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Abstract

Distant supervision has been applied to
automatically generate labeled data for
biomedical relation extraction. Noise ex-
ists in both positively and negatively-
labeled data and affects the performance of
supervised machine learning methods. In
this paper, we propose three novel heuris-
tics based on the notion of proximity, trig-
ger word and confidence of patterns to
leverage lexical and syntactic information
to reduce the level of noise in the distantly
labeled data. Experiments on three dif-
ferent tasks, extraction of protein-protein-
interaction, miRNA-gene regulation rela-
tion and protein-localization event, show
that the proposed methods can improve
the F-score over the baseline by 6, 10 and
14 points for the three tasks, respectively.
We also show that when the models are
configured to output high-confidence re-
sults, high precisions can be obtained us-
ing the proposed methods, making them
promising for facilitating manual curation
for databases.

1 Introduction

Biomedical relation extraction is a widely studied
field that is concerned with the detection of dif-
ferent kinds of relations between bio-entities men-
tioned in text. With the rapid growth of biomed-
ical literature, it has attracted much research in-
terest as it makes possible to automatically ex-
tract structured information from large amounts of
text. Biomedical relation extraction has helped
facilitate manual curation of many biomedical
databases as well as biological hypothesis gener-
ation.

Various tasks have been studied for biomedi-
cal relation extraction, e.g., extraction of protein-
protein interaction (Airola et al., 2008), drug-
drug interaction (Segura-Bedmar et al., 2013)
and mutation-disease association (Singhal et al.,
2016). In recent years, community-organized
events, such as BioNLP (Kim et al., 2012, 2013)
and BioCreative (Arighi et al., 2014; Wei et al.,
2015b), provide comprehensive evaluation for ex-
traction systems of a wide range of biomedical
relations and events. In these tasks, supervised
learning methods are commonly used and achieve
state-of-the-art results.

When applying supervised learning methods, a
training corpus is required to train the extraction
model. The creation of a training corpus usu-
ally requires curators with domain knowledge, and
is a time-consuming and labor-intensive process.
Thus, it is one of the main obstacles in the use of
supervised learning methods for relation extrac-
tion. To address this issue, recently researchers
have been using distant supervision to construct
training data automatically.

In distant supervision, a heuristic labeling pro-
cess is used to label a text corpus using known re-
lated entity pairs from a database. Text containing
these entity mentions or their different name varia-
tions are labeled as positive instances. To illustrate
the labeling process, we show two example sen-
tences labeled using interacting protein pairs from
the database IntAct (Orchard et al., 2014).

• 〈NgR, p75〉: NgR interacted with p75 in lipid
rafts

• 〈Mdm2, p53〉: As a consequence, N-
terminally truncated Mdm2 binds p53 and
promotes its stability.

The above sentences are labeled as positive in-
stances and express protein-protein interaction re-
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lation between the protein mention pair. When
a protein pair mentioned in a sentence is not
recorded by IntAct, the sentence is then labeled as
a negative instance. The positively and negatively-
labeled data generated by this process can poten-
tially be used by supervised learning algorithms
to train a model. Various existing biological
databases and the large amount of Medline ab-
stracts and PMC full-length articles can support
applying distant supervision for many biomedical
relation extraction tasks. However, the main draw-
back of distant supervision is that the created data
can be very noisy, due to the guideless heuristic
labeling process. Wrongly labeled instances ex-
ist in both positively and negatively-labeled data.
For example, consider the two labeled sentences
below for protein-protein interaction.

• 〈Mdm2, p53〉: Ribosomal protein S3: A
multi-functional protein that interacts with
both p53 and MDM2 through its KH domain.

• 〈LRAP35a, MYO18A〉: LRAP35a binds in-
dependently to MYO18A and MRCK.

In the first sentence, although the protein pair
〈Mdm2, p53〉 are interacting with each other ac-
cording to IntAct, no explicit description in the
sentence expresses such an interaction relation. It
is labeled as a positive instance by the heuristic la-
beling process, which is a wrong annotation. On
the other hand, if a related entity pair has not been
recorded in the database, all the sentences con-
taining their mentions will be labeled as negative
instances, which may also contain wrong annota-
tions. As an example, the protein pair 〈LRAP35a,
MYO18A〉 in the second sentence is not recorded
by IntAct. The sentence is labeled as negative,
while it expresses an interaction relation between
the two proteins. Thus, it is a wrong annotation in
the negatively-labeled data.

In this paper, we propose three novel heuristics
that attempt to reduce the noise in the positively-
labeled data set P as well as the negatively-labeled
data set N . First, noise can be removed from P us-
ing lexical and syntactic information of the entity
mention pairs. Next, high-confidence patterns can
be discovered using the purified P , which can then
be used to remove noise from N . Experiments on
three tasks, extraction of protein-protein interac-
tion, miRNA-gene regulation relation and protein-
localization event, show that our methods can im-
prove the F-score by 6, 10 and 14 points over the

baseline for the three tasks, respectively. Further-
more, we show that our methods obtain 0.71, 0.95
and 0.77 precision at recall level 0.30 for the three
tasks, respectively, making them promising for fa-
cilitating database curation.

In the rest of the paper, we first discuss the
related work in Section 2. Section 3 describes
the three tasks for experiments, as well as the
databases and text corpora used in our experiments
for applying distant supervision. In Section 4, we
describe the details of the proposed methods. Ex-
periments results will be reported in Section 5. We
conclude with future work in Section 6.

2 Related Work

Distant supervision for relation extraction was first
proposed by Craven and Kumlien (1999) to ex-
tract protein-localization relation. Mintz et al.
(2009) used Freebase relations to annotate arti-
cles in Wikipedia and trained a logistic regression
model to extract 102 different types of relations.
Riedel et al. (2010) proposed to use multi-instance
learning to tolerate noise in the positively-labeled
data. They relaxed the original assumption in dis-
tant supervision that all the positively-labeled sen-
tences of an entity pair express the relation of in-
terest and instead, they assume that at least one
of the sentences does. Hoffmann et al. (2011)
and Surdeanu et al. (2012) continued to augment
the multi-instance model with a multi-label clas-
sifier for each entity pair, to exploit correlations
and conflicts among different relations to improve
performance. In these approaches, researchers fo-
cus on developing models that can tolerate noise
and improve extraction performance on entity pair
level. However, it is important to note that the
noise is not explicitly removed from the labeled
data, and extraction on sentence level is not opti-
mized directly.

Focusing on explicitly reducing noise from
the distantly-labeled training data, Intxaurrondo
et al. (2013) proposed three simple heuristics to
remove noise from the positively-labeled data.
They tried to filter out positively-labeled instances
that appear too frequently or have a large dis-
tance from their cluster centroid, or positive en-
tity pairs that have a low partial mutual informa-
tion. Takamatsu et al. (2012) proposed a statisti-
cal model to estimate P (relation|pattern), and
removed positively-labeled instances that match
a low-probability pattern. Xu et al. (2013)
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used pseudo-relevance feedback to discover high-
confidence related entity pairs which do not exist
in the database, and removed negatively-labeled
instances of these entity pairs. Roller et al. (2015)
tried to reduce noise in the negatively-labeled data
by inferring new relations of a knowledge graph
using a random-walk algorithm. Roth et al. (2013)
gave a nice review of some of the above methods.

Distant supervision has also been applied to ex-
tract biomedical relation. Zheng and Blake (2015)
used a heuristic based on dependency path fre-
quency to reduce noise in the positively-labeled
data for extraction of protein-localization rela-
tions. Thomas et al. (2011) used a list of words
which are frequently employed to indicate protein
interaction to filter out noise for protein-protein in-
teraction extraction. Roller and Stevenson (2015)
tried to combine existing hand-labeled data with
distantly labeled data to improve the performance
for drug-condition relations. Multi-instance learn-
ing was used by Roller et al. (2015) to extract two
subsets of relations in UMLS database with re-
duced noise by a path ranking algorithm, and by
Lamurias et al. (2017) to extract miRNA-gene re-
lations.

3 Resources

3.1 Task Definition

In this paper, we use three tasks, extraction
of protein-protein interaction (PPI), miRNA-
gene regulation relation (MIRGENE) and protein-
localization event (PLOC), to evaluate our meth-
ods. Extraction of PPIs is a well-studied task
(Miwa et al., 2009; Peng et al., 2016). We aim
to extract interacting protein pairs from text us-
ing distant supervision, and evaluate it on one of
the public corpora used by previous work. Ex-
traction of miRNA-gene regulation relations have
attracted much interest recently because of the
rapid growth of miRNA-related literature (Bage-
wadi et al., 2014; Li et al., 2015). In a MIRGENE
relation, a miRNA regulates gene expression via
direct binding to the gene’s 3’ UTR or indirect
pathway effect. Extraction of protein-localization
event has been a subtask in BioNLP shared task
from 2009 to 2013 in the Genia track (Kim et al.,
2013). It describes the event that a protein is lo-
calized to a subcellular location. We only con-
sider extraction of such events when the sentence
mentions the protein and the location, same with
Zheng and Blake (2015). We list an example sen-

tence for each task below.

• PPI: Interaction of Shc with Grb2 regulates
association of Grb2 with mSOS.

• MIRGENE: MicroRNA-223 regulates
FOXO1 expression and cell proliferation.

• PLOC: The cyclin G1 protein was localized
in nucleus.

3.2 Training Data Construction

To construct the training set, we need a database
containing related entity pairs and a large amount
of text for the heuristic labeling. Table 1
lists the databases, text corpora and numbers of
positively/negatively-labeled instances produced
by the heuristic labeling process for the three
tasks.

Task Database Abstracts Positive / Negative
PPI IntAct 14,769 67,099 / 108,016
MIRGENE Tarbase, miRTarBase 30,000 75,632 / 97,118
PLOC UniProt 30,000 28,985 / 82,132

Table 1: Databases, text corpora and distantly la-
beled data for the three tasks.

From all the Medline abstracts, we randomly
sampled 30,000 abstracts with sentences men-
tioning a pair of miRNA and gene for miRNA-
gene regulation relation, and 30,000 abstracts
with sentences mentioning a pair of protein and
subcellular location for protein-localization event.
We tried sampling more abstracts but the ex-
periment results were not significantly different.
For protein-protein interaction, using Medline ab-
stracts leads to a skewed labeled data set (1:7.4
positive/negative ratio), we turned to use all the
abstracts that are curated by IntAct database as the
text corpus. Although this may result in less noise,
we will show that our proposed methods are still
able to improve performance over the baseline in
the experiments.

In the heuristic labeling process, we need to
recognize entity mentions in text and map them
to their database entry. For gene/protein, we use
the output from GenNorm++ (Wei et al., 2015a).
We use simple regular expressions to recognize
miRNA mentions, and map them to a miRNA en-
try in TarBase (Vlachos et al., 2014) or miRTar-
Base (Hsu et al., 2014) using the number in the
miRNA name. For subcellular location, similar to
Zheng and Blake (2015), we use a dictionary from
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UniProt (UniProt Consortium, 2014) and perform
string matching to find subcellular location men-
tions. The entry "secreted" is removed as it is
not a specific subcellular location. The dictionary
contains name variants for each location, and we
normalize a matched variant in text to its standard
name.

3.3 Test Data
We evaluate the baselines and proposed methods
on a test set directly for the three tasks. Note that
in the context of distant supervision, we should ex-
pect little or no hand-labeled data. Hence, we can
not assume the availability of a development set
for the purpose of parameter tuning. Thus, when
a method has multiple possible choices for a pa-
rameter, we will report the results using different
parameter values.

For the test set, we use the AIMed corpus
(Bunescu et al., 2005) for PPI extraction, same
with Bobic et al. (2012). We extend the corpus in
our work (Li et al., 2015) to include relation men-
tion annotations, and use the development set to
evaluate MIRGENE extraction. For PLOC extrac-
tion we use BioNLP 2011 Genia training and de-
velopment set, same with Zheng and Blake (2015).
Gold entity annotations in these corpora are used
except for subcellular location, we use the dictio-
nary from UniProt to recognize them, as BioNLP
Genia corpus only annotates subcellular locations
that participate in an event. The characteristics of
the three test corpora are listed in Table 2. We
ensure that the test sets do not overlap with the
training sets. Specifically, all the abstracts used by
the test sets are removed from the document pools
from where the training sets are sampled.

Task Documents Annotations (P/N)
PPI 225 1,000 / 4,611
MIRGENE 200 464 / 775
PLOC 1,167 125 / 1,783

Table 2: Test sets for the three tasks.

4 Methods

4.1 Model and Feature Set
Logistic regression (LR) model is used for all our
proposed methods in the experiments. An exam-
ple sentence with relevant dependency relations
and its extracted features are shown in Fig. 1 and
Table 3. E-walk and v-walk features are 〈edge,

stem, edge〉 and 〈stem, edge, stem〉 triples includ-
ing the direction extracted from the shortest de-
pendency path. They preserve partial structure in-
formation and are more generalizable than the full
dependency path.

Figure 1: Example sentence for feature extraction.

No. Feature
1 P1←nmod:of←→nmod:with→P2
2 nmod:of←interact→nmod:with
3 P1←nmod:of→interact

interact→nmod:with→P2
4 P1_with_P2

of_P2_with_P2_be
interact_of_P1_with_P2_be_confirm

5 2
6 1

Table 3: Features extracted from the example sen-
tence. P1 and P2 represent the two protein men-
tions. 1: unlexicalized shortest dependency path;
2: e-walk features; 3: v-walks features; 4: three
stem sequences, 5: number of edges on the short-
est dependency path; 6: number of stems on the
first stem sequence.

For all the lexical terms, we use their stems pro-
duced by Porter’s stemmer (Porter, 1980). Char-
niak parser (Charniak, 2000; Charniak and John-
son, 2005) with the biomedical model (Mcclosky,
2010) is used to produce constituency parse for
each sentence, which is converted to collapsed
dependency parse using Stanford CoreNLP con-
verter (Manning et al., 2014) with CCprocessed
setting. We remove features that only appear once
in the whole training set.

4.2 Baselines

The baseline is a LR model trained on the distantly
labeled set without any filtering of noise. We
also implement two previous methods for compar-
ison. First, we train a LR model on the distantly
labeled set filtered by a heuristic (DPFreq) pro-
posed by Zheng and Blake (2015), which removes
positively-labeled instances with a shortest depen-
dency path that appear less than k times in the pos-
itive set. They hypothesize that rare dependency
path is unlikely to express a relation. As we tried
different values of k and obtained similar F-scores
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for the three tasks, we only report the results for
k = 5 to save space. Note that since different
features, text corpus and named entity recognition
tool are used, we are not trying to reproduce the
exact results reported in Zheng and Blake (2015).
In addition, we implement a widely-used multi-
instance model described in Surdeanu et al. (2012)
and train it on unfiltered distantly labeled data.

4.3 Proposed Heuristics

We propose three novel filtering methods to re-
move noise from both positively and negatively-
labeled data. These methods are applied in a se-
quential manner so that each step removes more
noise based on the filtered data from the previous
step.

The first heuristic is concerned with multiple
mentions of an entity in a sentence. If the entity
is related to another entity mentioned in the sen-
tence, all the binary combinations of their men-
tions will be labeled as positive by the default
labeling process. This usually introduces noise,
since not all combinations are likely to be in the
relation. For example, consider the sentence be-
low.

Overexpression of miR-193b inhibited the ex-
pression of CCND1, and knock-down of CCND1
inhibited the proliferation of GC cells, suggesting
that miR-193b exerted its anti-tumorigenic role in
GC cells through targeting CCND1 gene.

miR-193b regulates CCND1 according to the
database TarBase. The six binary combinations
between miR-193b and CCND1 in the sentence
will be labeled as positive instances. However, the
sentence only expresses miRNA-gene regulation
relation for the first and the last combination. The
other four are wrongly labeled and hence consti-
tute noise in the positively-labeled data.

To remove such noise, we hypothesize that only
the closest pair of the entity mentions express the
relation. The closest pair is defined as follow-
ing: for a positively-labeled entity mention pair
〈e1, e2〉, if their shortest dependency path has the
smallest length among all the positively-labeled
instances that involve either e1 or e2, the pair
〈e1, e2〉 is considered as a closest pair. When com-
puting the dependency path length, we skip the ap-
pos relation. The heuristic is described as below.

Heuristic of closest pairs (CP): remove
positively-labeled instances that are not closest
pair, when multiple mentions of one or both en-

tities are present in the sentence.
For the three tasks and many other biomedical

text-mining tasks, the relation or event is often in-
dicated by a small set of trigger words (e.g., inter-
act/bind for PPI, regulate/target for MIRGENE,
and localize/translocate for PLOC). Following the
usage in the BioNLP Genia corpus, we can term
these words as trigger words. With knowledge of
a comprehensive set of trigger words, we can hy-
pothesize that sentences without a trigger word are
less likely to express the target relation or event.
We propose to automatically mine such trigger
words from the large distantly-labeled corpus, and
use them to remove noise from the positively-
labeled data.

Trigger words are usually verbs, or in their nom-
inal or adjectival form. Our target is then to iden-
tify stems of verb triggers, which can also be used
to match nominal or adjectival form of the verb.
A simple procedure is used: first, count all the
verb stems on the shortest dependency paths of
the positively-labeled instances generated by the
heuristic labeling process. As we want to choose
triggers that are strongly associated with the re-
lation, we only use dependency paths that con-
tain one token, excluding the two entity mentions.
These verb stems are then sorted by frequency and
the high-frequency stems are chosen for the trig-
ger list. We list the top 10 verb stems for the three
tasks in Table 4.

For each positively-labeled instance, we search
for trigger stems in the tokens on its shortest
dependency path or in the maximum dominat-
ing noun phrase. A maximum dominating noun
phrase is defined as the maximally-spanning noun
phrase that encloses the two entity mentions, with
only noun or prepositional phrases as descendants.
For example, in the text fragment "interaction be-
tween FAK and PP1 regulates a process", the
maximum dominating noun phrase is "interaction
between FAK with PP1" for this protein mention
pair. As sentences without a trigger word are less
likely to express the target relation or event, we
use the heuristic described below to remove noise.

Heuristic of trigger word (TW): remove
positively-labeled instances if a trigger stem is not
found on the shortest dependency path or in the
maximum dominating noun phrase of the entity
mention pair.

By using heuristic CP and TW, we can already
filter out a substantial part of the positively-labeled
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Task Verb stems Pattern and example sentence

PPI
interact, bind, associ, phosphoryl, re-
cruit, activ, coloc, coimmunoprecipit, co-
immunoprecipit, regul

PROTEIN1←nsubj←interact→nmod:with→PROTEIN2
mGrb10 interacts with Nedd4.

MIRGENE target, regul, inhibit, downregul, suppress,
repress, down-regul, correl, induc, promot

GENE←dobj←target←advcl←root→nsubj→MIRNA
MiR-429 play its role in PDAC by targeting TBK1.

PLOC local, transloc, express, associ, interact, de-
tect, coloc, find, co-loc, target

PROTEIN←nmod:of←transloc→amod→LOCATION
Importin beta mediates nuclear translocation of Smad 3.

Table 4: The top 10 verb stems and top pattern and example sentence for the three tasks.

data. Using heuristic CP+TW with 50 trigger
stems, 65% of the positively-labeled data can be
removed for PPI. For MIRGENE and PLOC, the
removal ratio is 38% and 59%, respectively. We
hypothesize that the remaining set will still con-
tain a large amount of data for training and more
importantly, it will be of high quality, and thus it
would be possible to discover high-confidence pat-
terns from it using pattern occurrence frequency.

Finally, we turn to the last heuristic that we
introduce. Recall noisy instances in negatively-
labeled data should be labeled as positive but are
negatively labeled because of incompleteness of
the database used for distant supervision. We try
to mine some high-confidence patterns from the
purified positively-labeled set after the application
of heuristic CP and TW. We define a pattern as a
shortest dependency path lexicalized by a trigger
stem between the entity mention pair. The pattern
frequencies in the positively-labeled data filtered
by heuristic CP and TW are counted. The most
frequent pattern and an example sentence for each
task are shown in Table 4.

Our hypothesis is that any entity mention pair
connected by a high-confidence pattern is likely
to be related and hence probably constitute noise
in the negatively-labeled data. Therefore, we con-
sider the next heuristic described below.

Heuristic of high-confidence patterns (HP):
remove negatively-labeled instances which match
a high-confidence pattern mined from positively-
labeled data.

Note that heuristic DPFreq, CP and TW re-
move instances from the positively-labeled data,
whereas HP is the only heuristic that removes in-
stances from the negatively-labeled data. Heuris-
tic TW depends on the number of trigger stems,
while heuristic HP depends on both the number
of trigger stems and high-confidence patterns, as
it needs the trigger stems to lexicalize the shortest
dependency path to form a pattern.

5 Results and Discussions

We use precision, recall and F-score to evaluate
the baselines and proposed methods. The top 50
trigger stems were used in heuristic TW, while the
top 50 trigger stems and the top 100 patterns were
used in heuristic HP. The results are presented in
Table 5. Specificity is also presented. We will dis-
cuss how different numbers of trigger stems and
patterns may affect the results later.

Table 5 shows that the multi-instance model
and the use of heuristic DPFreq or CP increased
precision compared to the baseline for all the
three tasks, indicating that they can effectively re-
move noise from the positively-labeled data. Us-
ing heuristic CP+TW further improved precisions
over heuristic CP for the three tasks. However, us-
ing heuristic DPFreq, CP or CP+TW did not im-
prove the F-score over the baseline for PPI and
MIRGENE, due the decreased recall. By remov-
ing noise from the negatively-labeled data using
heuristic HP in addition to CP and TW, the re-
calls can be improved with minor or no decrease
in precision, resulting in higher F-scores than the
baseline, the MI model and other heuristics for
all the three tasks. This suggests that the pro-
posed heuristics can effectively remove noise from
both positively and negatively-labeled data, and
to obtain better F-scores, it is important to filter
both positive and negative set to improve preci-
sion and recall simultaneously. Although PLOC
extraction did not obtain a good precision in all the
experiments, we will show that high precision can
be achieved for high-confidence PLOC extraction
later in this section.

By applying heuristic CP+TW+HP, the F-score
can be improved by 10 points for PPI extraction
compared to Bobic et al. (2012), and 11 points for
PLOC extraction compared to Zheng and Blake
(2015).

Different numbers of trigger stems: as differ-
ent numbers of trigger stems can be used in heuris-
tic TW and HP, we investigated how they affect
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PPI MIRGENE PLOC
Method P R F S P R F S P R F S
Bobic et al. (2012) 0.26 0.78 0.39 - - - - - - - - -
Zheng and Blake (2015) - - - - - - - - 0.43 0.25 0.31 -
Baseline 0.37 0.52 0.43 0.86 0.56 0.58 0.57 0.74 0.18 0.57 0.28 0.94
Multi-instance (MI) 0.57 0.35 0.43 0.91 0.64 0.56 0.59 0.78 0.22 0.38 0.29 0.94
DPFreq 0.42 0.41 0.41 0.87 0.63 0.50 0.56 0.78 0.21 0.39 0.29 0.94
CP 0.55 0.34 0.42 0.95 0.68 0.50 0.57 0.81 0.26 0.51 0.35 0.95
CP+TW 0.69 0.28 0.40 0.93 0.72 0.44 0.55 0.83 0.34 0.42 0.37 0.95
CP+TW+HP 0.65 0.39 0.49 0.93 0.73 0.61 0.67 0.84 0.35 0.53 0.42 0.95

Table 5: Precision, recall, F-score and specificity of all the methods for three extraction tasks.

the performance for the three tasks. In Fig. 2
(a)-(c), precisions, recalls and F-scores are shown
for applying heuristic CP+TW and CP+TW+HP
(using top 100 patterns) with different numbers
of trigger stems. PPI and MIRGENE extraction
maintained a stable precision with increasing re-
call when the number of trigger stem increased.
For PLOC extraction precision decreased with in-
creased recall when more trigger stems were used,
indicating that the quality of the trigger stems can
be improved. Using 100 patterns to remove noise
resulted in much better recalls and F-scores for all
the three tasks across different numbers of trig-
ger stems, further confirming that heuristic HP
is an effective method to remove noise from the
negatively-labeled data.

Different numbers of patterns: we investi-
gated how different numbers of patterns used by
heuristic HP affect the results. In Fig. 2 (d)-(f),
precisions, recalls and F-scores are shown for ap-
plying CP+TW+HP (using top 50 trigger stems)
with different number of patterns. The perfor-
mances using heuristic CP+TW with 50 trigger
stems are included for comparison. We can see
that recalls can be consistently improved when
more patterns were used, with minor or no de-
crease in precision. Compared to the results only
using heuristic CP+TW, even using small number
of patterns can achieve better performance.

A major use case of biomedical relation ex-
traction is to help identify high-confidence entity
pairs to facilitate manual curation for databases.
Thus, a desired property of a relation extractor is
to achieve high precision for such high-confidence
extractions. Logistic regression model outputs a
probability for each test instance, and high proba-
bility indicates high confidence to be positive.

To investigate the performance of the proposed
methods for the high-confidence extractions, we

draw precision-recall curves using the probability
produced by the logistic regression model. By def-
inition, logistic regression model predicts an in-
stance as positive if the probability is greater than
0.5. By varying the threshold, we can calculate
precisions at different recall levels. For example,
when the threshold is set to 0.9, the model only
predicts an instance with probability greater than
0.9 as positive. Ideally the model should achieve
better precision when the threshold is high.

For each task, six curves are drawn in Fig. 3.
We can see that using heuristic CP+TW+HP ob-
tained higher precisions than the baselines and
other heuristics on the left side of the figures,
which correspond to the performance for high-
confidence extractions. The multi-instance model
also obtained better precisions compared to the
baseline at lower recall levels. Specifically, by
using heuristic CP+TW+HP, PPI, MIRGENE and
PLOC extraction can achieve the highest preci-
sions among the six curves, which are 0.71, 0.95
and 0.77, respectively, at recall level 0.30.

6 Conclusion

In this paper, we proposed three novel heuristics
that use lexical and syntactic information to re-
move noise from labeled data generated by dis-
tant supervision. Experiments showed that the
proposed methods achieved significantly higher F-
scores than the baseline and previous works for
the three tasks, and high precision can be obtained
for high-confidence results. For future work, we
plan to improve the trigger stem list by asking cu-
rators to remove non-informative stems. Aggre-
gating evidences from all the sentences for entity
pair level extraction or incorporating direct super-
vision (Wallace et al., 2016) are two interesting di-
rections.

The code and data used in the experiments
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(a) PPI (b) MIRGENE (c) PLOC

(d) PPI (e) MIRGENE (f) PLOC

Figure 2: Results of using different numbers of trigger stems (a)-(c) and patterns (d)-(f). Markers:
precision (circle), recall (square), F-score (triangle). (a)-(c): CP+TW (solid) and CP+TW+HP (dashed).
(d)-(f): CP+TW (dashed) and CP+TW+HP (solid).

(a) PPI (b) MIRGENE (c) PLOC

Figure 3: Precision-recall curves for the three tasks. Y-axis represents precision and X-axis represents
recall. Markers: baseline (+), multi-instance (diamond), DPFreq (x), CP (square), CP+TW using 50
trigger stems (triangle), CP+TW+HP using 50 trigger stems and 100 patterns (circle).

of this paper are available at http://biotm.
cis.udel.edu/biotm/projects/ds.
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