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Abstract

We present two novel examples of simple
algorithms which characterize the gram-
mars of low-resource languages: a tool
for the characterization of vowel harmony,
and a framework for unsupervised mor-
phological segmentation which achieves
state-of-the-art performance. Accurate
characterization of grammars jump starts
the process of description by a trained
linguist. Furthermore, morphological
segmentation provides gains in machine
translation as well, a perennial challenge
for low-resource undocumented and en-
dangered languages.

1 Introduction

A persistent difficulty in describing a language’s
grammar is the time consuming and error prone
task of pouring over collected data searching for
patterns. While the idea of automation is appeal-
ing, existing natural language processing applica-
tions are often non-functional on the kind of data
which may be collected in the field. They may rely
on supervised algorithms which require labeled or
annotated data, but that defeats the purpose here.
A successful tool for characterizing an unknown
grammar should not require the user to have de-
scribed the grammar beforehand. So called unsu-
pervised algorithms, which are are trained on unla-
beled data, exist, but they tend to require very large
digital corpora to perform well. This is not a prob-
lem for tools meant to run on English or French,
but collecting enough material on an endangered
or undocumented language is often extremely dif-
ficult or impossible.

Standard NLP applications are not up to the
task. Useful tools in this field must run on un-
usually small corpora with high enough accuracy
if they are to be a help rather than a hindrance to

a trained linguist. So, what is needed is a class
of tools designed specifically with small data in
mind and which will work for a diverse variety of
languages. We present two such tools that oper-
ate on different grammatical domains. The first
is a method for automatically searching for, iden-
tifying, and characterizing vowel harmony. De-
signed with small raw wordlists in mind, it lever-
ages basic typological and theoretical principles.
Tested on families ranging from Turkic (Turk-
ish, Uyghur) to Pama-Nyungan (Warlpiri), it ac-
curately describes diverse harmony systems. Our
approach is novel in that it does not require the re-
searcher to specify what kind of harmony system,
if any, to expect. The algorithm discovers the pat-
terns on its own.

Additionally, we present an algorithm which
achieves state-of-the-art results in unsupervised
morphological segmentation. Prior work in unsu-
pervised segmentation has taken advantage of very
large corpora, on the order of billions of words
(Goldwater et al., 2006; Narasimhan et al., 2015).
Tested on English and Turkish, our algorithm pro-
duces superior results not on billions, but on only
hundreds of thousands of words. An obvious issue
here is the lack of languages to test on. While any-
one can run the algorithm on any language, we can
only test the quality of the segmentation on lan-
guages for which a gold-standard segmentation al-
ready exists. To remedy this, we are currently de-
veloping annotation standards for automatic mor-
phological segmentation, with Korean and Faroese
as test languages. We hope this will prove use-
ful for other researchers working on their own lan-
guages of interest.

2 Discovering and Describing Vowel
Harmony

We begin with an algorithm for discovering vowel
harmony in unannotated wordlists. It is designed
to produce some kind of useful output no matter

76



how small its input data, but the more that is pro-
vided to it, the more information it will extract.
In all, it answers a number of important questions
about a language’s vowel harmony system begin-
ning with the obvious: does this language have
vowel harmony?. If so, then what are the har-
monizing sets, and how do vowels map between
them? Which vowels, if any, are neutral? Are neu-
tral vowels transparent or opaque? Is secondary
harmony present? And so on. These questions
constitute the major part of what defines a har-
mony system. Answering them gives a trained lin-
guist a leg up before working out the finer details,
or serves to inform other NLP tools in a pipeline.

While prior work exists on the automatic dis-
covery or analysis of vowel harmony systems,
our method is, to our knowledge, the first end-
to-end pipeline for describing both primary and
secondary vowel harmony on arbitrary languages.
The Vowel Harmony Calculator (Harrison et al.,
2004) calculates metrics over a language given
a specification of its harmony system. This is
not useful for the present purpose because it re-
quires a description of the system beforehand.
Sanders and Harrison (2012) improves on this by
not requiring a full description as input. Never-
theless, it only provides a metric for how “har-
monic” languages are and not a description of
the vowel harmony system (Sanders and Harrison,
2012). Baker (2009) describes a two-state Hid-
den Markov Model (HMM) which characterizes
English and Italian, and may describe Turkish and
Finnish correctly depending on random initial pa-
rameter settings (Baker, 2009). The model is re-
stricting in that it requires the user to decide up-
front how many levels of harmony to find. It only
accounts for secondary harmony by setting up the
HMM with four initial states at the outset. The pa-
per also shows that a models using mutual infor-
mation (MI) and Boltzmann fields can accurately
identify vowel-to-vowel interactions but does not
provide a means for describing vowel harmony
given the results.

2.1 Algorithm Overview

In an approach broadly similar to (Baker, 2009)’s
MI model, our algorithm leverages distributional
patterns within the vowel system to extract infor-
mation about vowel harmony. But due to clever
transformations of the data and typologically mo-
tivated assumptions, it neatly extracts the detailed

information about the system to produce a descrip-
tion.

The algorithm is flexible in its input. At a min-
imum, all it requires is a wordlist a few hundred
words long. If the orthography corresponds more-
or-less to a phonemic representation (like with
Finnish, for example), no transcription is needed.
This alone provides enough information for a ba-
sic rough analysis. A wordlist thousands long,
with frequencies if possible, is better. For a com-
plete analysis, the current version of the algorithm
requires a short list of potentially relevant vowel
features for each vowel. These basic features (e.g.,
±rnd, ±hi, etc.) are not strongly tied to any par-
ticular phonological theory, and are customizable
by the researcher.

The algorithm takes a wordlist (with frequen-
cies if available) as input, a list of vowels in the
same orthography as the input, and an optional ta-
ble of proposed vowel features for each vowel. It
outputs a partition of the vowel space into two pri-
mary harmonizing sets if present, and/or a neutral
set. If provided with features, it outputs mappings
between the two sets and a partition for secondary
harmony if present.

Algorithm 1 describes the detection process. At
a high level, it proceeds as follows. First, if fre-
quencies are provided, the lowest frequency items
are removed. These are more likely than high fre-
quency items to contain names and loan words
which fail to adhere to the harmony pattern. Then
tier-adjacent vowel pairs are tabulated. For exam-
ple, in the Finnish Kalevala, the tier-adjacent pairs
are a-e, e-a, and a-a. These counts are converted
to mutual information. The MI step is necessary
to account for the uneven frequencies of individ-
ual vowels. For example, if a is very common in
a language while y is rare, the counts for every
vowel with a might be higher than with y in spite
of harmony constraints. MI controls for these un-
conditioned frequency effects.

This process yields an MI co-occurrence vector
for every vowel. In the absence of co-occurrence
restrictions, each vector should correspond to a
fairly level distribution. That is, each vowel is
expected to co-occur with every other vowel at a
more or less uniform rate if the frequencies of both
vowels are accounted for. However, with vowel
harmony restricting co-occurrence, the distribu-
tions should be skewed because vowels should
rarely co-occur with members of the opposing har-
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mony set. Any vowel with a sufficiently level
distribution is probably neutral. If all or all but
one of the language’s vowels appears neutral, then
the language does not have vowel harmony1. K-
means clustering, a standard and simple unsuper-
vised clustering algorithm, is used to find the op-
timal division of the non-neutral vowels into two
harmonizing sets. If features are provided, they
are used to match up which vowel maps to which
between sets. Then the process is rerun with the
harmonizing feature removed to find additional
harmony patterns.

Algorithm 1 VH Characterization Algorithm
if frequencies provided then

Trim tail off wordlist
while True do

Calculate tier-adjacent vowel-vowel co-occurrence
matrix

Calculate MI between each vowel pair
Identify vowels whose MI distributions uniform within

threshold.
Assign these to the neutral vowel set and remove from

consideration
if number of non-neutral vowels ≤ 1 then

return
Run k-means (k = 2) clustering on the remaining vow-

els’ MI vectors
if no features provided then

return
else

Map vowels between harmonizing sets by finding
pairs that share the most features in common.

vowel list← Collapse vowels along the harmoniz-
ing feature

rerun for secondary harmony
return

The algorithm requires that a list of vowels be
provided as input. This might be a problem if
the user chooses to include marginal vowels from
loanwords as input, for example 〈y〉 in German or
〈å〉 in Finnish. So as a fail-safe, the algorithm has
facilities for automatically detecting and removing
such vowels from the analysis. Marginal vowels
tend to have much higher self-MI than MI with
any other vowel, allowing them to be identified.
This follows intuitively from the assumption that
marginal vowels tend to appear only in loanwords.

1Vowel harmony requires a partitioning of the vowel sys-
tem into at least two sets. Therefore, there need to be at least
two vowels with skewed distributions to propose harmony

2.2 Results

This simple algorithm performs very well on the
languages tested. We choose languages with eas-
ily accessible corpora from Indo-European, Tur-
kic, Uralic, and Pama-Nyungan, but we have good
reason to believe that the results port to other fam-
ilies as well. We begin by testing Turkish, Finnish,
Hungarian, Uyghur, and Warlpiri with corpora
ranging in size from roughly 28,000 to 400,000.
The model achieves perfect results out-of-the-
box on three of five languages tested. This in-
cludes successfully capturing secondary harmony
in Turkish.

The Warlpiri result is encouraging because it
demonstrates that the algorithm may be expected
to perform on wordlists in only the tens of thou-
sands. It is worth noting that the Turkish results
are despite upwards of 30% of lexical items con-
taining at least one harmony violation (due mostly
to a set of bound morphemes with refuse to par-
ticipate in harmony). This underlines the algo-
rithm’s robustness. The algorithm also appropri-
ately maps vowels between harmonizing sets in all
cases when features are provided as input.

In both Hungarian and Uyghur, all errors were
of the same type: they misclassified harmonizing
vowels as neutral. It is encouraging that the algo-
rithm never places a vowel in the wrong harmoniz-
ing set. In that way, it does not lead the researcher
astray as to the nature of the specific language’s
harmony system. A second test was performed
on Hungarian in which vowel length (as acute ac-
cents) was removed from the orthography. After
this change, Hungarian achieved a perfect score as
well.

English and German were chosen as control
cases. Neither language exhibits vowel harmony,
and vowel harmony was discovered in neither lan-
guage.

Finally, two experiments were conducted to test
the limits of the algorithm’s power. First, the
algorithm was run on Estonian (Finnic), which
crucially once had, but has since lost produc-
tive harmony (Harms, 1962). We predicted that
such a language would still show remnants of har-
mony’s distributional fingerprint. This turns out
to be the case. Run on 87,586 types with no
frequency information (Eesti Kirjandusmuuseumi
Folkloristika Osakond, 2005), we discover rem-
nant front-back harmony. 〈a〉, 〈e〉, 〈i〉, and 〈u〉
are found to be neutral which is unsurprising since
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Language # Types Primary H? V correct Secondary H? V correct
Turkish 303,013 X 8/8 X 4/4
Finnish 396,770 X 8/8 – –
Hungarian 53,839 X 11/15 – –
Uyghur 392,403 X 7/8 – –
Warlpiri 28,885 X 3/3 – –
German 225,327 – 5/5 – –
English 101,438 – 6/6 – –

Table 1: Vowel co-occurrences are taken from corpus orthographies. Marginal vowels (e.g. Finnish å
and German y) are automatically detected and removed. Corpora are from MorphoChallenge (Kurimo
et al., 2010) when available. Uyghur and Hungarian were provided for the DARPA LORELEI project.
Warlpiri is from (Swartz, 1997).

we expect some erosion in the distributional asym-
metries. The remaining vowels divide into two
classes along frontness: 〈ä〉, 〈ö〉, 〈ü〉 vs. 〈o〉, 〈õ〉
(/7/). This is system is reminiscent of productive
harmony in Finnish today and provides interesting
insight into diachronic study of the language.

Second, we test the limits of the input data. A
run on the most frequent 500 types for Turkish
successfully discovers primary but not secondary
harmony. This seems to represent the lower bound
on the algorithm’s performance window. A second
test on Buryat (Mongolic) confirmed this lower
bound. Only spurious harmony was detected on a
wordlist of 235 stems without frequencies (Lade-
foged and Blankenship, 2007). We expect that
wordlists containing inflected forms to perform
better than lists of stems because harmony alter-
nations are frequently observed as allomorphy.

Overall, these results are highly encouraging.
On all but the smallest of wordlists, the algorithm
produces sufficiently accurate results to be of use
to linguists. It is even useful for diachronic study,
uncovering lost harmony in Estonian. Future
work will leverage morphological segmentation to
achieve mapping without the linguist having to
provide vowel features to the algorithm. We also
expect to test on a variety of poorly documented
languages once we acquire more wordlists.

3 Morphological Segmentation for Small
Data

We now turn to our algorithm for unsupervised
morphological segmentation. As with the vowel
harmony algorithm, this is designed specifically
with small corpora in mind. Nevertheless, it has
achieved state-of-the-art performance on standard
test languages. This algorithm is unique in lever-
aging the concept of paradigms in discovering seg-
mentation. While the notion of paradigms is com-

mon in traditional morphology literature (Stump,
2001), it has not often been used in automatic seg-
mentation tasks.

Automatic segmentation should be contrasted
with automatic feature analysis. Segmentation is
the division of whole word strings into morpheme
subunits. It is a function only of form. Well-
equipped segmentation processes such as the one
presented here, permit transformations as well.
These account for orthographic rules (e.g., the
doubling on <n> in running → run +n ing) or
theoretical concerns, such as allomorphy or stem
alternations (e.g., Latin paludis from palus as
palus +d-s is). Feature analysis, on the other hand,
is a function of meaning. Words are annotated by
the semantic contribution of each of their compo-
nent morphemes rather than split into substrings.
Feature analysis is not well suited for unsuper-
vised tasks because it requires that the meaning of
each morpheme be provided beforehand. It is not
possible, from a wordlist alone at least, to deduce
them. The combination of segmental and featural
analysis yields enough information for a standard
Leipzig gloss.

Segmentation

nd aka chi teng es a

Features

buy CAUS FV 1SM CL7OM PAST

Gloss

nd
1SM

-aka
-PAST

-chi
-CL7OM

-teng
-buy

-es
-CAUS

-a
-FV

Figure 1: Gloss for the Shona (S-Bantu) verb
ndakachitengesa ‘I sold it’ with accompanying
segmental and featural analyses
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While the paradigm approach is novel, other al-
gorithms for morphological segmentation already
exist. Probably the most famous is the Morfes-
sor family of algorithms (Creutz and Lagus, 2005),
which have come to be treated as a standard base-
line. Also of note is the Morsel algorithm which
achieved the best performance for English and
Finnish at the most recent MorphoChallenge (Lig-
nos, 2010).

The current published state-of-the-art, Mor-
phoChain (Narasimhan et al., 2015) achieves top
performance for English, Turkish, and Arabic.
The algorithm gets its name from the way in which
it conceives as words as derivational chains. Any
word is composed of a stem plus some series of
affixations and transformations. Then the prob-
ability of each step in a derivation is computed
considering a number of features (in the machine
learning sense, i.e., predictors). Most of these fea-
tures are word-internal and can be computed di-
rectly from a wordlist. The would-be frequency
of the proposed affix, whether or not the stem ap-
pears independently, correlations between affixes,
and the scope of the required transformations are
taken into account among other things.

Word-internal features alone push Mor-
phoChain’s performance above the competition.
But to achieve its most impressive result, it falls
back on word-external features as well. Cosine
similarity between derivations in the chain is
calculated via Word2Vec (Mikolov et al., 2013)
feature vectors. The distributional similarities
captures by Word2Vec approximate semantic
and syntactic similarity. For example, teach and
teach-er show high distributional similarity and
are semantically related, while corn and corn-er
are not distributionally similar and are not related.
This information is useful for detecting spurious
segmentations such as corn-er which would seem
very plausible based on word-internal information
alone. Word2Vec does not require labels and is
thus unsupervised. However, corpora of at least
hundreds of millions of words of running text are
needed to calculate reliable vectors. Since these
are on the order of a million times larger than the
wordlists that we target, this subverts our goal.

The practical benefits of word segmentation
models are more than simply theoretical. Our
framework has been leveraged to improve the per-
formance of the best systems for low-resource
Uyghur machine translation as well as the auto-

matic detection of named entities for the DARPA
LORELEI project. Bridging the performance gap
of NLP applications on languages without large
annotated corpora, which is the vast majority, ben-
efits the communities that speak them through
greater accessibility of information.

3.1 Algorithm Overview
The morphological segmentation algorithm com-
bines three processes: segmentation, paradigm
construction, and pruning. An overview of each is
provided. Iterative application of these three func-
tions on an unannotated wordlist with frequencies
yields segmentations as described in the introduc-
tion to this project.

Algorithm 2 Morphological Segmentation Algo-
rithm Overview

if pre-segmentation then
Split compounds
Calculate initial P (r) on attested frequencies

Perform initial segmentations
while iteration do

Create paradigms
Prune paradigms

return

3.1.1 Segmentation
Initial segmentation is achieved through a
Bayesian model which estimates a probability
P (r, s, t) over candidate roots r, affixes s, and
transformations t for each word. This process
is itself iterative. ‘Root’ here refers to what
remains after a single affix is removed from
the word rather than its theoretically defined√
ROOT . So after a single iteration, the Shona

word ndakachitengesa with formal root
√
TENG

is segmented into root ndakachitenges and
affix a. The algorithm acknowledges that af-
fixation often triggers additional phonological
(or at least orthographical) processes. These are
captured through the transformations deletion,
substitution, and duplication at segmentation
boundaries. Only considering transformations at
segmentation boundaries drastically reduces the
search space but prevents us from considering
Semitic templatic morphology, for example. We
are working to incorporate this functionality into
future versions of the algorithm.

The likelihood P (r, s, t|w) of a segmentation
(r, s, t) out of all possible candidate segmentations
(r′, s′, t′) given a word w is 0 if that segmentation
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• Deletion (DEL) of the end letter x of root
r. E.g., the word ‘using’ as (use, ing,
DEL-e).

• Substitution (SUB) of the end letter x of root
r with z. E.g., the word ‘carries’ as (carry,
es, SUB-y+i).

• Duplication (DUP) of the end letter x of root
r. E.g., the word ‘stopped’ as (stop, ed,
DUP+p).

Figure 2: Description of transformations

cannot describe the word. Otherwise, it is defined
as follows:

P (r, s, t|w) = P (r)× P (s)× P (t|f(r, s))∑
(r′,s′,t′)∈w P (r′, s′, t′)

This formula is based on the assumption that
roots r and suffixes s are independent. Transfor-
mations, however, are conditioned on a function
f(r, s) defined over the entire corpus. For exam-
ple, the -ed suffix in English deletes any immedi-
ately preceding e in the root. The f function al-
lows these generalizations to be captured as mor-
phological rules rather than individual cases.

Initially, each possible candidate segmentation
is assumed to have equal probability 1/|(r, s, t) ∈
w|. This generates spurious segmentations of
atomic roots with high probability. Subsequent pa-
rameter estimation through paradigms and pruning
removes spurious segmentations to yield a maxi-
mum likelihood segmentation.

(r, s, t|w) = argmax
(r′,s′,t′)

P (r′, s′, t′)

As an additional step, the algorithm has the option
of pre-segmenting compound words. If a word w
contains two individually attested words w1 and
w2, the word is split and both of its components
are evaluated separately. This process is found to
improve overall recall. As a final optional step,
initial P (r) can be weighted by frequency. In
languages which attest bare roots, more frequent
roots are more likely to be valid.

3.1.2 Paradigm Construction
The segmentation step yields a triple (r, s, t) for
each word. Grouping triples by their root yields
a set of suffixes, a paradigm enumerating attested
affixes on the root. For example, the root walk

surfaces with suffixes {-s,-ing,-ed, -er}. Note that
many roots may share the same paradigm. For ex-
ample, stop, and bake share a paradigm set with
walk.

Paradigms are tabulated by the number of times
each occurs in the proposed segmentations. We
define a paradigm’s support as its frequency in this
calculation. We assume that more robustly sup-
ported paradigms are more likely to contain only
valid affixes. Table 2 shows the most common
paradigms discovered for English.

Paradigm Support
(-ed, -ing, -s) 772
(-ed, -ing) 331
(-ed, -er, -ing, -s) 219
(-ly, -ness) 208
(-ed, -ing, -ion, -s) 154
(-ic, -s) 125

Table 2: Frequent English suffix paradigms con-
tain valid affixes

Root Paradigm
ticker (-s, -tape)
piney (-al, -apple, -a, -hill, -hurst,

-ido, -iro, -wood)
corks (-an, -screw, -well)
sidle (-aw, -ed, -ee, -er, -ey, -in,

-ine, -ing, -s)
lantz (-anum, -ra, -ronix, -ry)
nadir (-adze, -la, -ne, -s)
reith (-a, -er, -ian)
bodin (-ce, -es, -etz, -ford, -ly, -ne,

-ng, -ngton)
musee (-euw, -s, -um)
taiyo (-iba, -uan)
bilge (-er, -rami, -s)

Table 3: Ten suffix paradigms only supported by a
single root. These contain many spurious affixes.

3.1.3 Paradigm Pruning
Not all proposed paradigms are real. Some are
the result of segmentation errors. For example, if
closet is segmented as (close, t, NULL), then it will
yield a paradigm {-er, -est, -ed, -ing, -s, -t}. Iden-
tifying such spurious paradigms directs the algo-
rithm towards potentially spurious affixes.

To avoid such spurious paradigms, we perform
pruning. First, paradigms with support ≥ 3
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and at least two members are retained as well-
supported. All other paradigms are considered
suspect. We identify which component affixes
of these paradigms receive the most support from
other paradigms. The score of a set of affixes S is
described as follows. It is the combined frequency
of each member affix across all paradigms.

score(S) =
∑

s∈S
freq(s)

For example, the {-er, -est, -ed, -ing, -s} sub-
set of the spurious closet paradigm has the high-
est possible score of all subsets, and is a well-
supported paradigm in and of itself. Therefore we
can discard -t with reasonable confidence.

The probability P (s) of each suffix is re-
estimated over its attestation all the remaining
paradigms. We then rerun the initial segmentation
step. This time, spurious affixes probabilities have
been penalized, so errors along the lines of (close,
t, NULL) are less likely to reoccur. This improves
algorithm precision by eliminating spurious affix-
ation.

3.2 Experiments and Results
3.2.1 Data and Evaluation
To facilitate comparison between our algorithm
and currently used competitors, we adopt the same
data set used by (Narasimhan et al., 2015) and
(Kurimo et al., 2010), the MorphoChallenge 2010
set for training and the combined MorphoChal-
lenge 2005-2010 for testing. We test against Mor-
fessor, as well as AGMorph (Sirts and Goldwater,
2013), MorphoChain-C (with only word-internal
information), and the full MorphoChain model
which is trained on (word-external) word embed-
dings from English Wikipedia and the BOUN cor-
pus (Sak et al., 2008). MorphoChain-C presents
the best direct comparison to our model since we
do not consider word-external data. Nevertheless,
our model outperforms both implementations.

The output of each algorithm is scored accord-
ing to the MorphoChain metric. Precision, re-
call, and F1 are calculated across segmentation
points. For example, walking segmented as wal
king contains one incorrect segmentation point af-
ter wal and is missing a correct segmentation point
in king. However, walk ing contains a correct seg-
mentation point and no incorrect ones.

First, we report the contribution from each of
our algorithm’s component processes. Table 4

shows the results. Base is only the initial Bayesian
segmentation step. Suff extends the Bayesian
model with a final re-estimation based on suffix
frequencies. Trans implements the above plus seg-
mentation. Comp extends Trans with compound
splitting. Prune implements paradigm pruning as
well, and Freq considers root frequencies in initial
segmentation.

English Turkish
Prec Rec F1 Prec Rec F1

Base 0.414 0.725 0.527 0.525 0.666 0.587
Suff 0.490 0.648 0.558 0.617 0.621 0.619
Tran 0.524 0.757 0.619 0.589 0.726 0.650
Comp 0.504 0.843 0.631 0.581 0.727 0.646
Prun 0.709 0.784 0.744 0.652 0.518 0.577
Freq 0.804 0.764 0.784 0.715 0.467 0.565

Table 4: Contribution of each algorithm compo-
nent

Segmentation on English performs the best
when all optional processes are enforced in the
model. This is not the case for Turkish however,
which achieves its peak performance at Trans.
This discrepancy has to do with the relative avail-
ability of bare roots in the languages. English has
limited affixation, and it can be assumed that many
bare roots will appear in any reasonable English
dataset. This is not the case for Turkish, however,
in which nearly all noun and verb tokens have at
least one affix. Therefore, processes which rely on
the presence of unaffixed bare roots in the corpus
cannot function.

Lang. Model Prec. Recall F1
Morfessor-Base 0.740 0.623 0.677
AGMorph 0.696 0.604 0.647

English MorphChain-C 0.555 0.792 0.653
MorphChain-All 0.807 0.722 0.762
Our model 0.804 0.764 0.784
Morfessor-Base 0.827 0.362 0.504
AGMorph 0.878 0.466 0.609

Turkish MorphChain-C 0.516 0.652 0.576
MorphChain-All 0.743 0.520 0.612
Our model 0.589 0.726 0.650

Table 5: All numbers except for ours are reported
in (Narasimhan et al., 2015). All scoring was per-
formed using the MorphoChain metric. Best re-
sults are reported for English and Turkish.

3.3 Testing on Other Languages
While our segmentation algorithm is unsu-
pervised, scoring its output requires human-
segmented data to compare against. This
presents a challenge when testing the process
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Paradigm Support
(-al) 54
(-ly) 43
(-idad) 32
(-ismo) 29
(-ing, -s) 25
(-er) 23
(-ed) 21
(-ista) 19
(-ly, -s) 15
(-ed, -s) 13
(-er, -ing, -s) 11
(-er, -s) 11
(-ed, -ing) 11

Table 6: Foreign influence among the top 30 most
frequent Tagalog suffix paradigms

on under-documented languages for which seg-
mented wordlists are hard to come by. The
DARPA LORELEI project had originally planned
to produce human-annotated segmentations for a
wide range of languages, but this has not yet come
to fruition. In response, we are developing simple
annotation standards which linguists and knowl-
edgeable native speakers may use to produce seg-
mented wordlists of their own.

We have run segmentation on Navajo, Tagalog,
and Yoruba in additional to the languages reported
above. Unfortunately, because no gold standards
are available, the algorithm’s performance can-
not be assessed quantitatively. Additionally, the
DARPA LORELEI and Wikipedia data which we
tested on contain substantial English (and Spanish
for Tagalog) vocabulary. Table 6 shows the effect
this has on paradigms.

4 Discussion and Conclusion

The success of these unsupervised algorithms at-
tests to what can be accomplished by gleaning in-
formation from small corpora. The vowel har-
mony detector describes harmony systems with
high accuracy at as few as 500 types. The segmen-
tation performs very well, on languages for which
its accuracy could be assessed quantitatively, with
corpora orders of magnitude smaller than what can
be successfully processed by the next best method.
Nevertheless, both algorithms are incomplete.

An obvious next step is to combine the two into
a single pipeline. This is projected to have bene-
fits for both. One inconvenience with the current

iteration of the harmony detector is that it requires
a linguist to provide features for each of the lan-
guage’s vowels if a harmony mapping is desired.
It would be nice for this process to happen auto-
matically instead. And here it is useful to lever-
age morphology. A language with affixal mor-
phology and harmony should present two or more
sets of paradigms which differ according to har-
mony. For example, in Turkish, the plural -lar
occurs in paradigms with other back vowel allo-
morphs while -ler occurs with other front vowel
allomorphs. There should exist a mapping be-
tween morphemes like -lar and -ler which dif-
fer only in their vowels. Combining the evidence
across all of the morphemes will allow us to cre-
ate harmony mappings without explicit reference
to features.

There are improvements to be made in the other
direction as well. Vowel harmony information will
improve segmentation accuracy. As it is, the seg-
mentation algorithm has no way of knowing that
two paradigms which differ only due to harmony
constraints are in fact two sets of phonologically
determined allomorphs. This forces it to spread
sparse evidence over an unnecessarily large num-
ber of paradigms. Understanding harmony will
allow the algorithm to collapse these sets, calcu-
late more accurate support, and therefore improve
overall performance.

Harmony aside, a vital resource for estimating
and improving the performance of the segmen-
tation algorithm is the presence of morphologi-
cally segmented gold standards in a variety of lan-
guages. We have taken up this task and are work-
ing towards annotation conventions for this kind
of work. So far, we are still in the early phases
of the process but have already begun annotation
on Faroese and Korean as test languages. These
are useful languages for testing because they ex-
hibit a variety of affixes and alternations that need
to be accounted for. With an effective annotation
standard, we can also proceed to develop a new
scoring metric for segmentation. It will address
concerns raised by the existing MorphoChallenge
metric (Kurimo et al., 2007) due to the lack of a
unified annotation standard.

Finally, we plan to extend the distributional ap-
proach to vowel harmony to other typological pat-
terns. We are developing models to detect whether
a given language exhibits stem alternations, tends
to be agglutinative, has common prefixes, infixes,
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and/or suffixes, shows reduplication, etc. As with
vowel harmony, these will aid linguists seeking
to describe the grammars of undocumented lan-
guages. Additionally, they will prove useful as in-
puts to the segmentation algorithm.
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