.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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