CLUZH at VarDial GDI 2017: Testing a Variety of Machine Learning
Tools for the Classification of Swiss German Dialects

Simon Clematide
Institute of Computational Linguistics
University of Zurich
simon.clematide@cl.uzh.ch

Abstract

Our submissions for the GDI 2017 Shared
Task are the results from three different
types of classifiers: Naive Bayes, Condi-
tional Random Fields (CRF), and Support
Vector Machine (SVM). Our CRF-based
run achieves a weighted F1 score of 65%
(third rank) being beaten by the best sys-
tem by 0.9%. Measured by classification
accuracy, our ensemble run (Naive Bayes,
CRF, SVM) reaches 67% (second rank)
being 1% lower than the best system. We
also describe our experiments with Recur-
rent Neural Network (RNN) architectures.
Since they performed worse than our non-
neural approaches we did not include them
in the submission.

1 Introduction

The goal of our participation in the newly intro-
duced German Dialect Identification (GDI) Shared
Task of the VarDial Workshop 2017 (Zampieri et
al., 2017) was to quickly test how far we could
get on this classification problem using standard
machine learning techniques (as only closed runs
were allowed for this task).

The task is to predict the correct Swiss Ger-
man dialect for manually transcribed utterances
(Samardzic et al., 2016).! The Dieth transcrip-
tion (Dieth, 1986)—developed in the 1930s in
Switzerland—is not a scholarly phonetic tran-
scription system. It is designed to be applicable
by laymen to all Swiss German dialects and uses
the Standard German alphabet and a few optional
diacritics.

In this task, the number of possible Swiss Ger-
man dialects is limited to four main varieties: the

'Since the text segments are transcribed speech, with a

slight abuse of terminology, we shall refer to them as utter-
ances.

170

Peter Makarov
Institute of Computational Linguistics
University of Zurich
makarov@cl.uzh.ch

dialects spoken in the cantons of Basel (BS), Bern
(BE), Lucerne (LU), and Zurich (ZH).

The four approaches that we have worked on
for this task are: i) a powerful baseline that uses
an off-the-shelf Naive Bayes classifier trained on
bags of character n-gram features; ii) an uncon-
ventional yet effective application of a CRF clas-
sifier to sequence classification—the system per-
forming best on the official test set among all our
runs; iii) a majority-vote ensemble of the Naive
Bayes, CRF and SVM systems; and iv) an RNN
character-sequence classifier trained on augmen-
ted data, which however has not been included in
our final submission.?

2 Related Work

Scherrer and Rambow (2010) describe dialect
identification approaches to written Swiss Ger-
man. To distinguish among six dialects, they ex-
periment with a word n-gram model. Additionally,
they attempt word-based identification by turning
Standard German words into their dialectal forms
according to hand-written transfer rules. They dis-
cuss the linguistic aspects of the problem and dif-
ficulties in predicting for the multitude and con-
tinuum of Swiss German dialects.

Most of our final submission, except probably
Run 2, is an application of well-established tech-
niques for text classification (Sebastiani, 2002).
We use regularized linear classifiers on a bag-of-
character-n-grams representations of utterances.
Despite its conceptual simplicity, this recipe pro-
duces state-of-the-art results on language identi-
fication tasks (Malmasi et al., 2016) and is par-
ticularly easy to implement given the wide vari-
ety of readily available tools for feature extraction
and classification. Having this as a baseline, we

2Qur code is available at https://github.com/
simon—-clematide/GDI-task-2017.

Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 170-177,
Valencia, Spain, April 3, 2017. (©2017 Association for Computational Linguistics

BE BS LU ZH Total

Training Set | 3889 0.27 | 3411 024 | 3214 0.22 [3964 0.27 | 14478

Test Set | 906 0.25| 939 026 | 916 025| 877 024 | 3638
Difference 2% +2% +3% -3%

Training 4+ | 3260 0.26 | 2974 024 | 2865 0.23 | 3327 0.27 | 12426 |

Table 1: Distribution of classes in the training and test sets of the GDI task. Row “Training 4+ shows
the effect of removing sentences with less than 4 tokens on the training set composition.

Tokens 1 2 3 4 5 6 7 8 9 10+
Training | 360 731 961 1244 1416 1491 1428 1317 1125 4405
Rel. | 2% 5% 7% 9% 10% 10% 10% 9% 8% 30%

Test 495 530 465 450 368 320 1010

Rel. 14% 15% 13% 12% 10% 9% 28%

Table 2: Distribution of numbers of tokens per utterance in the training and test sets of the GDI task.

focus on experimenting with CRFs and character-
sequence neural network classifiers. Zhang et al.
(2015) achieve competitive results on character-
level document classification tasks with Convo-
lutional Neural Networks (CNNs). Word-level
RNNs have been applied to a variety of text clas-
sification tasks (Carrier and Cho, 2014). Xiao
and Cho (2016) present an efficient character-level
RNN document classifier.

3 Data and Methodology

In this section, we first describe the training and
test data sets. Second, we detail the methods that
we apply in our runs as well as report the results
of post-submission experiments using RNNs.

3.1 Properties of the Data

As Table 1 shows, the GDI training data set has
roughly balanced classes (a maximum of +3 per-
centage points away from a uniform distribution).
The official test set is slightly better balanced (a
maximum of +1 percentage points away from a
uniform distribution). However, the data sets do
not have the same minority/majority classes.
Another noticeable difference between the
training and test data is the presence of short utter-
ances. The training set has 2,052 utterances (14%)
which consist of only one, two or three words.
This contrasts with the test set, whose utterances
contain four or more words. Predicting the dialect
of a short utterance is much harder than predicting
the dialect of a long one. We systematically drop
very short utterances from the training data in or-
der to compensate for the differences between the

171

data sets® and to reduce the noise.

The data only contain lowercase characters.
Due to the variability in the dialects, many of the
14,065 word types appear only once (9,372), twice
(2,032), or three times (929). This extreme Zipfian
distribution makes it hard to build reliable statist-
ics for prediction.

3.2 Our Methods

All our methods except the RNNs use character
n-gram features derived from separate words.

3.2.1 Run 1: Naive Bayes

Run 1 is our baseline, which has proven hard to
beat. For the final submission, we drop from the
training set short noisy utterances and substitute
character combinations for characters with com-
plex diacritics (e.g. “ii2” for “4”) and single char-
acters for the common digraph “ch” and trigraph
“sch”. All one-character words are dropped. We
represent each utterance with a bag of character n-
grams, ranging from bigrams to six-grams. This
set-up produces the highest average validation ac-

3This violates the default assumption in machine learning
scenarios “that training and test data are independently and
identically (iid) drawn from the same distribution. When the
distributions on training and test set do not match, we are fa-
cing sample selection bias or covariate shift” (Huang et al.,
2007). Different unsupervised domain adaptation techniques
have been developed in order to mitigate this problem, e.g.
instance weighting (Jiang and Zhai, 2007). A very simple
weighting schema consists in assigning a weight of zero to
short utterances, i.e. removing them. Two reviewers had the
opinion that it is a methodological problem to adapt the mod-
els to the evidence in the test set and that one is not supposed
to look at the test set at all. Ultimately, it is a question of
the task guidelines whether unsupervised domain adaptation
is considered legitimate or not.

500 T 100 .

) — LU — LU
qé 400} — BE| 8o} — BE [
o — ZH — ZH
2 300 1 60 1
5 — BS — BS
‘ls . -
o 200+ : : 40
) : :
.E : :
S 100+ 20
g H H

0 : : > : - 0 : ; ! . WO A

0 5 10 15 20 25 30 0 20 40 60 80 100 120 140 160

length in words

length in characters

Figure 1: Per-dialect distribution of numbers of tokens and characters per utterance in the training set.

curacy among competing configurations (e.g. dif-
fering in n-gram ranges). We use the scikit-learn
machine learning library (Pedregosa et al., 2011)
to implement the entire pipeline. We fit a Naive
Bayes classifier with add-one smoothing.

3.2.2 Run2: CRF

For Run 2, we use wapiti (Lavergne et al., 2010),
an efficient off-the-shelf linear-chain CRF se-
quence classifier (Sutton and McCallum, 2012).
Each word of an utterance is treated as a tagged
item in a sequence and the utterance classification
task is cast as a sequence classification of all items.
For instance, the utterance “jaa ich han ja” with
sequence label ZH is turned into a verticalized
format corresponding to “jaa/ZH ich/ZH han/ZH
jalZH”.

The motivation behind this approach is that
a single word is often ambiguous, however, we
know a priori by the definition of the task that all
words in an utterance must have the same class.
Therefore, we rely on the machinery of CRFs to
adjust the weights of the word features in the ex-
ponential model during training in such a way that
sequences get optimally and homogeneously clas-
sified. Indeed, the predicted sequence of classific-
ation tags within one utterance is always consist-
ent, and we take the class of the first word as the
class of the whole utterance.

The features for the CRF are built from indi-
vidual words. We experimented with different re-
placement rules for the diacritics, but in the end
just applied two phonetically motivated replace-
ments (“sch” and “ch”) before feature extraction.

We use 4 types of features for the representation
of a token:

WD The word form using our two replacements.

172

PS Concatenations of the prefix and suffix of
each word (from 1 to 3 characters depending
on the length of the word).

NG Character n-grams (from 1 to 6 characters).
Before extracting the n-grams, we prefix each
word with an “A” and suffix it with a “Z” in
order to distinguish n-grams at word bound-
aries from n-grams within a word.

CV Word shapes selecting or mapping character
classes for consonants and vowels. Specific-
ally, feature types V and C contain all vow-
els and consonants of a word in the order of
appearance. Feature types Cs and Vs contain
the sets of all consonants and vowels, respect-
ively. Feature types VV and CC contain the
word shape where either all vowels or all con-
sonants get masked with a “C” or a “V”". Fea-
ture type CCVV masks all characters with a
“C”ora“V”.

Each word also has a so-called bigram output
feature that encodes the transition probabil-
ity of class labels. This ensures that the sys-
tem learns to predict sequences with only ho-
mogeneous class labels. The unigram output
feature “u”, which encodes the global distri-
bution of class labels, was not useful, how-

€ver.

CRF tools like wapiti allow each feature to be used
as evidence only for the class of the current token
(feature prefix “u:”) or the class of the preceding
and/or current token (feature prefix «#:) 4 For the
GDI task, we only use “u:” features. Thus, for
a word like “vernoo” (en: heard), the following
features are extracted:

4See Lavergne et al. (2010) for technical details.

Length in words | Replaced with Example

10>1>15 a) First 3/4 of words, | “a a de a der annere wand sis schwiizer welo” = a) “a a de a der
and b) last 3/4 annere wand sis”, b) “de a der annere wand sis schwiizer welo”

[>15 a) First 2/3 of words, | “aber das hind dinn d schuurnalischten am prozss zum biischpil
b) last 2/3, and ¢) 1/3 | isch di saz wider choo” = a) “aber das hiand dinn d schuurn-
in the middle alischten am prozédss zum biischpil”, b) “schuurnalischten am

proziss zum biischpil isch dd saz wider choo”, c¢) “hind didnn
d schuurnalischten am prozéss zum biischpil isch da saz”
Table 3: Data augmentation rules.
WD=vernoo b u:PS=vo u:PS=veoo 3.2.4 Experiments with LSTMs
WNG=Av uNG=Ave uNG=v UuNG=ve We have invested a considerable amount of ef-
u:NG=ver u:NG=e u:NG=er u:NG=ern

U:NG=r u:NG=rn u:NG=rno u:NG=n u:NG=no
u:NG=noo u:NG=0 Uu:NG=00 u:NG=00Z
U:NG=0 u:NG=0Z u:V=eoo u:C=vrn u:Cs=nrv
u:Vs=eo u:VV=vVrnVV u:CC=CeCCoo
u:CCVV=CVCCVV.

The CV word shape features add about one per-
centage point in accuracy.

A typical training fold (90% of the training
data) results in about 540,000 different feature
candidates. After thirty five training epochs us-
ing the Elastic Net regularization (Zou and Hastie,
2005), around 90,000 features are still active.

The only hyper-parameter that we need to ad-
just is the maximal number of training epochs of
the L-BFGS optimizer (Liu and Nocedal, 1989). A
maximum of thirty five training epochs guarantees
optimal performance. We use a development set
of 10% of the training set to control for overfitting
and finding a reasonable number of epochs. Still,
we find no clear and smooth convergence. Chan-
ging the default parameters for the Elastic Net reg-
ularization or any other hyper-parameter of wap-
iti does not result in systematic and consistent im-
provements.

3.2.3 Run 3: Ensemble of Naive Bayes, CREF,
and linear SVM

Run 3 is a majority-vote ensemble system built
from the results of Run 1, Run 2, and predictions
generated from a linear SVM over the same fea-
ture model as for Run 1. Whenever all classifiers
disagree with one another, the ensemble falls back
to the prediction by the Run 1 system. We used
scikit-learn’s implementation of linear SVM train-
able with the Stochastic Gradient Descent optim-
ization algorithm and searched for the value of the
regularization parameter with the highest average
cross-validation accuracy.

173

fort in RNN models. We implement particularly
simple Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997): with
and without an initial character embedding layer,
with a recurrent layer, and a softmax output layer.
Like in the other runs, we experiment with single
character and character group replacements. We
fix the size of the character embedding layer to two
thirds the input size, which therefore varies from
model to model as a result of character replace-
ments (twenty five or twenty nine units). The size
of the LSTM layer is fixed to ninety hidden units.
The softmax layer takes as input the values of the
LSTM hidden units at the final character. All the
models are rather small, with the leanest models
having 41,760 parameters and the largest having
48,600 parameters. Adding a character embedding
layer results in a 9% reduction in model paramet-
ers, on average. The reduction in the number of
character types shrinks the model by another 4%,
and the replacement of common di- and trigraphs
shortens input sequences and further speeds up
training. We discarded the idea of using bidirec-
tional LSTMs (Graves and Schmidhuber, 2005):
They are slower to train (the number of model
parameters roughly doubles), which has been the
main bottleneck for us since we have intended to
experiment with multiple model set-ups.

One important theme in our neural network ex-
periments has been data augmentation. Having ex-
amined the predictions of the baseline classifier,
we observed that the longer the utterance the more
likely it is to be classified correctly. We hypothes-
ized that a simple trick of slicing long utterances
into multiple shorter chunks and substituting those
chunks for the original utterances in the training
data would improve performance (Table 3). Like
in the other runs, we drop short utterances com-

Run 1 Run 2 Run 3

b BE BS LU ZH| BE BS LU ZH| BE BS LU ZH
BE 906 | 601 56 45 204 | 623 56 36 191 [660 51 23 172
BS 939 | 48 621 75 195| 65 694 58 122 | 58 683 57 141
LU 916 | 156 260 278 222|137 268 315 196 | 183 233 292 208
ZH 877 17 26 24 810 23 26 20 808 | 25 24 13 815
Precision 73 64 66 57| 73 66 73 61| 71 69 T6 61
Recall 66 66 30 92| 69 74 34 92| 73 73 32 93
F1 70 65 42 70| 71 70 47 74| 72 71 45 74
P/R/F1 65/63/62 69/67/65 69/67/65

& &

& A £ < <

Table 4: Confusion matrices and result breakdown for our official GDI runs. Rows are true labels,

columns are predicted labels.

Run Accuracy F1 (macro) F1 (weighted)

Baseline 25.80
1 63.50 61.65 61.56
2 67.07 65.38 65.31
3 67.34 65.34 65.27

Table 5: Official results for the GDI task. The
baseline predicts the majority class. For all
classes, F1 (micro) is the same as accuracy.

pletely (in this case, one-word and two-word ut-
terances). As a result of this data augmentation,
the training data for the internal system evaluation
have grown by almost a quarter (from 11,726 to
15,340 utterances).

All neural-network implementation is done us-
ing high-level structures of the keras neural net-
works library (Chollet, 2015). For training the
models, we use the Root Mean Square Propaga-
tion (RMSProp) algorithm (Tieleman and Hinton,
2012), a variant of Stochastic Gradient Descent,
with default hyper-parameters suggested by the
library. We use Dropout (Srivastava et al., 2014)
for regularization. We train for at least 100 epochs
and at most 300 epochs.

4 Results
4.1 Official Results

Table 5 shows the official results of our submitted
runs. Run 3 has the best accuracy among our runs,
but is slightly worse on the macro-averaged F1
score and the weighted F1 score (see Zampieri et
al. (2017) for further information on the evaluation
metrics). The performance in absolute numbers is
much lower than expected from cross-validation.

4.2 Internal Evaluation

Table 6 shows average validation scores of the sys-
tems featured in our submissions. We retrain the
systems with the same hyper-parameter settings
as in the submissions. The ensemble performs
best followed closely by the baseline system of
Run 1. To compare the systems with the best-
performing LSTM from the post-submission ex-
periments, we set aside a stratified sample of one
tenth the size of the training data as an internal
evaluation set. Again, we retrain the models on
the remaining data with the same hyper-parameter
settings. Since these hyper-parameter values have
been found to produce the best performance on the
entire training data, internal evaluation set results
are potentially biased upward for all the systems
but the LSTM.

174

Cross-validation results Internal evaluation set results
Run Accuracy F1 (macro) F1 (weighted) | Accuracy F1 (macro) F1 (weighted)
1 85.10 (0.82) 84.99 (0.82) 85.10(0.82) 85.43 85.36 85.44
2 83.96 (0.68) 83.87(0.70) 83.93 (0.69) 85.01 85.02 85.01
3 85.70 (0.59) 85.57 (0.60) 85.68 (0.60) 85.50 85.42 85.50
SVM | 82.46(0.59) 82.36(0.64) 82.43(0.61) 82.39 82.36 82.39
LSTM - - - 83.49 83.30 83.46

Table 6: System comparison: Results for ten-fold stratified cross-validation and performance on an
internal evaluation set. Cross validation results: We report mean scores across the folds and indicate
standard deviations in parentheses. The SVM is a model from the ensemble of Run 3.

Model configuration Development set results Internal evaluation set results
data | char. | char. | Accuracy F1 (macro) F1 (weighted) | Accuracy F1 (macro) F1 (weighted)
aug. | repl. | emb.

- - - 81.75 81.57 81.65 81.15 80.79 80.99
- - + 81.52 81.35 81.51 81.98 81.90 81.96
- + - 82.75 82.50 82.69 82.39 82.23 82.34
- + + 80.83 80.60 80.74 79.90 79.71 79.84
+ - - 81.60 81.42 81.53 83.22 83.08 83.18
+ - + 82.82 82.66 82.78 82.60 82.52 82.59
+ + - 82.52 82.35 82.52 83.49 83.30 83.46
+ + + 82.59 82.43 82.56 82.04 81.91 82.00

Table 7: Comparison of RNN sequence classifiers.

5 Discussion

ZH clearly dominates in terms of recall in all our
runs (Table 4). The recognition rates for ZH, BE,
and BS are fine (around 70% F1) in our official
runs. However, the F1 score for LU is much lower
(around 45%) due to severe recall problems. The
numbers show that the recognition of LU suffers
from more frequent predictions in favor of ZH and
BS. This behavior fits the empirical distribution of
the classes from the training set (short sentences
removed) as shown in Table 1 where 27% of all
sequences are ZH, but only 23% LU. As the prob-
lem may also lie in the data, it would be interesting
to see whether all the systems participating in the
shared task exhibit this bias.

The results on the official test data (Table 5)
are unexpectedly lower than our cross-validation
estimates from the training data (67% accuracy
instead of about 88% with short sequences re-
moved). Clearly, the training and test sets have
not been consistently sampled from the same dis-
tribution.

The Naive Bayes classifier of Run 1 has been
exceptionally strong on same-domain data. Inter-
estingly, it suffers worse compared to other sys-
tems from differently sampled data.

According to our observation during training,
CRFs seem to run a bit into convergence problems.
Therefore, one might try to systematically build
more varying models (for instance, by bootstrap
sampling and randomly selected subsets of extrac-
ted features) in order to have a broader ensemble
system. Another line of work that we could not
complete due to time restrictions is the integra-
tion of a word prediction model into the CRF
system based on character-level CNNs (Xiao and
Cho, 2016). Our expectation would be that con-
volution filters might be better at learning relevant
character-level representations for estimating the
label probability for a given word.

We have struggled to produce strong results
with RNNs. By the submission deadline, no
model had performed on a par with our non-
neural systems. Table 7 presents the results of our
post-submission experiments. Data augmentation
brings about impressive gains of 0.7% on a devel-
opment set and 1.5% on the internal evaluation set,
on average across the three metrics. Character re-
placements largely hurt performance: On average,
we see a drop of 0.2% on the development set and
0.9% on the internal evaluation set. The effects of
a character embedding layer cancel out across the
development and internal evaluation sets (-0.2%

175

and +0.3%, respectively). On the other hand, mod-
els with a character embedding layer and/or char-
acter replacements are faster to reach higher ac-
curacy levels. Just like with other models, short
utterances pose the largest difficulty, and perform-
ance goes up with utterance length. Overall, using
slow-to-train neural models on this task has not
paid off: Blazingly fast linear classifiers achieve
very strong results, and so time is better spent on
looking for good features.

6 Conclusion

We show that a character n-gram-based Naive
Bayes approach gives a very strong baseline for
the classification of transcribed Swiss German dia-
lects, especially when test and training sets are
drawn from the same distribution. The CRF-
based approach works better for the official test
set (ranked third by weighted F1 score among all
the submitted GDI runs). The official test set is
clearly sampled differently from the training set.
Given a rather large performance difference of
4.5% between the Naive Bayes and the CRF, we
suspect that the CRF-based approach has general-
ized better than the Naive Bayes. In terms of ac-
curacy, an ensemble approach using Naive Bayes,
CREF, and linear SVM gives the best results of our
runs and ranks second among all GDI runs.

7 Acknowledgement

We would like to thank three anonymous review-
ers for their helpful comments. Peter Makarov is
supported by European Research Council Grant
No. 338875.

References

Pierre Luc Carrier and Kyunghyun Cho. 2014. LSTM
networks for sentiment analysis. Deep Learning Tu-
torials.

Francgois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Eugen Dieth. 1986. Schwyzertiitschi Dialdikts-
chrift: Dieth-Schreibung. Lebendige Mundart.
Sauerldnder, Aarau etc. 2. Aufl. / bearb. und hrsg.
von Christian Schmid-Cadalbert (1. Aufl. 1938).

Alex Graves and Jirgen Schmidhuber. 2005.
Framewise phoneme classification with bidirec-
tional LSTM and other neural network architectures.
Neural Networks.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

176

J. Huang, A. Smola, A. Gretton, K. Borgwardt, and
B. Schoelkopf. 2007. Correcting sample selection
bias by unlabeled data. In B. Schoelkopf, J. Platt,
and T. Hoffman, editors, Advances in Neural In-
formation Processing Systems 19, pages 601-608.
MIT Press, Cambridge, MA.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics, pages 264-271.
Association for Computational Linguistics.

Thomas Lavergne, Olivier Cappé, and Frangois Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL). Association for
Computational Linguistics.

D. C. Liu and J. Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Math. Program.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubesic,
Preslav Nakov, Ahmed Ali, and Jorg Tiedemann.
2016. Discriminating between similar languages
and arabic dialect identification: A report on the
third dsl shared task. In Proceedings of the 3rd
Workshop on Language Technology for Closely Re-
lated Languages, Varieties and Dialects (VarDial),
Osaka, Japan.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Re-
search.

Tanja Samardzic, Yves Scherrer, and Elvira Glaser.
2016. ArchiMob — A corpus of spoken Swiss
German. In Proceedings of the Language Re-
sources and Evaluation (LREC), pages 4061-4066,
Portoroz, Slovenia).

Yves Scherrer and Owen Rambow. 2010. Word-based
dialect identification with georeferenced rules. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics.

Fabrizio Sebastiani. 2002. Machine learning in auto-
mated text categorization. ACM computing surveys
(CSUR).

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search.

Charles A. Sutton and Andrew McCallum. 2012. An
introduction to conditional random fields. Founda-
tions and Trends in Machine Learning.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by combin-
ing convolution and recurrent layers. CoRR.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubesic,
Preslav Nakov, Ahmed Ali, Jorg Tiedemann, Yves
Scherrer, and Noémi Aepli. 2017. Findings of the
VarDial Evaluation Campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), Valencia,
Spain.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems.

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Meth-
odology).

177

