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Abstract

Global features have proven effective in a
wide range of structured prediction problems
but come with high inference costs. Imita-
tion learning is a common method for train-
ing models when exact inference isn’t feasi-
ble. We study imitation learning for Seman-
tic Role Labeling (SRL) and analyze the ef-
fectiveness of the Violation Fixing Perceptron
(VFP) (Huang et al., 2012) and Locally Opti-
mal Learning to Search (LOLS) (Chang et al.,
2015) frameworks with respect to SRL global
features. We describe problems in applying
each framework to SRL and evaluate the ef-
fectiveness of some solutions. We also show
that action ordering, including easy first in-
ference, has a large impact on the quality of
greedy global models.

1 Introduction

In structured prediction problems, global features
express dependencies between related pieces of a
label and make inference non-trivial. In Semantic
Role Labeling (SRL) (Gildea and Jurafsky, 2002),
global features and constraints have been studied ex-
tensively (Punyakanok et al., 2004; Toutanova et al.,
2008; Tackstrom et al., 2015) inter alia. SRL has
many phenomenon that relate labels such as syn-
tactic control, role mutual exclusion, and structural
constraints like span overlap.

Previous work on inference for models with
global features has studied a variety of method in-
cluding dynamic programming, reranking, and ILP
solvers. Greedy search and beam search are rel-
atively understudied areas due to the difficulty in
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training models which perform well with the weak
guarantees provided by greedy search. The Viola-
tion Fixing Perceptron (VFP) framework (Huang et
al., 2012) is a notable exception which has been used
to great effect in a range of structured problems.
Learning to Search (L2S) (Daumé III and Marcu,
2005; Chang et al., 2015) is another line of work for
training greedy models with no assumptions about
features. These training methods are appealing be-
cause they decouple the definition of (global) fea-
tures from the (exact) inference and training proce-
dures. This allows easier specification of models
(features not algorithms) and the ability to use in-
ference methods which scale with the difficulty of
the problem rather than the type of features used.

In this work, we study VFP and L2S methods for
training greedy global SRL models. We find that
both methods are far from ideal. VFP is inconsistent
and often doesn’t perform better than unstructured
perceptron training. L2S leads to models which
under-predict arguments and do not perform as well
as pipeline training. We describe the causes of these
problems and offer some solutions.

Finally, we study the effect of the transition sys-
tem on the usefulness of global features. We find
that the order that actions are performed in can be
as important as the training method, leading to bet-
ter models with the same features and computational
complexity.

2 Problem Formulation

Semantic role labeling (Gildea and Jurafsky, 2002)
(SRL) is the task of locating and labeling (with
roles) the semantic arguments to predicates. Adding
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a step, frame semantic parsing (Das et al., 2010)
(FSP), seeks to first disambiguate predicates by la-
beling them with a frame before performing SRL.
Semantic roles abstract over grammatical function
and provide information about particular arguments
relation to an event, state, or fact. SRL has been
shown to be helpful in a variety of NLP tasks in-
cluding information extraction, question answering,
and coreference resolution.

Let x refer to a sentence and its POS tags and de-
pendency parse. For this work, we are given x and a
vector of predicate locations t = [t1, ta, ...t,|, where
each t; is a span, most often representing a single
verb like “love” in the sentence “John loves Mary”.

SRL and FSP are defined with respect to a schema
which provides a set of frames and roles which will
serve as labels for predicates and arguments. We
consider two schemas, Propbank (Kingsbury and
Palmer, 2002) and FrameNet (Fillmore, 1982; Baker
et al., 1998). Propbank frames concern different
senses of a lexical unit (a lemma and POS tag), so
the correct frame for “love” in the case above is
the frame love—v—-1, as opposed to love-v-2,
which is only used in modal cases like “I would love
to go on vacation”. In the FrameNet schema, frames
are coarser grain situations which may have many
lexical units which map to them. In this case frame
would be Experiencer_focus which could also
be evoked by the adore.v or despise.v lexical units.
These frames will constitute another vector f =
[f1, f2, ... fn] oOf frames for each predicate in ¢.

Once ¢t and f are known, the schema defines a
function mapping a frame to a set of roles K (f;)
which each frame must have filled explicitly (by
some mention span in the sentence) or implicitly
(by some other discourse entity not directly men-
tioned in the sentence). For the latter case we say
that an unfilled role is filled by a special dummy
span called (). For the former case, we could in
principle predict any span within the sentence, but
to make systems faster and more accurate, a prun-
ing step is often used which picks out only the
spans which are plausible arguments to a particular
predicate conditioned on a syntactic parse (Xue and
Palmer, 2004). We call this set S(¢;)! and it always

"Extensions like the one described in Tiackstrom et al.
(2015) consider the role during the pruning step, but we gloss
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includes (). SRL is the task of predicting a matrix
k = {kﬁij 11 € [177,],] € K(fl), kij S S(tz)}
where £;; is the location of the 4 role for frame f;
evoked by the predicate at ¢;. For the rest of this pa-
per, we will concern ourselves with the FSP task of
predicting both f and k.

Transition System A transition system provides a
way to break down an assignment to ( f, k) into a se-
quence of actions. The transition systems we use in
this work all use the trivial definition that an action
is a variable index and value (i.e. an assignment).
A state is comprised of a sequence of actions and
constitutes a partial assignment. A state is written
st = lag, a1, ...az—1).

Transition systems in this work vary by their or-
dering over variable indices to fill in.

Other orders will be discussed further in §7, but
for now our transition system will predict frames
first, in left-to-right sentence order, followed by
roles for each frame (in the same order). The roles
for a given frame are ordered by how many times
they were instantiated in the training and dev data.

3 Global Features

Global features are important for a couple reasons.
First, a variety of insights and statistical regulari-
ties from previous work (Punyakanok et al., 2004;
Toutanova et al., 2008; Tackstrom et al., 2015) can
be described using global features on states and ac-
tions. Our definitions will not be fully equivalent to
the formulation in previous work, but will draw on
the same set of information. Second, global features
are by their nature very expressive, and using ap-
proximate inference, they will serve as a stress test
for various imitation learning methods. In this sec-
tion we will list our global features and their moti-
vations.

numArgs is a global feature template which
counts how many arguments a given predicate has
realized in a sentence. This is perhaps the simplest
type of information which is expressable in a global
model but not a local one. This is useful because
it serves as a dynamic or contingent intercept. Nor-
mally an argument is predicted if its score exceeds
0 (or the score of the action corresponding (), but

over this detail in our notation for simplicity.



with this global feature that threshold also depends
on how many arguments have already been labeled.

The remaining global features are pairwise fea-
tures, meaning they can be expressed as templates
of the form h(a;,a;) where a; is any action in the
history s; and a; is the current action to be scored.

roleCooc is a feature template which expresses
which roles co-occur with each other in a predi-
cate argument structure. There are some hard role
co-occurrence constraints in the annotation guide-
lines for both Propbank and FrameNet which this
feature aims to learn. For Propbank, continuation
and reference roles may not appear without their
base counterpart. FrameNet does not have this
distinction between base, continuation, and refer-
ence roles, but instead has some mutual exclusion
relationships between frame elements (roles) such
as the Entities, Entity_1, and Entity_2
roles for the Similarity frame. Entity_1
and Entity_2 require each other’s realization and
both are mutually exclusive with the Entities
role. These roles exist so that there is a sen-
sible way to annotate sentences like “[The two
painters|gnriries were [alike]simitaricy” as well
as “[Our economy|gntity 1 1S [like]simitaricy [a
healthy plant|gnicy 2”7

If R(a¢) is a function which returns the role of an
action a; (assuming a; assigns a value in k), then
the pairwise definition of this feature is h(a;, at) =
(R(ay), R(ar)).

argLoc is a feature template which describes the
linear relationship between argument spans. This
relationship pos(sy, $2) is the all-pairs relationship
between the starts and end indices of the two spans,
where two indices are said to be either “left”, “left
and bordering”, “equal”, “right and bordering”, or
“right”. If E(a;) is a function which returns the
span of an action a; (assuming a; assigns a value
in k), then h(a;, a;) = pos(E(a;), E(at)) This can
encode overlap, nesting, or boundary relationships
between argument spans.

roleCoocArgLoc is the pointwise product of
roleCooc and argLoc. This feature can capture
regularities like “a continuation role is to the non-
bordering left of the base role” which depend on in-
formation from both argLoc and roleCooc.

Finally full refers to all templates together.
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Refinements We designed the features in a way
as to be overly general. For example, consider
numArgs and its effects for various frames. A
value like 4 may be very unlikely for a frame like
see-v-3 which was instantiated with exactly one
argument in each of the 24 times it appeared in Prop-
bank. But, a value of 4 is below average for a frame
like afford-v—-1 which was observed 43 times
with an average of 4.2 realized arguments.

While numArgs seems like it should de-
pend on the frame, there are other -cases

like the FrameNet role exclusion and re-
quires relationships which should hold re-
gardless of frame. For example, the frames
Amalgamation, Becoming_separated,

Cause_to_amalgamate, and Separating
all have the same pattern concerning the Parts,
Part_1, and Part_2 roles. These frames were
seen only 2, 2, 9, and 12 times in training data
respectively, so generalizing this rule by pooling
training data is crucial.

To choose the right granularity for the global fea-
ture templates, we consider multiple refinements. A
refinement of a template is the result of taking the
pointwise product of the template with one or two
label features templates. The label feature templates
we consider are constant (a backoff feature), frame,
role, and frame-role. For each global feature tem-
plate, we try each refinement and use the one with
the best dev set F-measure when trained with LOLS.

4 Experimental Design

We measure performance on two data sets, the
Propbank annotations (Kingsbury and Palmer, 2002)
available in the Ontonotes 5.0 corpus (Pradhan et al.,
2012) and FrameNet 1.5 (Baker et al., 1998).

For all learning methods we average the weights
across all iterations of training (Freund and
Schapire, 1999). This is explicitly called for as a
part of LOLS and is also a standard trick used with
the structured perceptron.

We use the local features described in Hermann
et al. (2014) for argument and frame identification,
but we did not use their feature embedding method
since it performed about as well as the sparse feature
method and was slower. We use the best refinements
using the process described in §3.



We are studying the fully greedy case of infer-
ence in this work (i.e. a beam size of 1). As far
as we know, efficient greedy and easy first inference
are mutually exclusive goals, and we focus on the
latter. Our implementation uses a heap to store ac-
tions in a manner similar to Goldberg and Elhadad
(2010). This way actions can be generated once, in-
stead of once per transition, and global features per-
form sparse updates to the actions on the heap. For
beam search, states cannot share a heap (since their
histories, and thus global features, would be differ-
ent), so actions generation, global features, and ac-
tion sorting would have to occur at every transition.

All performance values shown here are measured
for the task of frame semantic parsing (FSP), mean-
ing that we measure precision, recall, and F-measure
where every index in f and k are considered pre-
dictions. Predictions in k are not correct unless the
frame that they correspond to are also correct. We
show two scenarios: gold f refers to the case where
the frame labels are given and auto f refers to when
they are predicted by the model. All figures and
plots are on dev set performance.

Unless specified, we set the loop order over roles
by how frequently they occur in the dev data, which
will be described as freq in §7.

5 Violation Fixing Perceptron

Violation Fixing Perceptron (VFP) (Huang et al.,
2012) is a family of perceptron updates which are in-
tended to train machines which operate using beam
search. The beam holds states, and at every step an
action is appended to each state to reach a successor
state which is put on the next beam.

In VFP, the core concept is a violation. A tu-
ple (z,y, z), where z is a sentence as defined ear-
lier and y is a string of correct actions (having zero
cost/loss), and z is a string of predicted actions, is a
violation if 6 - f(x,z) > 6 - f(x,y) and z is “incor-
rect”. There are multiple ways of defining incorrect
which yield different algorithms in the VFP family.
In all variants y and z must be the same length and
if there is more than one incorrect (x,y, z), the one
with the largest difference in score is chosen. In the
early update variant, first described by Collins and
Roark (2004), z is incorrect if it differs from y only
in the last position. In max violation z is incorrect if
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Gold f Auto f
Global Feature PB Al | FN Al | PB A/ | FN A/
numArgs -0.4 -0.1 -1.3 +0.3
roleCooc -0.4 -0.3 -0.1 +0.6
argLoc -1.2 -0.4 -1.9 +0.2
roleCoocArgLoc -2.0 -0.2 0.0 +0.2
full -1.5 -0.7 -2.0 +0.2

Figure 1: Global model advantage using max viola-
tion VFP and freq.

it differs any position. In latest update z is incorrect
if it differs in the last position (but can include other
differences, unlike early update).

Results In figure 1 we plot the difference in per-
formance between a model which includes a particu-
lar global feature type and the baseline model which
only uses local features. Almost across the board
the values are negative, indicating that the global
model performs worse, even though the local model
is nested within the global model (i.e. there exists
a parameter setting in the global model such that it
is equivalent to the local model). This result is at
odds with previous results which have successfully
used max violation perceptron to train models with
non-local features. We hypothesize that the reason
performance goes down is due to the expressivity of
our global features and the inconsistency problem
described in Chang et al. (2015).

Briefly, the inconsistency comes from the fact that
the weights derived from VFP training simultane-
ously, and ambiguously, reflect what to do condi-
tioned on being in a state arrived at by the oracle or
the predictor. These two distributions over states are
different if the predictor cannot perfectly mimic the
oracle (the beam separability assumption). At test
time, all of the states will be reached from the pre-
dictor’s actions, so the contribution of what to do by
possibly incorrectly assuming the state/history was
created by the oracle is misleading. This can be very
bad when the global features are expressive and the
predictor makes a significant number of mistakes.

Inconsistency To validate that inconsistency is re-
sponsible for this poor performance, we setup an-
other experiment where we artificially make the task
easier. If the model is more accurate, then the pre-
dictor will necessarily be closer to the oracle, mean-
ing that the inconsistency will shrink towards 0. To



Gold f Auto f
Global Feature PB Al | FN Al | PB A/ | FN A/
numArgs 0.0 0.0 +0.2 +0.7
roleCooc -0.6 -0.3 -0.1 +0.5
argLoc -0.4 +0.1 -0.1 -0.4
roleCoocArgLoc +0.4 +0.4 +0.1 -0.1
full +0.6 +0.4 -0.1 +0.3

Figure 2: Global model advantage using LOLS and
freq.
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Figure 3: Benefit of roleCooc global features as a
function of inconsistency in the model.

make the task easier, we added a binary feature to
the local features which was either 1 or -1 based on
whether the action has cost 0. We flip the sign of
this feature with probability 1 — .. A model with
a = 1 should get perfect accuracy and o = % offers
no extra information.

Figure 3 shows the difference between a global
model using roleCooc and a local model (both re-
ceiving the “cheating” feature) for various values of
a. This experiment used FrameNet data and max
violation VFP. The local model does better than the
global model (below the red line) where the incon-
sistency is high (o < 0.75) and worse where it is
low. Though the plot is noisy, when o« = 1 the two
models have the same performance.

This result explains why max violation training
has been shown to be successful in tasks like POS
tagging and shift-reduce parsing, where the accu-
racy of the model is in the 90s. VFP with global
features improves over local models on these tasks
because the inconsistency is small, and the benefit
from global features is great.
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6 Learning to Search

Learning to search (L2S) is a family of imitation
learning algorithms including early update percep-
tron (Collins and Roark, 2004), LaSO (Daumé III
and Marcu, 2005), SEARN (Daumé III et al., 2009),
DAgger (Ross et al., 2011), and LOLS (Chang et
al., 2015). The unifying feature of these algorithms
is that they all are a reduction of training transition
based models to a cost-sensitive classification prob-
lem over (s¢, a;) pairs.

Chang et al. (2015) showed that when the refer-
ence (oracle) policy is optimal, which we can guar-
antee in our case,” the cost estimates may be derived
from reference roll-outs, which can be easily com-
puted in constant time. Given reference cost esti-
mates, the only way to distinguish within this fam-
ily is with respect to the roll-in distribution. The
LOLS algorithm prescribes using the current pol-
icy for rolling-in, which does not always work well,
which we will return to in §8.2.

Results In figure 2 we plot global model advan-
tage using the freq action orderings and LOLS train-
ing. There are mixed results; some global features
are actually improving over the local model (some-
thing which was not achieved by VFP training). We
will return to why this is in §8.2, but first we will
analyze an orthogonal aspect of the model.

7 Action Ordering

So far our transition system considers actions sorted
by frequency of a role, which may not be optimal.
Here we measure the effect of other orderings.

Easy First The first motivation is related to easy
first inference (Shen et al., 2007; Raghunathan et
al., 2010) inter alia. The idea is that the ‘“easi-
est” decisions should be made first because there
is less risk that they are wrong and may be more
safely conditioned on in making future decisions
than any other action. To implement this heuristic,
we define two variants of the easyfirst meta action
ordering. easyfirst-dynamic chooses the variable
index corresponding to the highest scoring action.
easyfirst-static chooses variable indices sorted by

Every action fills in a label and we can say whether it is
right or wrong, thus the reference policy is the one which always
fills in a correct label.



the dev set F-measure of the local model (most ac-
curate visited first).?

Baselines The freq ordering sorts actions by how
frequently their role appears in the training set, most
frequent first. This be seen as a very naive version
of easyfirst, but with the nice property that it is in-
dependent of the local model.

From a model (estimator) bias and variance point
of view, we should expect dynamic orderings to have
higher variance (whether they have lower bias is a
somewhat related but empirical question). In our
case, we could track this variance by proxy and look
at the number of nonzero global features, as is com-
mon in the sparsity-inducing regularization litera-
ture. Consider training a model with the roleCooc
global feature on single example, a frame with K
roles. With easyfirst-dynamic, there are K2 pos-
sible roleCooc nonzero features, whereas with
easyfirst-static and freq the maximum is w
since the order is fixed at training time.

To see if increased variance is responsible for po-
tential differences in the easyfirst variants, we con-
struct a parallel situation with random orderings:
rand-static and rand-dynamic. The first chooses
a random ordering over roles which is used through-
out training and testing, and the second chooses a
random ordering every time inference is run.

Results In figure 4 we have plotted models trained
with each global feature type and each action order-
ing. The first thing to notice is the variance across
different action orderings is generally larger than the
variance across different global features (for the best
action ordering). This indicates that action ordering
is important, perhaps more so than the global fea-
tures used. This is an important result considering
that most previous work on transition based infer-
ence has not addressed automatic ordering.

Next, there is little consistency between Propbank
and FrameNet. We believe the major reason for
this is the amount of training data (Propbank has
20.7 times more instances and 1.58 more instances
per type), causing overall accuracy to be higher and
easyfirst inference to work better.

Looking at the number of non-zero global fea-

3F-measure is computed from MAP estimates of precision
and recall under a 3(1, %) prior, slightly rewarding frequency.
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tures, we see virtually no correlation between that
measure of capacity and performance, on either data
set. While this metric is often used in static (local)
models to describe capacity, we believe this metric
is less meaningful with global features.

Note that rand-dynamic works well on
FrameNet, only losing to a non-random order-
ing once (easyfirst-static on argLoc). Given
the overall worse performance of our model on
FrameNet, and the dearth of training data, we
hypothesize that rand-dynamic is actually pro-
viding a regularizing effect similar to dropout
(Hinton et al., 2012). Since both rand-static and
rand-dynamic are random, they offer no real
signal they could differ on (bias is the same),
and using the standard bias-variance argument we
should expect rand-static to do no worse since
rand-dynamic introduces additional variance into
the model estimate. Our only explanation for the
results is that rand-static is overfitting in a way
which rand-dynamic isn’t capable of.

Consistent with overfitting, we see that on both
data sets easyfirst-static usually does as well or bet-
ter than easyfirst-dynamic. In the opposite fashion
of the random orderings, here the dynamic version
is more expressive and likely to overfit.

8 Error Analysis

Neither VFP nor LOLS worked for our transition
transition systems out of the box. Here we discuss
problems encountered with each algorithm and of-
fer some solutions for fixing them. We do not claim
these solutions are robust, but hopefully offer insight
into potential difficulties in training models like this.

8.1 Violation Fixing Perceptron

The max violation version of VFP dictates that
the violation to be corrected is the solution to
argmin(x,yyz)EC’ZGUZ,{BZ,[O}} Wy -+ A(I)(f, Y, Z) Where
BB; is the beam holding actions at step i** and C' is
the beam confusion set as defined in (Huang et al.,
2012). With only local features, ® and A® decom-
pose into a sum over actions and and the argmin
can be pushed inside that sum. This is equivalent to
an (unstructured) perceptron update for every step in
the trajectory. When global features are added, the
update to the local features ceases to match the un-
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Figure 4: Model performance (y) by log number of non-zero global features (x). Propbank (left) and
FrameNet (right). Global feature type by color: numArgs, roleCooc, argl.oc, arglocRoleCooc, and
easyfirst is triangle, freq is square, rand is circle. Filled in means dynamic, hollow is static.

structured perceptron update and both global and lo-
cal features are only updated with respect to a prefix
of the oracle and predicted trajectory.

This prefix update may mean that mistakes at the
end of the trajectory will not be corrected until the
mistakes at the beginning are fixed.* Skipping train-
ing data puts global models at a disadvantage over
local ones, and we attribute the poor performance of
the global models to this issue.

This problem was one of the motivations of max
violation over the early update strategy introduced
by Collins and Roark (2004). Huang et al. (2012)
described an update called “latest update” which
chooses the longest prefix which was still a viola-
tor, presumably to address the problem of skipping
training data. While this may help, it is still possible
to construct examples where a classification update
would be made but a “latest update” would not.

For example, let s(y;) = w - ¢(x,y;) and
S(y[lz]) = w - ¢($, y[l:i])’ such that w -
Aq)(xvy[lzi]vz[l:i]) = S(y[lzi]) - 3(2[1@])- Assume
local scores s(y;) are derived from one-hot vectors
indexed by (z yl) Assume a global model with the
form: s(y(1.4) = Dpejw - f(yk,y5) + 225
Take a sequence of binary decisions over the alpha—
bet {a, b} with mistakes at indices ¢ and j such that

“This is the intended behavior under the beam separability
assumption, but this may lead to very poor performance in gen-
eral.
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1 < j. Assume greedy search.

Yi = a,Yj :bvzi:bazj:a

w- f(bya) = -3 w-f(x y) =0V(x,y) # (b,a)
s(yi) = 0,s(y;) =
s(y 111)—0 s(y )
s(zi) = 1,8(25) =
s(za) = 1, s(2n )71+1+ 3=-1
(Y1) > s(z [m]) & AD(z, Y1), 2[1.47) <0

(T, Y1515 Z[1;j]) is in the confusion set, but is not a
violator, even though y; # z;, and the classification
update would change s(y;) and s(z;).

Both max violation and latest update would
choose to update on (z, y[1.4], 2[1:4]) in hopes of fix-
ing it before moving on to the mistake at j. This
happens consistently in our experiments (on the
FrameNet data with roleCooc, by the end of train-
ing more than 10% of violators contain a mistake in
the suffix not chosen by max violation).

Results In figure 5 we show the performance of
max violation and latest update variants of VFP
along with an augmentation (+CLASS) intended to
fix the issue of missing suffix mistakes. Global
models were trained with the roleCooc feature
template and easyfirst-dynamic action ordering.
+CLASS adds an unstructured perceptron update for
every index in the trajectory. This modification al-
ways helps on FrameNet, leading to global mod-
els which outperform local models, but consistently
hurts on Propbank. Remember that all of these
deltas are measured against a local only model,



Gold f Auto f
Training PB Al | FN A/ | PB A/ | FN A(
max violation -3.5 -0.9 -1.3 -0.4
latest update -1.4 -0.7 -1.4 -0.3
max violation +CLASS -3.0 +1.8 2.2 +2.4
latest update +CLASS -2.4 +1.2 2.4 +2.4
Figure 5: Global model advantage using

roleCooc and easyfirst-dynamic across VFP
variations and +CLASS.

which is a pure CLASS update, so you can think
of the +CLASS variants as a linear interpolation be-
tween a global and local objective.

8.2 LOLS

LOLS performs a roll-in with the current policy.
This causes many updates which are derived from
mistakes during frame identification. Once the
wrong frame is predicted, in argument identifica-
tion the model’s cost incentives flip towards trying
to predict () for all roles so as not to incur false
positives. The roles in FrameNet are defined based
on the frame’ and in Propbank they are not consis-
tent across frames.® This is arguably a pathological
property of a transition system: action costs strongly
depend on state.

Using LOLS (model roll-in), there is a strong bias
towards choosing () for all roles, leading to high pre-
cision, low recall, and overall sub-optimal models.
We found that when training the argument identi-
fication parameters of the model it was better to
perform a hybrid model/oracle roll-in whereby the
frame identification actions were chosen by the ora-
cle. This may not be the fault of LOLS, but the of
Hamming loss for action costs, which is a bad sur-
rogate for F-measure.

Another important component of LOLs is the
choice of cost in the cost-sensitive classification re-
duction. We found that defining costs based on the
Hamming loss of an action performed very poorly.
We found much better results with the multiclass
hinge encoding described in Lee et al. (2004). In
figure 6 we show performance with various choices
of roll-in and cost definitions. The best LOLS global

>If you label a span as the Cognizer role for the frame Opin-
ion and that span was the Cognizer role for the Judgment frame,
then the label is wrong.

Swith the exception of ARGO and ARG1 which typically cor-
respond to proto-Agent and proto-Patient roles.
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Gold f Auto f
Roll-in  Cost PB Al | FNA¢ | PB Al | FN A¢
model Hamming | -24.5 -15.5 -10.1 -4.9
model  Hinge -1.7 -1.1 -0.4 +0.2
hybrid Hamming | -22.1 -12.9 -8.9 -1.0
hybrid  Hinge +0.8 | +1.0| +09| +1.1
Figure 6: Global model advantage using

roleCooc and easyfirst-dynamic across LOLS
variations: roll-in and cost function.

models consistently improve over local models.

8.3 Absolute Performance

Throughout the paper we have listed relative per-
formance. Our absolute performance is 73.0 for
Propbank (dev) and 55.3 for FrameNet (dev). This
falls significantly short of the work of Zhou and Xu
(2015) at 81.1 (PB dev), FitzGerald et al. (2015) at
79.2 (PB dev), and 72.0 (FN). Those works used
non-linear neural models with multi-task distributed
representations, which are not comparable to our re-
sults. However, the models of Pradhan et al. (2013)
at 77.5 (PB test) and Das et al. (2012) at 64.6 (FN
test) are roughly comparable, and the performance
gap is still significant. While our efforts do not ad-
vance the state of the art in SRL, we hope that they
are enlightening with respect to the application of
various imitation learning methods.

9 Related Work

Berant and Liang (2015) used imitation learning for
learning a semantic parser. Choi and Palmer (2011)
explored transition based SRL and proposed some
global features (e.g. copy ARGO from controlling
predicates) but did not consider action (re-)ordering
or imitation learning. Wiseman and Rush (2016) de-
rive a learning to search framework which is related
to LaSO (Daumé III and Marcu, 2005). Similar to
our hybrid roll-in, they “reset” the beam as soon as
the oracle prefix falls off.

10 Conclusion

In this work we study the use of imitation learning
for greedy global models for SRL. We analyze the
Violation Fixing Perceptron (VFP) and Locally Op-
timal Learning to Search (LOLS) frameworks, ex-
plaining how they fall short and offer some methods



for improving them. We also study the effect of in-
ference order on learning and the utility of global
features, finding that it is a very important factor of
overall performance in greedy models.
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