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Abstract

This paper proposes a method for classi-
fying the type of lexical-semantic relation
between a given pair of words. Given an
inventory of target relationships, this task
can be seen as a multi-class classification
problem. We train a supervised classi-
fier by assuming that a specific type of
lexical-semantic relation between a pair of
words would be signaled by a carefully de-
signed set of relation-specific similarities
between the words. These similarities are
computed by exploiting “sense represen-
tations” (sense/concept embeddings). The
experimental results show that the pro-
posed method clearly outperforms an ex-
isting state-of-the-art method that does not
utilize sense/concept embeddings, thereby
demonstrating the effectiveness of the
sense representations.

1 Introduction

Given a pair of words, classifying the type of
lexical-semantic relation that could hold between
them may have a range of applications. In particu-
lar, discovering typed lexical-semantic relation in-
stances is vital in building a new lexical-semantic
resource, as well as for populating an existing
lexical-semantic resource. As argued in (Boyd-
Graber et al., 2006), even Princeton WordNet
(henceforth PWN) (Miller, 1995) is noted for its
sparsity of useful internal lexical-semantic rela-
tions. A distributional thesaurus (Weeds et al.,
2014), usually built with an automatic method
such as that described in (Rychlý and Kilgar-
riff, 2007), often comprises a disorganized seman-
tic network internally, where a variety of lexical-
semantic relations are incorporated without having
proper relation labels attached. These issues could

be addressed if an accurate method for classifying
the type of lexical-semantic relation is available.

A number of research studies on the classifi-
cation of lexical-semantic relationships have been
conducted. Among them, Necsuleşcu et al. (2015)
recently presented two classification methods that
utilize word-level feature representations includ-
ing word embedding vectors. Although the re-
ported results are superior to the compared sys-
tems, neither of the proposed methods exploited
“sense representations,” which are described as the
fine-grained representations of word senses, con-
cepts, and entities in the description of this work-
shop1.

Motivated by the above-described issues and
previous work, this paper proposes a supervised
classification method that exploits sense represen-
tations, and discusses their utilities in the lexical
relation classification task. The major rationales
behind the proposed method are: (1) a specific
type of lexical-semantic relation between a pair of
words would be indicated by a carefully designed
set of relation-specific similarities associated with
the words; and (2) the similarities could be ef-
fectively computed by exploiting sense represen-
tations.

More specifically, for each word in the pair, we
first collect relevant sets of sense/concept nodes
(node sets) from an existing lexical-semantic re-
source (PWN), and then compute similarities for
some designated pairs of node sets, where each
node is represented by an embedding vector de-
pending on its type (sense/concept). In terms
of its design, each node set pair is constructed
such that it is associated with a specific type
of lexical-semantic relation. The resulting ar-
ray of similarities, along with the underlying
word/sense/concept embedding vectors is finally

1https://sites.google.com/site/
senseworkshop2017/background
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fed into the classifier as features.
The empirical results that use the BLESS

dataset (Baroni and Lenci, 2011) demonstrate that
our method clearly outperformed existing state-of-
the-art methods (Necsuleşcu et al., 2015) that did
not employ sense/concept embeddings, confirm-
ing that properly combining the similarity features
also with the underlying semantic/conceptual-
level embeddings is indeed effective. These re-
sults in turn highlight the utility of “the sense rep-
resentations” (the sense/concept embeddings) cre-
ated by the existing system referred to as AutoEx-
tend (Rothe and Schütze, 2015).

The remainder of the paper first reviews related
work (section 2), and then presents our approach
(section 3). As our experiments (section 4) uti-
lize the BLESS dataset, the experimental results
are directly compared with that of (Necsuleşcu
et al., 2015) (section 5). Although our methods
were proved to be superior through the experi-
ments, our operational requirement (sense/concept
embeddings should be created from the underly-
ing lexical-semantic resource) could be problem-
atic especially when having to process unknown
words. We conclude the present paper by dis-
cussing future work to address this issue (section
6).

2 Related work

A lexical-semantic relationship is a fundamental
relationship that plays an important role in many
NLP applications. A number of research efforts
have been devoted to developing an automated and
accurate method to type the relationship between
an arbitrary pair of words. Most of these stud-
ies (Fu et al., 2014; Kiela et al., 2015; Shwartz
et al., 2016), however, concentrated on the hyper-
nymy relation, since it is the most fundamental
relationship that forms the core taxonomic struc-
ture in a lexical-semantic resource. In compari-
son, fewer studies considered a broader range of
lexical-semantic relations, e.g., (Necsuleşcu et al.,
2015) and our present work.

Lenci and Benotto (2012), among the
hypernymy-centered researches, compared
existing directional similarity measures (Kotler-
man et al., 2010) to identify hypernyms, and
proposed a new measure that slightly modified
an existing measure. The rationale behind their
work is: as hypernymy is a prominent asymmetric
semantic relation, it might be detected by the

higher similarity score yielded by an asymmetric
similarity measure. Their idea of exploiting a
specific type of similarity to detect a specific type
of lexical-semantic relationship is highly feasible.

Recently, distributional and distributed word
representations (word embeddings) have been
widely utilized, partly because the offset vec-
tor simply brought about by vector subtraction
over word embeddings can capture some rela-
tional aspects including a lexical-semantic rela-
tionship. Given these useful resources, Weeds et
al. (2014) presented a supervised classification ap-
proach that employs a pair of distributional vec-
tors for a given word pair as the feature, argu-
ing that concatenation and subtraction were al-
most equally effective vector operations. Simi-
lar lines of work were presented by (Necsuleşcu
et al., 2015) and (Vylomova et al., 2016): the
former suggested concatenation might be slightly
superior to subtraction, whereas the latter espe-
cially highlighted the subtraction. Here it should
be noted that Necsuleşcu et al. (2015) employed
two kinds of vectors: one is a CBOW-based vec-
tor (Mikolov et al., 2013b), and the other involves
word embeddings with a dependency-based skip-
gram model (Levy and Goldberg, 2014).

The present work exploits semantic/conceptual-
level embeddings, which were actually derived
by applying the AutoExtend (Rothe and Schütze,
2015) system. Among the recent proposals
for deriving semantic/conceptual-level embed-
dings (Huang et al., 2012; Pennington et al., 2014;
Neelakantan et al., 2014; Iacobacci et al., 2015),
we adopt the AutoExtend system, since it ele-
gantly exploits the network structure provided by
an underlying semantic resource, and naturally
consumes existing word embeddings. More im-
portantly, the underlying word embeddings are di-
rectly comparable with the derived sense represen-
tations. In the present work, we applied the Au-
toExtend system to the Word2Vec CBOW embed-
dings (Mikolov et al., 2013b) by referring to PWN
version 3.0 as the underlying lexical-semantic re-
source. As far as the authors know, AutoExtend-
derived embeddings have been evaluated in the
tasks of similarity measurements and word sense
disambiguation: they are yet to be applied to a se-
mantic relation classification task.

There are a few datasets (Baroni and Lenci,
2011; Santus et al., 2015) available that were pre-
pared for the evaluation of lexical-semantic rela-
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Figure 1: Creating node sets and node set pairs (in hypernymy relation).

tion classification tasks. We utilized the BLESS
dataset (Baroni and Lenci, 2011) in order to di-
rectly compare our proposed method with the re-
lated methods given in (Necsuleşcu et al., 2015).

3 Proposed method

We adopt a supervised learning approach for clas-
sifying the type of semantic relationship between
a pair of words (w1, w2), expecting that the plau-
sibility of a specific semantic lexical-relationship
can be measured by the similarity between the
senses/concepts associated with each of the words.

Figure 1 exemplifies the fundamental rationale
behind the proposed method. We assume that the
plausibility of the hypernymy relation between “al-
ligator” (w1) and “reptile” (w2) can be mainly
measured by the similarity between the set of hy-
pernym concepts of “alligator” (Shyper

w1 ) and the
set of concepts of “reptile” (Sw2). Based on this
assumption, we calculate the similarities by the
following steps. Recall that these similarities are
assumed to measure the plausibilities of relation-
ships that could hold between a given word pair.

1. Collect pre-defined types of node sets for
each word (five types; detailed in section
3.1).

2. Build some useful pairs of node sets by con-
sidering the possible relationships assumed to
be held between the words (7 pair types; de-
tailed in section 3.2).

3. Calculate the similarities for each node set
pair by three types of calculation methods
(detailed in section 3.3).

In total we calculate 21 (7 pairs × 3 meth-
ods) similarities per word pair along with the co-
sine similarity between word embeddings. We use
these similarities and vector pairs that yielded the
similarities as feature.

3.1 Collecting node sets for each word

By consulting PWN, we collect the following five
types of node sets for each word. These node set
types are selected so as to characterize relevant
lexical-semantic relationships in the target inven-
tory detailed in section 4.1.

• Lw: a set of senses that a word w has

• Sw: a set of concepts each denoted by a mem-
ber of Lw

• Shyper
w : a set of concepts whose member is

directly linked from a member of Sw by the
PWN hypernymy relation

• Sattri
w : a set of concepts whose member is

directly linked from a member of Sw by the
PWN attribute relation

• Smero
w : a set of concepts whose member is

directly linked from a member of Sw by the
PWN meronymy relation
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3.2 Building node set pairs

Given a pair of words (w1, w2), we build seven
types of node set pairs as shown in Table 1. Each
row in the table defines the combination of node
sets and presents the associated mnemonic.

Table 1: Node set pairs built for (w1, w2).
Node set pair Mnemonic
Lw1 Lw2 sense
Sw1 Sw2 concept

Shyper
w1 Sw2 hyper

Shyper
w1 Shyper

w2 coord
Sattri

w1
Sw2 attri 1

Sw1 Sattri
w2

attri 2
Smero

w1
Sw2 mero

These types of node set pairs are defined in ex-
pecting that:

• sense, concept: captures semantic similar-
ity/relatedness between the words;

• hyper: captures hypernymy relation between
the words;

• coord: dictates if the words share a common
hypernym;

• attri 1, attri 2: dictates if w1 describes some
aspect of w2 (attri 1) or vice versa (attri 2);

• mero: captures the meronymy relation be-
tween the words.

Note that the italicized words indicate lexical
relationships often used in linguistic literature.

3.3 Similarity calculation

In a pair of node sets, each node set could have
a different number of elements, meaning that we
cannot apply element-wise computation (e.g., co-
sine) for measuring the similarity between the
node sets. We thus propose the following three
similarity calculation methods and compare them
in the experiments.

In the following formulations: c indicates a cer-
tain node set pair type defined in Table 1; (Xw1 ,
Xw2) is the node set pair for (w1, w2) specified
by c; and sim( ~x1, ~x2) is the cosine similarity be-
tween ~x1 and ~x2.

simc
max method:

simc
max(w1, w2) = max

x1∈Xw1 ,x2∈Xw2

sim( ~x1, ~x2)

(1)
As the formula defines, this method selects a com-
bination of the node sets that yield the maximum
similarity, implying that it achieves a disambigua-
tion functionality.

The vector pair from the most similar node sets
( ~x1, ~x2) is also used as feature. The actual usage
of this pair in the experiments is detailed in section
4.2.

simc
sum method:

simc
sum(w1, w2) = sim(

∑
x1∈Xw1

~x1,
∑

x2∈Xw2

~x2)

(2)
As defined by the formula, this method firstly

makes a holistic meaning representation by sum-
ming all embeddings of the nodes contained in
each node set. We devised this method with the
expectation that it could dictate semantic related-
ness rather than semantic similarity (Budanitsky
and Hirst, 2006). The pair of the summed embed-
dings (

∑
x1∈Xw1

~x1,
∑

x2∈Xw2
~x2) is also used as

feature.

simc
med method:

simc
med(w1, w2) = median

x1∈Xw1 ,x2∈Xw2

sim( ~x1, ~x2)

(3)
The method is expected to express the similar-
ity between mediated representations of each node
set. Instead of the arithmetic average, we employ
the median to select a representative node in each
node set, allowing us to use the associated vector
pair as feature.

4 Experiments

We evaluated the effectiveness of the proposed su-
pervised approach by conducting a series of clas-
sification experiments using the BLESS dataset
(Baroni and Lenci, 2011). Among the possi-
ble learning algorithms, we adopted the Random
ForestTMalgorithm as it maintains a balance be-
tween performance and efficiency. The results
are assessed by using standard measures such as
Precision (P ), Recall (R), and F1. We em-
ployed the pre-trained Word2Vec embeddings2.

2300-dimensional vectors by CBoW, available
at https://code.google.com/archive/p/
word2vec/
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We trained sense/concept embeddings by apply-
ing the AutoExtend system3 (Rothe and Schütze,
2015) while using the Word2Vec embeddings as
the input and consulting PWN 3.0 as the underly-
ing lexical-semantic resource.

4.1 Dataset
We utilized the BLESS dataset, which was de-
veloped for the evaluation of distributional se-
mantic models. It provides 14,400 tetrads of
(w1, w2, lexical-semantic relation type, topical do-
main type): where the topical domain type des-
ignates a semantic class from the coarse semantic
classification system consisting of 17 English con-
crete noun categories (e.g., tools, clothing, vehi-
cles, and animals). The lexical-semantic relation
types defined in BLESS and their counts are de-
scribed as follows:

• COORD (3565 word pairs): they are co-
hyponyms (e.g., alligator-lizard).

• HYPER (1337 word pairs): w2 is a hypernym
of w1 (e.g., alligator-animal).

• MERO (2943 word pairs): w2 is a com-
ponent/organ/member of w1 (e.g., alligator-
mouth).

• ATTRI (2731 word pairs): w2 is an adjective
expressing an attribute of w1 (e.g., alligator-
aquatic).

• EVENT (3824 word pairs): w2 is a verb re-
ferring to an action/activity/happening/event
associated with w1 (e.g., alligator-swim).

Note here that these lexical-semantic relation
types are not completely concord with the PWN
relations described in section 3.1.

Data division: In order to compare the per-
formance for the present task we divided the
data in three ways: In-domain, Out-of-domain
(as employed in (Necsuleşcu et al., 2015)), and
Collapsed-domain. For the In-domain setting, the
data in the same domain were used both for train-
ing and testing. We thus conducted a five-fold
cross validation for each domain. For the Out-of-
domain setting, one domain is used for testing and
the remaining data is used for training. In addi-
tion, we prepared the Collapsed-domain setting,
where we conducted a 10-fold cross validation for
the entire dataset irrespective of the domain.

3The default hyperparameters were used.

4.2 Comparing methods
A supervised relation classification system
referred to as WECE (Word Embeddings
Classification systEm) in (Necsuleşcu et al.,
2015) was especially chosen for comparisons,
since this method combines and uses the word
embeddings of a given word pair (w1, w2) as
feature. They compare two types of approaches
described as WECEoffset and WECEconcat:
WECEoffset uses the offset of the word
embeddings ( ~w2 − ~w1) as the feature vector,
whereas WECEconcat uses the concatenation
of the word embeddings. Moreover, they use
two types of word embeddings: a bag-of-words
model (BoW ) (Mikolov et al., 2013a) and
a dependency-based skip-gram model (Dep)
(Levy and Goldberg, 2014). In summary, the
WECE system has the following variations:
WECEoffset

BoW , WECEoffset
Dep , WECEconcat

BoW and
WECEconcat

Dep .
As described in Section 3, we utilize 22 kinds

of similarity and the underlying vector as fea-
tures. In order to make reasonable comparisons,
we compare two vector composition methods. In
addition to the already described array of similari-
ties, the Proposalconcat method uses the concate-
nated vector of the underlying vectors, whereas
the Proposalconcat method employs the differ-
ence vector. As a result, the dimensionalities of
the resulting vectors employed in these methods
are 13,222 (22 similarities + 22× 600 dimensions
for concatenated vectors) and 6,622 (22 similari-
ties + 22× 300 dimensions for difference vectors),
respectively.

Baseline: As detailed in section 3, our meth-
ods utilize PWN neighboring concepts linked by
particular lexical-semantic relationships, such as
(hypernymy, attribute, and meronymy).
We thus set the baseline as follows while respect-
ing the direct relational links defined in PWN.

• Given a word pair (w1, w2), if any concept in
Sw1 and that in Sw2 are directly linked by a
certain relationship in PWN, let w1 and w2 be
in the relation.

Note that the baseline method cannot find any
word pair that is annotated to have the EVENT
relation in the BLESS dataset, because there are
no links in PWN that share the same or a simi-
lar definition. Likewise it is not capable for the
method to find any word pair with the ATTRI
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In-domain Out-of-domain Collapsed-domain
P R F1 P R F1 P R F1

WECEoffset
BoW 0.900 0.909 0.904 0.680 0.669 0.675 - - -

WECEoffset
Dep 0.853 0.865 0.859 0.687 0.623 0.654 - - -

Proposaloffset 0.913 0.907 0.906 0.766 0.762 0.753 0.867 0.867 0.865
WECEconcat

BoW 0.899 0.910 0.904 0.838 0.570 0.678 - - -
WECEconcat

Dep 0.859 0.870 0.865 0.782 0.638 0.703 - - -
Proposalconcat 0.973 0.971 0.971 0.839 0.819 0.812 0.970 0.970 0.970

Table 2: Comparison of the overall classification results.

relation in BLESS, because the definition of the
attribute relationship in PWN differs from
the definition of the ATTRI relation in the BLESS
dataset. Thus, we can only compare the results for
the relationships COORD, HYPER, and MERO
with the common measures, P , R, and F1.

5 Results

5.1 Major results

Table 2 compares our results with that of the
WECE systems in the three data set divisions
(In/Out/Collapsed domains). The results show that
Proposalconcat performed best in all measures of
each division (shown in bold font). We observe
two common trends across the approaches includ-
ing WECE: (1) Every score in the Out-of-domain
setting was lower than that in the In-domain set-
ting; and (2) The methods using vector concatena-
tion achieved higher scores than those using vector
offsets. The former trend is reasonable, since in-
formation that is also more relevant to the test data
is contained in the training data in the In-domain
settings. The latter trend suggests that concate-
nated vectors may be more informative than off-
set vectors, supporting the conclusion presented in
(Necsuleşcu et al., 2015).

Nevertheless, the results in the table clearly
show that Proposaloffset outperformed both
WECEconcat

BoW and WECEconcat
Dep not only in Pre-

cision but also in Recall in the Out-of-domain
setting. This may confirm that sense represen-
tations, acquired by exploiting a richer structure
encoded in PWN, are richer in semantic content
than word embeddings learned from textual cor-
pora, and hence, even the offset vectors are capa-
ble of abstracting some characteristics of potential
lexical-semantic relations between a word pair ef-
fectively.

Table 3 breaks down the results obtained

Relationship P R F1
COORD 0.761 0.559 0.645
by Baseline 0.550 0.108 0.180
HYPER 0.767 0.654 0.706
by Baseline 0.746 0.199 0.314
MERO 0.625 0.809 0.705
by Baseline 0.934 0.034 0.065
ATTRI 0.913 0.995 0.952
EVENT 0.974 0.983 0.979

Table 3: Breakdown of the results obtained by
ProposalOoD

concat. The Baseline results are shown
in italics.

by Proposalconcat in the Out-of-domain setting
(ProposalOoD

concat), and compares them with the
Baseline results, showing that Proposalconcat

clearly outperformed the Baseline in Recall and
F1. This clearly confirms that the direct relational
links defined in PWN are insufficient for classify-
ing the BLESS relationships. With respect to the
internal comparison of the ProposalOoD

concat results,
a prominent fact is the high-performance classi-
fication of the ATTRI and EVENT relationships.
By definition, these relationships link a noun to an
adjective (ATTRI) or to a verb (EVENT), whereas
the COORD, HYPER, and MERO relationships
connect a noun to another noun. This may sug-
gest that the information carried by part-of-speech
plays a role in this classification task.

Table 4 further details the results obtained by
ProposalOoD

concat by showing the confusion ma-
trix, also endorsing that the fine-grained classifi-
cation of inter-noun relationships (COORD, HY-
PER, and MERO) is far more difficult than dis-
tinguishing cross-POS relationships (ATTRI and
EVENT). In particular, as suggested in (Shwartz
et al., 2016), synonymy is difficult to distinguish
from hypernymy even by humans.
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HYPER COORD ATTRI MERO EVENT
HYPER 875 157 10 282 13
COORD 189 1994 220 1118 44
ATTRI 1 13 2716 1 0
MERO 74 423 24 2380 42
EVENT 2 32 5 27 3758

Table 4: Confusion matrix for the results by ProposalOoD
concat in the Out-of-domain setting.

5.2 Ablation tests

This section more closely considers the re-
sults in the Out-of-domain setting. Table 5
shows the results of the ablation tests for the
ProposalOoD

concat setting, comparing the effective-
ness of the source of the similarities. Each
row other than ProposalOoD

concat displays the re-
sults when the designated feature is ablated. The
−word row shows the result when ablating the
601-dimensional features created from the pair
of word embeddings, and the other rows show
the results when ablating the corresponding 1803-
dimensional features (three similarities and the
three vector pairs that yielded the similarities) gen-
erated from each node set pair.

P R F1 F1 diff
ProposalOoD

concat 0.839 0.819 0.812 -
−word 0.845 0.827 0.819 0.008
−sense 0.833 0.815 0.806 -0.006
−concept 0.826 0.809 0.802 -0.010
−coord 0.834 0.811 0.803 -0.009
−hyper 0.826 0.803 0.800 -0.012
−attri1 0.826 0.806 0.798 -0.014
−attri2 0.842 0.820 0.814 0.002
−mero 0.835 0.813 0.806 -0.006

Table 5: Ablation tests comparing the effective-
ness of each node set.

This table suggests that the concept, hyper, and
attri1 node set pairs are effective, as indicated
by the relatively large decreases in F1. Surpris-
ingly, however, the features generated from the
word embeddings affected the performance. This
implies that abstract-level semantics encoded in
sense/concept embeddings are more robust in the
classification of the target lexical-semantic rela-
tionships. However, the utility of sense embed-
dings was modest.This may result from the learn-
ing method in AutoExtend: it tries to split a word
embedding into the senses’ embeddings without
considering the virtual distribution of senses in the

Word2Vec training corpus. It is a potential future
work to address this issue.

Table 6 compares the effectiveness of the types
of features. The only similarities row shows the re-
sults when ablating the vectoral features and only
using the 22-dimensional similarity features (21
semantic/conceptual-level similarities along with
a word-level similarity). On the other hand, the
only vector pairs row shows the results from the
adverse setting, using the 22 vector pairs (using
13,200-dimensional features).

P R F1 F1 diff
ProposalOoD

concat 0.839 0.819 0.812 -
only similarities 0.704 0.687 0.683 -0.129
only vector pairs 0.834 0.812 0.804 -0.007

Table 6: Effectiveness comparison of the types of
features.

It is shown that using vectorial features would
produce more accurate results than simply using
the similarity features, confirming the general as-
sumption: more features yield more accurate re-
sults. However, we would have to emphasize that,
even only with the similarity features, our ap-
proach outperformed the comparable method in
Recall (shown in the Out-of domain columns of
Table 2 ).

Table 7 shows the results of the other abla-
tion tests, comparing the effectiveness of the sim-
ilarity calculation methods. Each row in the ta-
ble displays the result when ablating the 4207-
dimensional features (seven similarities plus seven
vector pairs that yielded these similarities).

As the results in the table show, the F1 scores
did not change significantly in each ablated con-
dition, showing that the effect provided by the ab-
lated method is completed by the remaining meth-
ods. There exists some redundancy in preparing
these three calculation methods.
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P R F1 F1 diff
ProposalOoD

concat 0.839 0.819 0.812 -
−simmax 0.835 0.812 0.805 -0.007
−simsum 0.843 0.822 0.816 0.004
−simmed 0.838 0.811 0.805 -0.007

Table 7: Additional ablation tests comparing the
similarity calculation methods.

6 Discussion

This section discusses two issues: the first is asso-
ciated with the usage of PWN in the experiments
using BLESS, and the other is concerned with the
“lexical memorization” problem.

Usage of PWN: As detailed in Section 3, our
methods utilize neighboring concepts linked
by the particular lexical-semantic relations
hypernymy, attribute, and meronymy
defined in PWN. Some may consider that the
HYPER, ATTRI, and MERO relationships can
be estimated simply by consulting the above-
mentioned PWN relationships. However, this is
definitely NOT the case, since almost all of the
semantic relation instances in the BLESS dataset
are not immediately defined in PWN: Among the
14,400 BLESS instances, only 951 are defined
in PWN. For an obvious example, there are no
links in PWN that are labeled event, which is a
type of semantic relation defined in BLESS. The
low Recall results presented in Table 3 endorsed
this fact, and clearly show the sparsity of useful
semantic links in PWN. However, for some of
the lexical-semantic relation types that exhibit
transitivity, such as hypernymy, consulting the
PWN indirect links could be effectively utilized
to improve the results.

Lexical memorization: Levy et al. (2015) re-
cently argued that the results achieved by many su-
pervised methods are inflated because of the “lex-
ical memorization” effect, which only learns “pro-
totypical hypernymy” relations. For example, if a
classifier encounters many positive examples such
as (X, animals), where X is a hyponym of animal
(e.g., dog, cat, ...), it only learns to classify any
word pair as a hypernym as far as the second word
is “animal.” We argue that our method can be ex-
pected to be relatively free from this issue. The
similarity features are not affected by this effect,
since any similarity calculation is a symmetric op-
eration, and independent of word order. More-

over, the simc
max or simc

med method selects a pair
of sense/concept embeddings, where the combi-
nation usually differs depending on the combi-
nation of node sets. On one hand, the simc

sum

method could be affected by the memorization ef-
fect, since the vectorial feature for the prototypical
hypernym is invariable.

7 Conclusion

This paper proposed a method for classifying the
type of lexical-semantic relation that could hold
between a given pair of words. The empirical
results clearly outperformed those previously ob-
tained with the state-of-the-art results, demonstrat-
ing that our rationales behind the proposal are
valid. In particular, it would be reasonable to
assume that the plausibility of a specific type of
lexical-semantic relation between the words could
be chiefly recovered by a carefully designed set
of relation-specific similarities. These results also
highlight the utility of “the sense representations,”
since our similarity calculation methods rely on
the sense/concept embeddings created by the Au-
toExtend system.

Future work could follow two directions. First,
we need to improve the classification of inter-noun
semantic relations. We may particularly need to
distinguish the hypernym relationship, which is
asymmetric, from the symmetric coordinate rela-
tionship. In this regard, we would need to improve
the creation of node sets and the combinations to
capture the innate difference of the relationships.

Second, we need to address the potential draw-
back of our proposal, which comes from our oper-
ational requirement: a lack of sense/concept em-
beddings is crucial, as we cannot collect relevant
node sets in this case. Therefore, we need to de-
velop a method to assign some of the existing con-
cepts to an unknown word, which is not contained
in PWN, by seeking the nearest concept in the re-
source. A possible method would first seek the
nearest concept in the underlying lexical-semantic
resource for an unknown word, and then induce a
revised set of sense/concept embeddings by itera-
tively applying the AutoExtend system.
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