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Abstract

Many tasks in the biomedical domain re-
quire the assignment of one or more pre-
defined labels to input text, where the la-
bels are a part of a hierarchical structure
(such as a taxonomy). The conventional
approach is to use a one-vs.-rest (OVR)
classification setup, where a binary clas-
sifier is trained for each label in the tax-
onomy or ontology where all instances not
belonging to the class are considered nega-
tive examples. The main drawbacks to this
approach are that dependencies between
classes are not leveraged in the training
and classification process, and the addi-
tional computational cost of training par-
allel classifiers. In this paper, we apply
a new method for hierarchical multi-label
text classification that initializes a neural
network model final hidden layer such that
it leverages label co-occurrence relations
such as hypernymy. This approach ele-
gantly lends itself to hierarchical classifi-
cation. We evaluated this approach using
two hierarchical multi-label text classifica-
tion tasks in the biomedical domain using
both sentence- and document-level classi-
fication. Our evaluation shows promising
results for this approach.

1 Introduction

Many tasks in biomedical natural language pro-
cessing require the assignment of one or more la-
bels to input text, where there exists some struc-
ture (such as a taxonomy or ontology) between the
labels: for example, the assignment of Medical
Subject Headings (MeSH) to PubMed abstracts
(Lipscomb, 2000).

A typical approach to classifying multi-label

documents is to construct a binary classifier for
each label in the taxonomy or ontology where all
documents not belonging to the class are consid-
ered negative examples, i.e. one-vs.-rest (OVR)
classification (Hong and Cho, 2008). This ap-
proach has two major drawbacks: first, it makes
the hard assumption that the classes are indepen-
dent which often does not reflect reality; second,
it is more computationally expensive (albeit by a
constant factor): if there are a very large number
of classes, the approach becomes computationally
unrealistic.

In this paper, we investigate a simple and com-
putationally fast approach for multi-label classifi-
cation with a focus on labels that share a structure,
such as a hierarchy (taxonomy). This approach
can work with established neural network archi-
tectures such as a convolutional neural network
(CNN) by simply initializing the final output layer
to leverage the co-occurrences between the labels
in the training data.

Figure 1: Hierarchical multi-label classification.
Nodes represent possible labels that can be as-
signed to text: a dark grey node denotes an explicit
label assignment and light grey denotes implicit
assignment due to a hypernymy relationship with
the explicitly assigned label.



First, we need to define hierarchical multi-label
classification. In multi-label text classification, in-
put text can be associated with multiple labels (la-
bel co-occurrence). When the labels form a hi-
erarchy, they share a hypernym–hyponym relation
(Figure 1). When multiple labels are assigned to
the text, if it is explicitly labeled by a subclass it
must also implicitly include all of the its super-
classes.

The co-occurrence between subclasses and su-
perclasses as labels for the input text contains in-
formation we would like to leverage to improve
multi-label classification using a neural network.

In this paper we experiment with this approach
using two hierarchical multi-label text classifica-
tion tasks in the biomedical domain, using both
document- and sentence-level classification.

We first briefly summarize related literature on
the topic of multi-label classification using neural
networks, we then describe our methodology and
evaluation procedure, and then we present and dis-
cuss our results.

2 Related work

There have been numerous works that focus on
solving hierarchical text classification. Sun and
Lim (2001) proposed top-down level-based SVM

classification. More recently, Sokolov and Ben-
Hur (2010); Sokolov et al. (2013) predict ontol-
ogy terms by explicitly modeling the structure hi-
erarchy using kernel methods for structured output
space. Clark and Radivojac (2013) use a Bayesian
network, structured according to the underlying
ontology to model the prior probability.

Within the context of neural networks, Kurata
et al. (2016) propose a scheme for initializing neu-
ral networks hidden output layers by taking into
account multi-label co-occurrence. Their method
treats some of the neurons in the final hidden layer
as dedicated neurons for each pattern of label co-
occurrence. These dedicated neurons are initial-
ized to connect to the corresponding co-occurring
labels with stronger weights than to others. They
evaluated their approach on the RCV1-v2 dataset
(Lewis et al., 2004) from the general domain, con-
taining only flat labels. Their evaluation shows
promising results. However, their applicability to
the biomedical domain with more a complex set
of labels that share a hierarchy remains an open
question.

Chen et al. (2017) propose a convolutional

neural network (CNN) and recurrent neural net-
work (RNN) ensemble method that is capable of
efficiently representing text features and mod-
eling high-order label correlation (including co-
occurrence). However, they show that their
method is susceptible to overfitting with small
datasets.

Cerri et al. (2014) propose a method for hierar-
chical multi-label text classification that incremen-
tally trains a multi-layer perceptron for each level
of the classification hierarchy. Predictions made
by a neural network in a given level are used as in-
puts to the neural network responsible for the pre-
diction in the next level. Their method was eval-
uated against several datasets with convincing re-
sults.

There are also several relevant works that pro-
pose the inclusion of multi-label co-occurrence
into loss functions such as pairwise ranking loss
(Zhang and Zhou, 2006) and more recent work by
Nam et al. (2014), who report that binary cross-
entropy can outperform the pairwise ranking loss
by leveraging rectified linear units (ReLUs) for
nonlinearity.

3 Method

In this section, we describe the approach of initial-
izing a neural network for multi-label classifica-
tion. We base our CNN architecture on the model
of Kim (2014), which has been used widely in text
classification tasks, but this approach can be ap-
plied to any other architecture.

Briefly, this model consists of an initial embed-
ding layer that maps input texts into matrices, fol-
lowed by convolutions of different filter sizes and
1-max pooling, and finally a fully connected layer.
The architecture is illustrated in Figure 2.

To perform multi-label classification using this
architecture, the final output layer uses logistic
(sigmoid) activation function σ:

σ(x) =
1

1 + e−x
(1)

where x is the input signal. The output range of the
function is between zero and one; if it is above a
cut-off threshold Tσ (which is tuned by grid search
on the development dataset) then the prediction y′k
for label yk is positive. We use a binary cross-
entropy loss function L:



L(θ, (x, y)) = −
K∑
k=1

yk log(y
′
k)+(1−yk) log(1−y′k)

(2)
where θ is the model parameters and K is the

number of classes.
As shown in Figure 2, the multi-label initial-

ization happens in output layer of the network.
Figure 3 illustrates the initialization process. The
rows represent the units in the final hidden layer,
while the columns represent the output classes.

The idea is to initialize the final hidden layer
with rows that map to co-occurrence of labels
in the training data. This can be implicit hy-
pernymy relations between the labels, or explicit
co-occurrence in the annotation. For each co-
occurrence, the value ω is assigned to the associ-
ated classes and a value of zero is assigned to the
rest. The value ω is the upper bound of the normal-
ized initialization proposed by Glorot and Bengio
(2010), which is calculated as follows:

ω =

√
6√

nh + nk
(3)

where nh is the number of units in the final hidden
layer and nk is the number of units in the output
layer (i.e. classes). This value was also success-
fully used by Kurata et al. (2016) in their initial-
ization procedure.

The motivation for this initialization is to incline
units in the hidden layer to be dedicated to repre-
senting co-occurrence of labels by triggering only
the corresponding label nodes in the output layer
when they are active.

The number of units in the final hidden layer can
exceed the number of label co-occurrences in the
training data. We must therefore decide what to
do with the remaining hidden units. Kurata et al.
(2016) assign random values to these units (shown
in Figure 3 (B)). We will also use this scheme, but
in addition we propose another variant: we assign
the value zero for these neurons, so that the hid-
den layer will only be initialized with nodes that
represent label co-occurrence.

We implement the neural network and the ini-
tialization using Keras (Chollet, 2015). the hyper-
parameters for our model and baselines are those
of Kim (2014), summarized in Table 1.

We use word2vec embeddings trained on
PubMed by Chiu et al. (2016).

Hyperparameter Value

Word vector size 300
Filter sizes 3, 4, and 5
Number of filters 300 (100 of each size)
Dropout probability 0.5
Minibatch size 50
Input size (in tokens) 500 (documents), 100 (sentences)

Table 1: Our baseline model, based on Kim (2014)
model hyperparameters.

4 Data

We investigate our approach using two multi-label
classification tasks. In this section, we describe
the nature of these tasks and the annotated gold
standard data.

Task 1: The Hallmarks of Cancer The Hall-
marks of Cancer describe a set of interrelated bi-
ological properties and behaviors that enable can-
cer to thrive in the body. Introduced in the sem-
inal paper by Hanahan and Weinberg (2000)—
the most cited paper in the journal Cell—the hall-
marks of cancer have seen widespread use in
BioNLP for many systems and works, including
the BioNLP Shared Task 2013, ‘Cancer Genetics
task’ (Pyysalo et al., 2013), which involved the ex-
traction of events (i.e. biological processes) from
cancer-domain texts. Baker et al. (2016) have re-
leased an expert-annotated dataset for cancer hall-
mark classification for both sentences and docu-
ments from PubMed. The data consists of multi-
labelled documents and sentences using a taxon-
omy of 37 classes.

Task 2: The exposure taxonomy Larsson et al.
(2017) introduce a new task and an associated an-
notated dataset for the classification of text (doc-
uments or sentences) for chemical risk assess-
ment: more specifically, the assessment of ex-
posure routes (such as ingestion, inhalation, or
dermal absorption) and human biomonitoring (the
measurement of exposure biomarkers). The tax-
onomy of 32 classes is divided into two branches:
Biomonitoring and Exposure routes.

We split both datasets (by documents) into train,
development (dev), and test splits in order to eval-
uate our methodology. Table 4 summarizes key
statistics for these splits.
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Figure 2: Convolutional Neural Network (CNN) architecture with the initialization layer outlined. The
CNN architecture is based on the model of Kim (2014).

y
1

y
2

y
3

y
4

y
1
y
3,

y
2
y
4,

00

y
2
y
4,y

1,

ω ω

0ω0 ω

0ω ωω

00 00

{

}

{}

{

{

}

}

y
1

y
2

y
3

y
4

y
1
y
3,

y
2
y
4,

00

y
2
y
4,y

1,

ω ω

0ω0 ω

0ω ωω

{

}

{}

{

{

}

}

# # # #

A B

Figure 3: The two initialization schemes: (A) ini-
tializing non label co-occurrence nodes with zero,
(B) initializing non label co-occurrence with a ran-
dom value (#) drawn from a uniform distribution.

Task 1 Task 2

Document Sentence Document Sentence

Train 1,303 12,279 2,555 25,307
Dev 183 1,775 384 3,770
Test 366 3,410 722 7,100
Total 1,852 17,464 3,661 36,177

Table 2: Summary statistics for Tasks 1 and 2.

We also measure the overlap in the data between
pairs of labels. We use Jaccard similarity J to
measure this overlap using the following equation:

J(A,B) =
A ∩B
A ∪B

(4)

Where A and B are sets of instances labelled
with these classes. Table 4 summarizes the aver-
age and maximum pairwise Jaccard similarity be-
tween the labels in both tasks.

Table 4 shows that Task 1 labels have slightly
more overlap than those of Task 2.

Task 1 Task 2

Document Sentence Document Sentence

Avg 4.1 2.3 5.7 3.0
Max 49.3 49.4 45.7 42.5

Table 3: Jaccard similarity scores (expressed as
percentages) between label pairs.

The large difference in values between docu-
ment and sentence label overlap is due to the fact
that documents have more labels per instance than
sentences. The average score is much lower as
most pair combinations would not have overlaps;
where there is overlap it is typically significant (as
shown by the Max row in Table 4).

5 Evaluation

In this section, we describe our experimental setup
and our baselines.

5.1 Experimental setup
We ascertain the performance of our approach un-
der a controlled experimental setup. We compare
two baseline models (described in the next sec-
tion), and two variants of the initialization mod-
els corresponding to the two initialization schemes
described in Figure 3. We will refer to the first
scheme (allocating all units in the final hidden
layer to representing label co-occurrences and ze-
roing all other units) as INIT-A, and the second
scheme (allocating a random value drawn from a
uniform distribution for non co-occurrence hidden
units) as INIT-B. We use the hyperparameters in
Table 1 and data splits in Table 4 for all models.

We check the model’s performance (F1-score)
on development data at the end of every epoch. We



select the model from the best-performing epoch
and train it until its performance does not improve
for ten epochs.

5.2 Baselines

We compare two baselines in our setup: one-
vs.-rest (OVR) and multi-label baseline (MULTI-
BASIC)

One-vs.-rest (OVR) We train and evaluate K in-
dependent binary CNN classifiers (i.e. a single
classifier per class with the instances of that class
as positive samples and all other instances as neg-
atives).

Multi-label baseline (MULTI-BASIC) We train
and evaluate a multi-label baseline based on Fig-
ure 2 without initialization of the final hidden
layer. This enables us to directly compare the
effect of the initialization step. As with the ini-
tialization models (INIT-A and INIT-B), we grid
search the sigmoid cut-off parameter Tσ on the de-
velopment data at the end of each epoch to be used
with the selected best model on the test split.

5.3 Post-processing label correction

The predicted output labels from all of our mod-
els can be inconsistent with respect to the label hi-
erarchy: a subclass label might be positive while
its superclass is negative, thereby contradicting the
hypernmy relation (illustrated in Figure 4 (A)).

We can apply two kinds of post-processing cor-
rections to the predicted labels in order for them
to be well-formed. We call the first transitive cor-
rection (Figure 4 (B)), wherein we correct all su-
perclass labels (transitively) to be positive. The
alternative is retractive correction (Figure 4 (C)),
where we ignore the positive classification of the
subclass label, and accept only the chain of su-
perclass labels (from the root), as long as they are
well-formed.

We apply both of these post-processing correc-
tion policies to all of the models, and observe the
effect on their performance.

6 Results

In this section, we describe the results for the eval-
uation setup described in the last section. We as-
sess the performance of the models by measuring
the precision (P), recall (R), and F1-scores of the
labels in the model using the one-vs.-rest setup.

Document Sentence

P R F1 P R F1

Task 1
OVR 77.8 51.7 62.1 56.8 30.7 39.9
MULTI-BASIC 71.0 71.6 71.3 42.0 71.9 53.0
INIT-A 73.4 76.9 75.1 42.7 70.6 53.2
INIT-B 68.3 83.4 75.1 40.1 72.2 51.6

Task 2
OVR 89.5 87.1 88.3 66.2 62.8 64.5
MULTI-BASIC 86.0 90.0 88.0 51.7 75.6 61.4
INIT-A 86.7 91.1 88.9 49.5 80.7 61.4
INIT-B 75.7 91.3 82.8 47.0 83.2 60.1

Table 4: Performance results for Tasks 1 and 2.
All figures are micro-averages expressed as per-
centages.

Table 6 shows the micro-averaged scores across
all labels for both tasks.

The results show that for Task 1, all multi-
labeled models significantly outperform the OVR

model in F1-score, which is explained by a very
substantial improvement in recall. INIT-A outper-
forms all models in this task, particularly at the
document level where there is 5 point improve-
ment over MULTI-BASIC.

The results for Task 2 on are more mixed. Over-
all, all models achieve a similar F1-score at the
document level. However, there is a clear im-
provement in recall at the cost of lower preci-
sion when compared to OVR. The best perform-
ing model at the document level is INIT-A. On the
sentence level, OVR seems to outperform all multi-
label models by a good margin. This indicates that
the multi-label approach did not aid sentence-level
classification in this particular task.

The figures in Table 6 do not show a complete
picture as the interactions between the labels are
not taken into account.

We can observe the proportion of the number
of labels assigned to each instance by the classi-
fiers, and compare these proportions to the anno-
tated gold standard test data. Figure 5 shows this
distribution for each classifier. We can see in Fig-
ure 5 that the overall distributions for all sentence-
level classifiers (for both tasks) are closer to the
gold standard distribution (compared to document
level). This is due to the fact that most sentences
have no assigned labels. For Task 2, the classifiers
tend to assign more labels than the gold standard.

Document-level classification shows two out-
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Figure 4: Illustrating post-processing label correction, with (A) showing the output prediction from the
neural network model, (B) applying transitive correction, (C) applying retractive correction.

liers. For Task 1, we observe that OVR dispropor-
tionately assigns exactly one label per document
compared to gold standard (where documents have
two to three labels on average). In Task 2, INIT-B

assigns more labels per document than the gold
standard (and every other model).

In addition to looking at the number of labels
per class, we also measure the proportion of exact
label matches that each model predicts as shown
in Table 6.

Task 1 Task 2

Doc. Sent. Doc. Sent.

OVR 18.0 67.9 43.4 61.7
MULTI-BASIC 26.2 59.3 40.9 54.2
INIT-A 33.9 65.9 45.6 53.1
INIT-B 31.3 62.6 12.7 49.7

Table 5: The proportion (%) of exact matches.

For document classification in Task 1, INIT-A

outperforms all models, while OVR significantly
underperforms. However, OVR performs signif-
icantly better than all other models when classi-
fying sentences when considering exact matches
only.

Finally, we look at how consistent (well-
formed) the predictions output by each model are.
We do this by running the post-processing label
correction policies described in Section 5.3. Ta-
ble 6 summarizes these results.

For Task 1, OVR shows the largest variance af-
ter the application of any method of correction,
whereas no multi-labeled model shows this vari-
ation. This indicates that the post-processing cor-
rections had little effect on the predicted results as
they were already well-formed. For Task 2, there
is very little variance for all multi-labeled models,
with only a slight change for OVR.

Document Sentence

O T R O T R

Task 1
OVR 62.1 63.9 60.6 39.9 42.2 37.5
MULTI-BASIC 71.3 71.3 71.2 53.0 53.0 53.0
INIT-A 75.1 75.0 75.2 53.2 53.2 53.3
INIT-B 75.1 74.9 75.3 51.6 51.5 51.6

Task 2
OVR 88.3 88.4 88.2 64.5 65.3 63.3
MULTI-BASIC 88.0 87.7 88.1 61.4 61.3 61.7
INIT-A 88.9 88.7 89.0 61.4 61.3 61.5
INIT-B 82.8 82.8 82.8 60.1 59.8 60.4

Table 6: Post-processing label correction. O is
the predicted output, T is transitive correction, and
R is retractive correction. All figures are micro-
averaged F1-scores expressed as percentages.

7 Discussion

The strength of using the hidden-layer initializa-
tion for multi-label classification lies in leverag-
ing the co-occurrence between labels. Naturally,
if such co-occurrences are relatively rare in the
dataset, then this approach becomes less effective.
This implies that this approach is especially at-
tractive for hierarchical multi-label classification,
because of the implicit hypernym–hyponym rela-
tions between the labels, which by definition guar-
antees co-occurrence of labels in the datasets. The
superclass labels must be included when labeling
a given example in order to model the hierarchical
nature of the labels.

Another key strength of this approach is its low
computational cost, which is only proportional to
the size of the input text, and the number of label
co-occurrences.

However, when there is a large amount of train-
ing data, the number of label co-occurrences can
be larger than the number of the hidden units. In
such a case, one possible option is to select an ap-
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Figure 5: The distribution of instances according to the number labels per instance. The number of labels
per instance (x-axis), and y-axis is the proportion of instances in the test dataset that have that number
of labels. The black line indicates the distribution of the gold standard annotation (i.e. ground truth).

propriate subset of label co-occurrences using a
certain criteria such as the frequency in the train-
ing data. For the datasets used in this paper, this
was not necessary.

Overall, the results of the evaluation show
that initializing the model using only label co-
occurrences (INIT-A) generally produced a higher
performance compared to the other models, in-
cluding the random initialization of remaining hid-
den units in the final hidden layer (the INIT-B

model) as proposed by Kurata et al. (2016). How-
ever, there was one key exception in Task 2 sen-
tence level classification, where the one-vs.-rest
OVR model achieved the best results.

Both variants of the initialization models in-
vestigated here achieved generally positive results
when the scope of text is larger (i.e. documents),
where there are more labels assigned per text in-
stance. However, due to time and computational
constraints, this initialization method was not fully
utilized as we could only investigate its perfor-
mance under a closed set of hyperparamaters for
the CNN model.

It may be possible for this approach to yield
even better results if further parameters are in-

cluded in the CNN models (e.g. more filters and
filter sizes). It is also important to note that col-
lectively the one-vs.-rest models have much more
parameters than any of the the multi-label models
in our experiment setup, and therefore they have
a higher capacity to capture correlations. In spite
of this, the multi-label models have largely outper-
formed the OVR model.

8 Conclusions

There are many tasks in the biomedical domain
that require the assignment of one or more labels
to input text. These labels often exists within some
hierarchical structure (such as a taxonomy).

The conventional approach is to use a one-
vs.-rest classification setup: a binary classifier is
trained for each label in the taxonomy or ontol-
ogy where all instances not belonging to the class
are considered negative examples. The main draw-
backs to this approach are that dependencies be-
tween classes are not leveraged in the training and
classification process, and the additional computa-
tional cost of training a classifier for each class.

We applied a new method for multi-label clas-
sification that initializes a neural network model



final hidden layer to leverage label co-occurrence.
This approach elegantly lends itself to hierarchical
classification.

We evaluated this approach using two hierarchi-
cal multi-label classification tasks using both sen-
tence and document level classification. We use
a baseline CNN model with a sigmoid output for
each class, and a binary cross-entropy loss func-
tion. We investigated two variants of the initial-
ization procedure. One used only co-occurrence
(and hierarchical information), while the other
randomly assigned random values to the remain-
ing hidden units in the final hidden layer as pro-
posed by Kurata et al. (2016). The experimental
results for both tasks show that overall, our pro-
posed initialization procedure (INIT-A) achieved
better results than all of the the other models, with
the exception of sentence-level classification in
Task 2, where one-vs.-rest classification attained
the best result. We believe that this approach
shows promising potential for improving the per-
formance for hierarchical multi-label text classifi-
cation tasks.

For future work, we plan to try different ini-
tialization schemes in addition to the upper bound
parameter by Glorot and Bengio (2010) that was
used in the paper, and the application of this ap-
proach to other tasks and datasets such as Medical
Subject headings (MeSH) text classification.
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De Carvalho. 2014. Hierarchical multi-label clas-
sification using local neural networks. Journal of
Computer and System Sciences 80(1):39–56.

Guibin Chen, Deheng Ye, Erik Cambria, Jieshan Chen,
and Zhenchang Xing. 2017. Ensemble application
of convolutional and recurrent neural networks for
multi-label text categorization. IJCNN.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word em-
beddings for biomedical NLP. In Proceedings of
BioNLP.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Wyatt T Clark and Predrag Radivojac. 2013.
Information-theoretic evaluation of predicted onto-
logical annotations. Bioinformatics 29(13):i53–i61.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. volume 9, pages 249–256.

Douglas Hanahan and Robert A Weinberg. 2000. The
hallmarks of cancer. Cell 100(1):57–70.

Jin-Hyuk Hong and Sung-Bae Cho. 2008. A proba-
bilistic multi-class strategy of one-vs.-rest support
vector machines for cancer classification. Neuro-
computing 71(16):3275–3281.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multi-label classifi-
cation with better initialization leveraging label co-
occurrence. In Proceedings of NAACL-HLT . pages
521–526.

Kristin Larsson, Simon Baker, Ilona Silins, Yufan Guo,
Ulla Stenius, Anna Korhonen, and Marika Berglund.
2017. Text mining for improved exposure assess-
ment. PloS one 12(3):e0173132.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of machine
learning research 5(Apr):361–397.

Carolyn E Lipscomb. 2000. Medical subject headings
(mesh). Bulletin of the Medical Library Association
88(3):265.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014. Large-
scale multi-label text classificationrevisiting neu-
ral networks. In Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases. Springer, pages 437–452.

Sampo Pyysalo, Tomoko Ohta, and Sophia Ananiadou.
2013. Overview of the cancer genetics (CG) task of
BioNLP Shared Task 2013. In BioNLP Shared Task
2013 Workshop.

Artem Sokolov and Asa Ben-Hur. 2010. Hierarchi-
cal classification of gene ontology terms using the
gostruct method. Journal of bioinformatics and
computational biology 8(02):357–376.

https://github.com/fchollet/keras
https://github.com/fchollet/keras


Artem Sokolov, Christopher Funk, Kiley Graim, Karin
Verspoor, and Asa Ben-Hur. 2013. Combin-
ing heterogeneous data sources for accurate func-
tional annotation of proteins. BMC bioinformatics
14(3):S10.

Aixin Sun and Ee-Peng Lim. 2001. Hierarchical text
classification and evaluation. In Data Mining, 2001.
ICDM 2001, Proceedings IEEE International Con-
ference on. IEEE, pages 521–528.

Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel
neural networks with applications to functional ge-
nomics and text categorization. IEEE transactions
on Knowledge and Data Engineering 18(10):1338–
1351.


