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Abstract

We present an unsupervised context-
sensitive spelling correction method for
clinical free-text that uses word and char-
acter n-gram embeddings. Our method
generates misspelling replacement candi-
dates and ranks them according to their se-
mantic fit, by calculating a weighted co-
sine similarity between the vectorized rep-
resentation of a candidate and the mis-
spelling context. We greatly outperform
two baseline off-the-shelf spelling cor-
rection tools on a manually annotated
MIMIC-III test set, and counter the fre-
quency bias of an optimized noisy channel
model, showing that neural embeddings
can be successfully exploited to include
context-awareness in a spelling correction
model. Our source code, including a
script to extract the annotated test data, can
be found at https://github.com/
pieterfivez/bionlp2017.

1 Introduction

The genre of clinical free-text is notoriously noisy.
Corpora contain observed spelling error rates
which range from 0.1% (Liu et al., 2012) and 0.4%
(Lai et al., 2015) to 4% and 7% (Tolentino et al.,
2007), and even 10% (Ruch et al., 2003). This
high spelling error rate, combined with the vari-
able lexical characteristics of clinical text, can ren-
der traditional spell checkers ineffective (Patrick
et al., 2010).

Recently, Lai et al. (2015) have achieved nearly
80% correction accuracy on a test set of clinical
notes with their noisy channel model. However,
their model does not leverage any contextual in-
formation, while the context of a misspelling can
provide important clues for the spelling correction

process, for instance to counter the frequency bias
of a context-insensitive corpus frequency-based
system. Flor (2012) also pointed out that ignor-
ing contextual clues harms performance where a
specific misspelling maps to different corrections
in different contexts, e.g. iron deficiency due to
enemia → anemia vs. fluid injected with enemia
→ enema. A noisy channel model like the one by
Lai et al. will choose the same item for both cor-
rections.

Our proposed method exploits contextual clues
by using neural embeddings to rank misspelling
replacement candidates according to their seman-
tic fit in the misspelling context. Neural embed-
dings have recently proven useful for a variety of
related tasks, such as unsupervised normalization
(Sridhar, 2015) and reducing the candidate search
space for spelling correction (Pande, 2017).

We hypothesize that, by using neural embed-
dings, our method can counter the frequency bias
of a noisy channel model. We test our sys-
tem on manually annotated misspellings from the
MIMIC-III (Johnson et al., 2016) clinical notes. In
this paper, we focus on already detected non-word
misspellings, i.e. where the misspellings are not
real words, following Lai et al.

2 Approach

2.1 Candidate Generation
We generate replacement candidates in 2 phases.
First, we extract all items within a Damerau-
Levenshtein edit distance of 2 from a reference
lexicon. Secondly, to allow for candidates be-
yond that edit distance, we also apply the Dou-
ble Metaphone matching popularized by the open
source spell checker Aspell.1 This algorithm
converts lexical forms to an approximate pho-
netic consonant skeleton, and matches all Dou-

1http://aspell.net/metaphone/
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ble Metaphone representations within a Damerau-
Levenshtein edit distance of 1. As reference lexi-
con, we use a union of the UMLS R© SPECIALIST
lexicon2 and the general dictionary from Jazzy3, a
Java open source spell checker.

2.2 Candidate Ranking

Our setup computes the cosine similarity be-
tween the vector representation of a candidate and
the composed vector representations of the mis-
spelling context, weights this score with other pa-
rameters, and uses it as the ranking criterium. This
setup is similar to the contextual similarity score
by Kilicoglu et al. (2015), which proved unsuc-
cessful in their experiments. However, their ex-
periments were preliminary. They used a limited
context window of 2 tokens, could not account for
candidates which are not observed in the train-
ing data, and did not investigate whether a big-
ger training corpus leads to vector representations
which scale better to the complexity of the task.

We attempt a more thorough examination of the
applicability of neural embeddings to the spelling
correction task. To tune the parameters of our
unsupervised context-sensitive spelling correction
model, we generate tuning corpora with self-
induced spelling errors for three different scenar-
ios following the procedures described in section
3.2. These three corpora present increasingly dif-
ficult scenarios for the spelling correction task.
Setup 1 is generated from the same corpus which
is used to train the neural embeddings, and exclu-
sively contains corrections which are present in the
vocabulary of these neural embeddings. Setup 2 is
generated from a corpus in a different clinical sub-
domain, and also exclusively contains in-vector-
vocabulary corrections. Setup 3 presents the most
difficult scenario, where we use the same corpus as
for Setup 2, but only include corrections which are
not present in the embedding vocabulary (OOV).
In other words, here our model has to deal with
both domain change and data sparsity.

Correcting OOV tokens in Setup 3 is made pos-
sible by using a combination of word and char-
acter n-gram embeddings. We train these embed-
dings with the fastText model (Bojanowski et al.,
2016), an extension of the popular Word2Vec
model (Mikolov et al., 2013), which creates vec-

2https://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lexicon/current/
web/index.html

3http://jazzy.sourceforge.net
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Figure 1: The final architecture of our model. It
vectorizes every context word on each side within
a specified scope if it is present in the vector vo-
cabulary, applies reciprocal weighting, and sums
the representations. It then calculates the cosine
similarity with each candidate vector, and divides
this score by the Damerau-Levenshtein edit dis-
tance between the candidate and misspelling. If
the candidate is OOV, the score is divided by an
OOV penalty.

tor representations for character n-grams and sums
these with word unigram vectors to create the final
word vectors. FastText allows for creating vector
representations for misspelling replacement can-
didates absent from the trained embedding space,
by only summing the vectors of the character n-
grams.

We report our tuning experiments with the dif-
ferent setups in 4.1. The final architecture of our
model is described in Figure 1. We evaluate this
model on our test data in section 4.2.

3 Materials

We tokenize all data with the Pattern tokenizer (De
Smedt and Daelemans, 2012). All text is lower-
cased, and we remove all tokens that include any-
thing different from alphabetic characters or hy-
phens.
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3.1 Neural embeddings

We train a fastText skipgram model on 425M
words from the MIMIC-III corpus, which contains
medical records from critical care units. We use
the default parameters, except for the dimension-
ality, which we raise to 300.

3.2 Tuning corpora

In order to tune our model parameters in an
unsupervised way, we automatically create self-
induced error corpora. We generate these tuning
corpora by randomly sampling lines from a refer-
ence corpus, randomly sampling a single word per
line if the word is present in our reference lexi-
con, transforming these words with either 1 (80%)
or 2 (20%) random Damerau-Levenshtein opera-
tions to a non-word, and then extracting these mis-
spelling instances with a context window of up to
10 tokens on each side, crossing sentence bound-
aries. For Setup 1, we perform this procedure
for MIMIC-III, the same corpus which we use to
train our neural embeddings, and exclusively sam-
ple words present in our vector vocabulary, re-
sulting in 5,000 instances. For Setup 2, we per-
form our procedure for the THYME (Styler IV
et al., 2014) corpus, which contains 1,254 clin-
ical notes on the topics of brain and colon can-
cer. We once again exclusively sample in-vector-
vocabulary words, resulting in 5,000 instances.
For Setup 3, we again perform our procedure for
the THYME corpus, but this time we exclusively
sample OOV words, resulting in 1,500 instances.

3.3 Test corpus

No benchmark test sets are publicly available for
clinical spelling correction. A straightforward an-
notation task is costly and can lead to small cor-
pora, such as the one by Lai et al., which con-
tains just 78 misspelling instances. Therefore, we
adopt a more cost-effective approach. We spot
misspellings in MIMIC-III by looking at items
with a frequency of 5 or lower which are ab-
sent from our lexicon. We then extract and an-
notate instances of these misspellings along with
their context, resulting in 873 contextually dif-
ferent instances of 357 unique error types. We
do not control for the different genres covered in
the MIMIC-III database (e.g. physician-generated
progress notes vs. nursing notes). However,
in all cases we make sure to annotate actual
spelling mistakes and typos as opposed to abbre-

viations and shorthand, resulting in instances such
as phebilitis → phlebitis and sympots → symp-
toms. We provide a script to extract this test set
from MIMIC-III at https://github.com/
pieterfivez/bionlp2017.

4 Results

For all experiments, we use accuracy as the metric
to evaluate the performance of models. Accuracy
is simply defined as the percentage of correct mis-
spelling replacements found by a model.

4.1 Parameter tuning
To tune our model, we investigate a variety of pa-
rameters:

Vector composition functions

(a) addition
(b) multiplication
(c) max embedding by Wu et al. (2015)

Context metrics

(a) Window size (1 to 10)
(b) Reciprocal weighting
(c) Removing stop words using the English stop

word list from scikit-learn (Pedregosa et al.,
2011)

(d) Including a vectorized representation of the
misspelling

Edit distance penalty

(a) Damerau-Levenshtein
(b) Double Metaphone
(c) Damerau-Levenshtein + Double Metaphone
(d) Spell score by Lai et al.

We perform a grid search for Setup 1 and Setup 2
to discover which parameter combination leads to
the highest accuracy averaged over both corpora.
In this setting, we only allow for candidates which
are present in the vector vocabulary. We then in-
troduce OOV candidates for Setup 1, 2 and 3, and
experiment with penalizing them, since their rep-
resentations are less reliable. As these representa-
tions are only composed out of character n-gram
vectors, with no word unigram vector, they are
susceptible to noise caused by the particular na-
ture of the n-grams. As a result, sometimes the
semantic similarity of OOV vectors to other vec-
tors can be inflated in cases of strong orthographic
overlap.
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Table 1: Correction accuracies for our 3 tuning
setups.

Setup 1 Setup 2 Setup 3

Context 90.24 88.20 57.00
Noisy Channel 85.02 85.86 39.73

Since OOV replacement candidates are more
often redundant than necessary, as the majority of
correct misspelling replacements will be present in
the trained vector space, we try to penalize OOV
representations to the extent that they do not cause
noise in cases where they are redundant, but still
rank first in cases where they are the correct re-
placement. We tune this OOV penalty by maxi-
mizing the accuracy for Setup 3 while minimizing
the performance drop for Setup 1 and 2, using a
weighted average of their correction accuracies.

All parameters used in our final model architec-
ture are described in Figure 1. The optimal con-
text window size is 9, whereas the optimal OOV
penalty is 1.5.

To compare our method against a reference
noisy channel model in the most direct and fair
way, we implement the ranking component of Lai
et al.’s model in our pipeline (Noisy Channel),
and optimize it with the same MIMIC-III materials
that we use to train our embeddings. We perform
the optimization by extracting corpus frequencies,
which are used to estimate the prior probabilities
in the ranking model, from this large data con-
taining 425M words. In comparison, Lai et al.’s
own implementation uses corpus frequencies ex-
tracted from data containing only 107K words,
which is a rather small amount to estimate reliable
prior probabilities for a noisy channel model. In
the optimized setting, our context-sensitive model
(Context) outperforms the noisy channel for each
corpus in our tuning phase, as shown in Table 1.

4.2 Test

Table 2 shows the correction accuracies for Con-
text and Noisy Channel, as compared to two base-
line off-the-shelf tools. The first tool is Hun-
Spell, a popular open source spell checker used by
Google Chrome and Firefox. The second tool is
the original implementation of Lai et al.’s model,
which they shared with us. The salient difference
in performance with our own implementation of
their noisy channel model highlights the influence

Figure 2: 2-dimensional t-SNE projection of the
context of the test misspelling “goint” and 4 re-
placement candidates in the trained vector space.
Dot size denotes corpus frequency, numbers de-
note cosine similarity. The misspelling context is
“new central line lower extremity bypass with sob
now [goint] to [be] intubated”. While the noisy
channel chooses the most frequent “point”, our
model correctly chooses the most semantically fit-
ting “going”.

of training resources and tuning decisions on the
general applicability of spelling correction mod-
els.

The performance of our model on the test set
is slightly held back by the incomplete coverage
of our reference lexicon. Missing corrections are
mostly highly specialized medical terms, or in-
flections of more common terminology. Table 2
shows the scenario where these corrections are
added to the reference lexicon, leading to a score
which is actually higher than those for the tuning
corpora.

To analyze whether our context-sensitive model
successfully counters the frequency bias of our op-
timized noisy channel model, we divide the in-
stances of the test set into three scenarios accord-
ing to the relative frequency of the correct replace-
ment compared to the other replacement candi-
dates. In cases where the correct replacement is
the most or second most frequent candidate, the
noisy channel scores slightly better. In all other
cases, however, our method is more stable. Figure
2 visualizes an example.

Nevertheless, some issues have to be raised.
First of all, for the cases with low relative fre-
quency of the correct replacement, the small sam-
ple size should be kept in mind: the difference be-
tween both models concerns 6 correct instances on
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Table 2: The correction accuracies for our test set, evaluated for two different scenarios. Off-the-shelf :
gives the accuracies of all off-the-shelf tools. With completed lexicon: gives the accuracies of our
implemented models for the scenario where correct replacements missing from the lexicon are included
in the lexicon before the experiment.

Evaluation HunSpell Lai et al. Context Noisy Channel

OFF-THE-SHELF 52.69 61.97 88.21 87.85
WITH COMPLETED LEXICON 93.02 92.66

a total of 243. While the difference is very pro-
nounced in the much larger tuning corpora, the
artificial nature of those corpora does not lead to
strong evidence. Moreover, considering the simi-
larity of the general performance of both models
on the test set, more test data is needed to make
a strong empirical claim about this specific aspect
of our model.

While we have optimized the prior probabilities
of Lai et al.’s ranking model, the posterior prob-
abilities are still estimated with Lai et al.’s rudi-
mentary spell score, which is a weighted combi-
nation of Damerau-Levenshtein and Double Meta-
phone edit distance. While this error model leads
to a noisy channel model which is robust in per-
formance, as shown by our test results, an empir-
ical error model derived from a large confusion
matrix can for example help correct the instance
described in Figure 2, by capturing that the word-
final transformation t → g is more probable than
the word-initial transformation g→ p. As of now,
however, such a resource is not available for the
clinical domain.

The errors that our model makes concern, pre-
dictably, misspellings for which the contextual
clues are too unspecific or misguiding. These
cases remain challenging for the concept of our
method. While our tuning experiments have ex-
plicitly tried to maximize the scope and efficiency
of our model, there is still room for improvement,
especially for OOV corrections, even as we han-
dle them more effectively than context-insensitive
frequency-based methods.

5 Conclusion and future research

In this article, we have proposed an unsupervised
context-sensitive model for clinical spelling cor-
rection which uses word and character n-gram em-
beddings. This simple ranking model, which can
be tuned to a specific domain by generating self-
induced error corpora, counters the frequency bias

of a noisy channel model by exploiting contextual
clues. As an implemented spelling correction tool,
our method greatly outperforms two baseline off-
the-shelf spelling correction tools, both a broadly
used and a domain-specific one, for empirically
observed misspellings in MIMIC-III.

Future research can investigate whether our
method transfers well to other genres and do-
mains. Secondly, handling corrections which are
not observed in any training data still proves to be
a tough task, which might benefit from new con-
ceptual insights. Lastly, it is worthwhile to investi-
gate how our model interacts with the misspelling
detection task compared to existing models.
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