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Abstract 

The Precision Medicine Track in BioCrea-

tive VI aims to bring together the BioNLP 

community for a novel challenge focused 

on mining the biomedical literature in 

search of mutations and protein-protein in-

teractions (PPI). In order to support this 

track with an effective training dataset with 

limited curator time, the track organizers 

carefully reviewed PubMed articles from 

two different sources: curated public PPI 

databases, and the results of state-of-the-art 

public text mining tools. We detail here the 

data collection, manual review and annota-

tion process and describe this training cor-

pus characteristics. We also describe a cor-

pus performance baseline. This analysis 

will provide useful information to develop-

ers and researchers for comparing and de-

veloping innovative text mining ap-

proaches for the BioCreative VI challenge 

and other Precision Medicine related appli-

cations. 

1 Introduction 

Genomic technologies now make possible the 

routine sequencing of individual genomes and such 

data makes possible to understand how genetic var-

iations are distributed in healthy and sick popula-

tions. On the other hand, proteomics and metabo-

lomics approaches are charting the metabolic and 

interactions maps of the cell. Such data deluge has 

generated great expectations in the cure of human 

diseases. Nonetheless, it is still difficult to predict 

the phenotypic outcome of a specific genome and 

designing the most appropriate treatment or estab-

lishing preventive programs. Linking allelic varia-

tion and genomic mutations to protein-protein in-

teractions (PPI) is crucial to understand how cellu-

lar networks rewire and to support personalized 

medicine approaches.  

To date, no tool is available to facilitate the spe-

cific retrieval of such information that remains bur-

ied in the unstructured text within the biomedical 

literature. Our goal is to foster the development of 

text mining algorithms that specialize in scanning 

the published biomedical literature and to extract 

the reported discoveries of protein interactions 

changing in nature due to the presence of a ge-

nomic variations or artificial mutations.  

The Precision Medicine Track in BioCreative VI 

is a community challenge that addresses this prob-

lem in the form of two tasks:  

 Document Triage: Identification of relevant 

PubMed citations describing mutations af-

fecting protein-protein interactions 

 Relation Extraction: Extraction of experi-

mentally verified PPI pairs affected by the 

presence of a genetic mutation 

Traditionally biological database curators have 

contributed to the various BioCreative challenges 

(Hirschman, Yeh et al. 2005, Chatr-aryamontri, 

Kerrien et al. 2008, Krallinger, Morgan et al. 2008, 

Lu and Hirschman 2012) supporting the identifica-

tion of stages in the curation workflow suitable for 

text mining applications and manually annotating 

the training and test corpora. Because the manual 

curation of the current exponentially growing body 

of biomedical literature is an impossible task, the 

insertion of robust text mining tools in the curation 

pipeline represent a feasible and sustainable solu-

tion to this problem (Hirschman, Burns et al. 2012).  
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As we prepared to create our corpus we faced 

the common situation of limited reviewer time. We 

took two steps to maximize this limited, valuable 

resource: First, we reviewed annotations readily 

available from manually curated PPI databases 

(Orchard, Ammari et al. 2014) and marked the rel-

evant publications that could be used for the pur-

poses of this challenge; next, we expanded the 

training set using a set of publically available text 

mining tools (Kim, Kwon et al. 2012, Wei, Harris 

et al. 2013) specifically for the retrieval of literature 

reporting protein interaction and mutation data. 

Both of these sets were manually reviewed and 

categorized as: 1) Articles describing PPI and mu-

tations affecting those molecular interactions, 2) 

Articles describing mutations and molecular inter-

actions, with no affect or no relation between the 

two events, 3) Articles describing PPI, 4) Articles 

describing mutations or genetic variation, and 5) 

Articles not relevant for either molecular interac-

tion or mutation information. In addition, the data-

base extracted interactions were carefully reviewed 

and validated in two important aspects: 1) the an-

notated PPI were described in the PubMed abstract 

of the corresponding article, as opposed to the full 

text, and 2) the extracted interactions were affected 

by a mutation, and this was stated in the abstract.     

All manually selected, categorized and carefully 

reviewed articles make up a set of 4,082 PubMed 

abstracts. All of these articles can be used for build-

ing machine learning methods and other innovative 

applications for the Precision Medicine Track in 

BioCreative VI. Of these, 598 PubMed articles are 

annotated with specific interactions. This smaller 

set can be used to develop algorithms for the Rela-

tion Extraction task and other similar biomedical 

text mining problems.  

We provide here a detailed description of the as-

sembly of this dataset and report the on-going ef-

forts of building the test corpus.  

2 Training Corpus 

The Precision Medicine track training corpus 

was generated as a result of two data selection and 

validation methods:  

 Data repurposing 

 Text mining triage and manual validation 

These approaches are different and as noticed in 

the article composition resulting from each of 

them, they are both important contributors to this 

dataset. Here we describe the procedure followed 

in each of these approaches, starting with our anno-

tation guidelines and a detailed view of the corpus 

characteristics. Figure 1 shows an example article 

in our dataset. 

2.1 Annotation guidelines 

All selected articles were manually annotated to 

answer these questions: 

 Does this article describe experimentally 

verified protein-protein interactions?   

 Does this article describe a disease known 

mutation or a mutational analysis experi-

ment?  

 Are the database curated PPI pairs for this ar-

ticle mentioned in the abstract?  

 

Figure 1 A PubMed article describing a protein-protein interaction affected by mutation 
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 Is the PPI affected by the mutation?  

Then, based on the above annotations, articles 

are carefully categorized as 1) True Positives, for 

articles specifically describing PPI influenced by 

genetic mutations, 2) True Negatives, for articles 

describing both PPIs and genetic variation analysis 

with no inference of relation between them, 3) arti-

cles containing PPI but no mutations, 4) articles 

containing mutations but no PPI, and 5) articles 

mentioning neither. 

2.2 Curated Database article selection 

The IntAct Molecular Interaction Database 

(Orchard, Ammari et al. 2014) is a freely available, 

open source database system and analysis tool for 

molecular interaction data. It currently lists 14,584 

manually annotated PubMed full-text articles with 

720,711 molecular interactions for 98,289 different 

interactors. The curation of these molecular inter-

actions is captured at a required level of detail and 

frequent updates include mapping to binding re-

gions, point mutations and post-translational mod-

ifications to a specified sequence with a reference 

protein sequence database.  

A set of 2,852 articles, containing in-the-abstract 

information about binding interfaces and mutations 

influencing the interactions, was retrieved from In-

tAct and these articles went through a careful re-

view and validation round by an experienced cura-

tor. Each one of these articles was carefully consid-

ered for their suitability for the precision medicine 

task.  

A second manual validation round was then per-

formed on all positively annotated articles of the 

first round. As a result, 598 articles were identified 

as relevant for the Relation Extraction task, with 
                                                      
1 https://www.ncbi.nlm.nih.gov/CBBresearch/Wil-

bur/IRET/PIE/ 

experimentally verified interactions influenced by 

mutations and with explicit interactors in the ab-

stract. All of these interactors were expressed with 

both their UniProt ID and Gene Entrez ID. The 

non-relevant articles were further categorized into 

the more specific categories as described above.      

2.3 Text Mining based article selection  

The Text Mining approach used two well-known 

publically available text mining tools: PIE the 

search (Kim, Kwon et al. 2012) and tmVar (Wei, 

Harris et al. 2013). PIE1 the search is a web service 

that provides an alternate way of querying PubMed 

for biologists and database curators. The returned 

articles are ranked based on their probability of de-

scribing protein-protein interactions, using a very 

competitive algorithm and the winner of BioCrea-

tive III ACT competition (Krallinger, Vazquez et al. 

2011). tmVar2 is another text mining tool that is the 

current gold-standard for recognizing sequence 

variants in PubMed literature. An article marked by 

tmVar signals the presence of a sequence variant of 

a mutation in the title and abstract.  

These tools were used as follows:  

 Step 1: PIE the search was used to select the 

top scoring (for PPI) PubMed articles pub-

lished in the last 10 years. This method se-

lected over 13,000 articles.  

 Step 2. tmVar was used on the resulting set 

of Step 1 to select all articles which had a se-

quence variant in the title or abstract. This 

method selected around 1,200 articles.  

2 https://www.ncbi.nlm.nih.gov/CBBre-

search/Lu/Demo/tmTools/#tmVar 

Table 1 Training Set annotation and distribution amongst different categories 

Annotation Category 
Curated data-
base selected 

articles (PPI set) 

Text mining tools 
selected articles 

(TM set) 

Complete 
Training Set 

True positives 1079 651 1,730  42% 
True Negatives 55 322 377  9% 
Negative, Yes PPI, No Mutation 1538 82 1,620  40% 
Negative, No PPI, Yes Mutation 136 87 99  2.4% 
Negative, No PPI, No Mutation 12 120 256  6.3% 

Total 2820 1262 4082  100% 
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 Step 3. All articles in Step 2 were manually 

annotated as described in the annotation 

guidelines.  

3 Results and Discussion 

3.1 Precision Medicine Task Training Cor-

pus Characteristics   

The Precision Medicine Task training corpus 

contains 4,082 selected PubMed abstracts that 

come from two different sources: curated databases 

and text mining tool selection. It is important to see 

the dataset as a whole and to notice the different 

composition of classified articles coming from 

both sources as detailed in Table 1.  

In addition, we looked at the PIE score distribu-

tion of all articles in the dataset. We noticed that the 

PubMed articles selected via text mining tools had 

a higher PIE score average than the articles re-

trieved from curated databases. In particular, while 

the PIE scores of the articles selected from the cu-

rated databases form a normal distribution, the 

scores of the text mining selected articles are 

skewed towards high scores.  

On a different experiment, we ran the tmVar tool 

on all curated database selected articles. Interest-

ingly, only 311 out of 1079 positives articles were 

marked by tmVar.   

Thus, if novel algorithm developers only gave 

more importance to articles selected via text min-

ing tools, or only the text mining tools used in our 

experiment, they risk biasing curators to only a par-

ticular set of articles. Innovative text mining tools 

should make use of both sets of articles in order to 

ensure a better coverage of curatable articles.  

3.2 Benchmark results and corpus use 

A baseline SVM method was designed using 

unigram and bigram features from titles and ab-

stracts of the training corpus, as shown in the re-

sults in Table 2. A first experiment used articles 

from the curated database for training in a 10-fold 

cross validation (CV) setting, and tested on the text 

mining selected articles. And a second experiment 

mixed all articles in a 10-fold cross validation set-

ting. Results are detailed in Table 2.  

The test dataset for BioCreative VI Precision 

Medicine Track will be a set selected by database 

curators. First articles will be retrieved via text 

mining tools and then each article will be manually 

evaluated by four experienced curators.  

4 Conclusions and Public Availability 

A vast amount of precision medicine related in-

formation can be found in published literature and 

extracted by skilled domain expert curators. The 

BioCreative VI Precision Medicine Track corpus 

characteristics provide important insights on 1) un-

derstanding the structure of biological information 

and why it is relevant for precision medicine pur-

poses, and 2) the best practices for designing com-

putational automatic methods capable of extracting 

such information from unstructured text.  

By releasing this data we aim to facilitate the cu-

ration of precision medicine related information 

available in published literature. This corpus fos-

ters development of innovative text mining algo-

rithms that may help database curators in identify-

ing molecular interactions that differ based on the 

presence of a specific genetic variant, information 

which could be translated to clinical practice.  

This data comes from two realistic, important 

data sources: 1) articles retrieved from expert cu-

rated PPI databases, re-evaluated and found useful 

for precision medicine purposes, and 2) articles re-

trieved via state-of-the-art text mining tools trained 

to identify articles describing PPI and containing 

identifiable sequence variants. Both sets of data 

have slightly different, but useful characteristics 

and as such, novel text mining tools need to use 

both sources of information for best application in 

this new domain. 

The BioCreative VI Precision Medicine training 

corpus will be available to task participants from 

the BioCreative website and later to the whole sci-

entific community.  

Table 2 Document Triage Task results 

Methods  Avg. Prec. Precision Recall F1 Positive  Negative Ratio 

10-fold CV (PPI set) 0.7577 0.7184 0.6321 0.6725 1079 1741 38% 

Validation (TM set) 0.6551 0.6210 0.6897 0.6536 651 611 52% 

10-fold CV (all data) 0.7225 0.6891 0.6260 0.6561 1730 2352 42% 
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