
Proceedings of the Second Workshop on Computational Approaches to Code Switching, pages 30–39,
Austin, TX, November 1, 2016. c©2016 Association for Computational Linguistics

Part-of-speech Tagging of Code-mixed Social Media Content: Pipeline,
Stacking and Joint Modelling

Utsab Barman, Joachim Wagner and Jennifer Foster
ADAPT Centre, National Centre for Language Technology

School of Computing, Dublin City University, Dublin, Ireland
{ubarman,jwagner,jfoster}@computing.dcu.ie

Abstract

Multilingual users of social media some-
times use multiple languages during conver-
sation. Mixing multiple languages in content
is known as code-mixing. We annotate a sub-
set of a trilingual code-mixed corpus (Barman
et al., 2014) with part-of-speech (POS) tags.
We investigate two state-of-the-art POS tag-
ging techniques for code-mixed content and
combine the features of the two systems to
build a better POS tagger. Furthermore, we
investigate the use of a joint model which per-
forms language identification (LID) and part-
of-speech (POS) tagging simultaneously.

1 Introduction

Automatic processing of code-mixed social media
content is an emerging topic in NLP (Solorio et
al., 2014; Choudhury et al., 2014). Code-mixing
is a linguistic phenomenon where language switch-
ing occurs at a sentence boundary (inter-sentential),
or within a sentence (intra-sentential) or within a
word (word-level). This phenomenon can be ob-
served among multilingual speakers and in many
languages. Additionally, non-English speakers of-
ten use Roman script to write something in social
media. This is known as Romanisation. The follow-
ing comment taken from a Facebook group of Indian
students is an example of trilingual code-mixed con-
tent:

Original: Yaar tu to, GOD hain. tui JU te
ki korchis? Hail u man!

Translation: Buddy you are GOD. What
are you doing in JU? Hail u man!

Three languages are present in this comment: En-
glish, Hindi (italics) and Bengali (bold). Bengali
and Hindi words are written in romanised forms.
These phenomena (code-mixing and Romanisation)
can occur simultaneously and increase the ambigu-
ity of words. For example, in the previous comment,
‘to’ could be mistaken as an English word but it is
a romanised Hindi word. Moreover, the romanised
form of a native word may vary according to the
user’s preference. In such situations automatic pro-
cessing is challenging.

POS tagging in code-mixed data (Solorio and Liu,
2008; Vyas et al., 2014) is an interesting prob-
lem because of its word-level ambiguity. Tradi-
tional NLP systems trained in one language perform
poorly on such multilingual code-mixed data. In this
paper, we present a data set manually annotated with
part of speech and language1. We implement and
explore two state-of-the-art methods for POS tag-
ging in code-mixed data, i.e. (1) a stacked system
(Solorio and Liu, 2008)2 and (2) a pipeline system
(Vyas et al., 2014). To our knowledge, a compar-
ison between these two POS tagging methods for
code-mixed content, i.e. (1) and (2), has not been
carried out before. In our study we compare these
two POS tagging approaches which is an important
contribution of this paper.

In romanised and code-mixed text, words of dif-
ferent languages may take the same lexical form.
As a result, language and POS ambiguity are in-

1This is a subset of the romanised English-Bengali-Hindi
code-mixed corpus described by Barman et al. (2014).

2In a stacking approach one learner is used to perform a cer-
tain task and the output of this learner is used as features for a
second learner performing the same task (in our case POS tag-
ging).

30



creased. POS labels often depend on the language
in code-mixed content. Thus, modelling the inter-
action between language labels and POS labels may
be useful. Furthermore, joint modelling avoids er-
ror propagation. We compare our joint model for
LID and POS tagging to the stacked model and the
pipeline system. We use Factorial Conditional Ran-
dom Fields (FCRF) (Sutton et al., 2007) as the joint
model in our study.

The rest of the paper is organised as follows: in
Section 2, we discuss related work. In Section 3 we
describe our data for this task. Our experiments are
described in Section 4. Section 5 contains analy-
sis of the results. Finally, we conclude and suggest
ways to extend this work in Section 6.

2 Related Work

POS tagging with code-mixed social media content
is attracting much attention these days (Das, 2016).
Different machine learning solutions are being pro-
posed, e.g. Hidden Markov Models (Sarkar, 2015),
Conditional Random Fields (Sharma and Motlani,
2015), Decision Trees (Jamatia and Das, 2014; Pim-
pale and Patel, 2015) and Support Vector Machines
(SVM) (Solorio and Liu, 2008). Combining mono-
lingual taggers in a pipeline (Vyas et al., 2014) is
also another approach. The POS tagging methods
used in these studies can be divided into the follow-
ing approaches: (i) using a single machine learn-
ing classifier (Sarkar, 2015; Sharma and Motlani,
2015; Jamatia and Das, 2014; Pimpale and Patel,
2015), (ii) stacking (Solorio and Liu, 2008) and (iii)
pipeline architectures (Vyas et al., 2014).

POS tagging with Spanish-English code-mixed
data is first explored by Solorio and Liu (2008).
They use two monolingual POS taggers (Spanish
and English) to extract the lemma, POS tag and POS
confidence scores for each word according to both
taggers. First they investigate heuristic methods.
These methods are based on handcrafted rules and
use the prediction confidence, the predicted tag and
the lemma for a particular word from each POS tag-
ger as well as language information of the word gen-
erated from a LID system to select the tag from one
of the (English or Spanish) POS taggers. Further,
they employ an SVM classifier with the extracted
information as features and achieve higher accuracy

than their heuristic methods.
Vyas et al. (2014) implement a pipeline approach

for POS tagging in English-Hindi code-mixed data.
They divide the text into contiguous maximal word
chunks which are in the same language according
to the language identifier. These chunks are further
processed through normalisation and transliteration
modules. Normalisation is carried out if the chunk
is in English, otherwise transliteration is performed
to convert the non-English romanised chunk to its
Hindi transliterated form. Afterwards, language-
specific POS taggers are applied to predict the POS
labels of the word chunks. They identify that nor-
malisation and transliteration are two challenging
problems in this pipeline approach.

Our inspiration behind the joint modelling of LID
and POS tagging comes from the work of Sutton
et al. (2007). They use Factorial Conditional Ran-
dom Fields (FCRF) to jointly model POS tagging
and noun-phrase chunking. In their work the FCRF
achieves better accuracy than a cascaded CRF ap-
proach. FCRF is also found to be useful in joint la-
belling of sentence boundaries and punctuations (Lu
and Ng, 2010).

3 Data

We use a subset3 of 1,239 code-mixed posts and
comments from the English-Bengali-Hindi corpus (a
trilingual code-mixed corpus of 12K Facebook posts
and comments) of Barman et al. (2014). This cor-
pus contains word-level language annotations. Each
word in the corpus is tagged with one of the fol-
lowing labels: (1) English, (2) Hindi, (3) Bengali,
(4) Mixed, (5) Universal, (6) Named Entity and (7)
Acronym. The label Universal is associated with
symbols, punctuation, numbers, emoticons and uni-
versal expressions (e.g. hahaha and lol).

We manually annotate POS using the universal
POS tag set 4 (Petrov et al., 2012). These annota-
tions were performed by an annotator who is profi-
cient in all three languages of the corpus. As we had
no second annotator proficient in all three languages,

3We are preparing to release the data set. For more informa-
tion please contact the first author.

4An alternative tag set is the one introduced for code-mixed
data by Jamatia and Das (2014). However, we prefer the uni-
versal tag set because of its simplicity, its applicability to many
languages and its popularity within the NLP community.

31



we cannot present the inter-annotator agreement for
the annotations.

The language and POS label distributions for our
data set are shown in Table 1 and 2. In terms of
tokens, Bengali (47.9%) is the majority language.
23.2% tokens are English but the amount of Hindi
tokens is low, only 6.3%. We analyse the ambiguity
of word types in this subset. Our subset contains
7,959 word types, among which only 297 (3.7%)
types are ambiguous according to language labels
and 569 types (7.1%) are ambiguous according to
POS labels.

Label Count
English 6,383
Bengali 13,171
Hindi 1,746
Universal 5,209
Name Entity 712
Acronym 229
Mixed 69

Table 1: Language label distri-

bution.

Label Count
NOUN 8,376
PRT 1,332
VERB 4,422
ADV 754
DET 893
ADP 1,358
CONJ 745
ADJ 1,999
PUNCT 4,321
PRON 2,484
NUM 164
X 671

Table 2: POS label distribu-

tion.

4 Experiments and Results

We divide the experiments into four parts. We im-
plement baselines for POS tagging in Section 4.1.
In Section 4.2 we implement pipeline systems. In
Section 4.3 we present our stacking systems and in
Section 4.4 we present our joint model.

We perform five fold cross-validation with the
data and report average cross-validation accuracy.
We investigate the use of handcrafted features and
features that can be obtained from monolingual POS
taggers (stacking). We perform experiments with
different combinations of these feature sets. The fol-
lowing are the features used in our experiments.

1. Handcrafted Features: Following Barman et
al. (2014), we use prefix and suffix character-
n-grams (n = 1 to 5), presence in dictionaries,
length of the word, capitalisation information

and the previous and the next word as hand-
crafted features.

2. Stacking Features: These features are ob-
tained from the output of a POS tagging sys-
tem. These features are tokens, predicted la-
bels, and prediction confidence of a POS tag-
ging system.

3. Combined Features: This feature set is a
union of the previous two feature sets.

Following Barman et al. (2014) we train an LID
SVM classifier using handcrafted features. Its pre-
dictions are used in the POS tagging experiments
below. The LID classifier achieves 91.52% average
accuracy in 5-fold cross-validation.

4.1 Baseline

This method only uses the code-mixed romanised
data and handcrafted features. We try an linear ker-
nel SVM and a linear chain CRF classifier (see Tab-
ble 3). In terms of average cross-validation accu-
racy, the SVM classifier (85.00% for C = 0.00097)
performs better than the CRF classifier (83.89%) in
optimised settings.

4.2 Pipeline

Following Vyas et al. (2014), we design a pipeline
system. The training data for this method is mono-
lingual non-romanised. First, it uses an LID system
(trained on romanised data) to identify language-
specific chunks. After that it applies monolingual
POS taggers to the relevant language chunks to pro-
duce the output. The component POS taggers are
trained on monolingual non-romanised data.

In this system, code-mixed romanised data passes
through a pipeline of LID, transliteration and POS
tagging modules. For example, for Bengali-English
romanised code-mixed content, the LID module pro-
duces Bengali and English chunks, and the Bengali
chunks are transliterated into Bengali script and are
sent to a Bengali tagger. The English chunks are
sent to an English tagger as they are. The final out-
put combines the results from the individual taggers.
To implement this method we carry out the follow-
ing steps:

32



Figure 1: Pipeline systems: system V1 and V2 (Section 4.2).

1. We perform transliteration based on language
using Google Transliteration5 for Hindi and
Bengali tokens. (Vyas et al. (2014) use an in-
house tool).

2. For the next step of the pipeline, we train mono-
lingual POS taggers for Bengali and Hindi us-
ing the SNLTR Bengali and Hindi corpus6 with
TreeTagger7 (Schmid, 1994). For English we
use the default English model which is avail-
able with the TreeTagger package8. We also
use a lightweight Bengali and Hindi stemmer
(Ganguly et al., 2012) to provide a stemmed
lexicon to TreeTagger during training. We use
these taggers to make predictions on English,
transliterated Bengali and transliterated Hindi
chunks.

The black lines in Figure 1 shows the pipeline of
this method (V1). The three training data sets for the
three POS taggers follow different tag sets, we map
these tags to the universal POS tags after predic-
tion.9 We achieve 71.12% average cross-validation
accuracy with this method (V1) (third row of Table
3).

In method V1, the TreeTagger models are trained
on full monolingual sentences. If language-specific
text fragments are presented to such monolingual
taggers, the taggers may treat these fragments as full

5https://developers.google.com/transliterate
6http://nltr.org/snltr-software/
7http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
8We use the English TreeTagger module to keep our setup

as similar as possible to Solorio and Liu (2008). Other taggers
such as the CMU ARK tagger (Owoputi et al., 2013) could also
be tried.

9We also implement a system where all the tags in the
SNLTR corpus are converted to universal POS tags before train-
ing. This variant does not outperform the current system.

sentences. At the start and at the end of the input,
the prediction of such taggers may become biased to
some specific patterns (e.g. NOUN + PUNCT) that
have been observed frequently as a start and an end
tag sequence of sentences during training. To avoid
this problem we implement a variant (V2) of this
system in which we present full sentences (that may
contain junk transliteration) to each POS tagger. We
perform transliteration as the first component of the
system. We present the transliterated content in Ben-
gali script to the Bengali tagger, original romanised
content to the English tagger and transliterated con-
tent in Hindi script to the Hindi tagger. Finally, we
choose from the outputs of these three taggers based
on the language prediction by the SVM classifier for
the original (romanised) content. The pipeline of
this system (V2) is shown by the dotted lines in Fig-
ure 1. We achieve 71.27% average cross-validation
accuracy in this method (V2) (fourth row of Table
3).

4.3 Stacking
This method uses non-romanised monolingual and
romanised code-mixed data with handcrafted, stack-
ing and combined features. This method follows the
approach of Solorio and Liu (2008) with necessary
adjustments. In this method, romanised code-mixed
content is transliterated blindly in all languages and
is presented to different POS taggers (trained with
non-romanised monolingual data) as in method V2.
The romanised words and the output from the mono-
lingual taggers are used as features to train an SVM
classifier on romanised code-mixed content. To keep
our methodology as similar as possible to Solorio
and Liu (2008) we follow the steps described below:

1. We train a Bengali and a Hindi TreeTagger
(Schmid, 1994) using the SNLTR corpus with

33



Figure 2: Stacked systems: system S1 and S2 (Section 4.3).

default settings as described in Section 4.2.

2. We transliterate each token of a sentence into
Hindi and Bengali irrespective of its language
using Google Transliteration as in system V2.

3. After transliteration we send each transliter-
ated output to the respective TreeTagger, i.e.
we send the original sentence to the English
TreeTagger, Bengali transliterated output to the
Bengali TreeTagger and the Hindi transliterated
output to the Hindi TreeTagger.

After that we follow the stacking approach of
Solorio and Liu (2008). Here, we stack an SVM
classifier on top of the predictions generated by the
TreeTaggers. We train a linear kernel SVM with
stacking features and optimise parameter C in five
fold cross-validation. The black lines in Figure 2
show the pipeline of this system (S1). The average
cross-validation accuracy of this system is shown
in the fifth row of Table 3 – 86.57% . Given the
setup, we further experiment by using the com-
bined features from romanised and transliterated to-
kens and also consider SVM language predictions
as a feature. We observe that combining these fea-
tures boosts the accuracy. After trying combina-
tions of these features the best accuracy (87.59%) is
achieved by adding all features together (S2) (sixth
row of Table 3). The architecture of the system is
shown by the dotted lines in Figure 2.

We also investigate the use of pipeline systems
in stacking. The idea is to use all the predic-
tions from a pipeline system and feed them into
an SVM classifier. The stacked version of V1
(stacked-V1) achieves 85.99% and the stacked ver-
sion of V2 (stacked-V2) achieves 85.83% average
cross-validation accuracy with SVM using com-
bined features. The black lines in Figure 3 show the

pipeline of S3, stacked-V1 and dotted lines show the
pipeline of S4, stacked-V2. These methods do not
outperform our implementation of Solorio and Liu
(2008)’s method S1 or its extended version S2.

4.4 Joint Modelling

To reduce error propagation from the LID module
to POS tagging, we jointly model these two tasks
using a 2-level factorial CRF (FCRF). In a linear-
chain CRF, there is only one input level (x = x1:T )
and one output level (y = y1:T ) (see Figure 4). The
conditional probability in a linear-chain CRF is ex-
pressed by Equation 1:

p(y|x) =
1

z(x)

T∏
t=1

ψt(yt, yt−1, xt) (1)

ψt(yt, yt−1, xt) = exp

K∑
k=1

λkfk(yt, yt−1, xt). (2)

z(x) =
∑

y

T∏
t=1

ψt(yt,l, yt−1,l, xt) (3)

p(y|x) =
1

z(x)

T∏
t=1

L∏
l=1

ψt(yt,l, yt−1,l, xt)

ϕt(yt,l, yt,l+1, xt)
where, yT,L+1 = 1. (4)

where, ψt represents clique10 potential functions
and is expressed by Equation 2. Here,K is the num-
ber of feature functions (fk). The denominator z(x)
is the partition function, which is the sum over all
‘y’s and it is expressed by Equation 3.

10A clique in an undirected graph is formed with two vertices
if there exists an edge connection between them.

34



Figure 3: Pipeline systems in stacking: S3 (stacked-V1) and S4 (stacked-V2).

y1

x1

...

...

yT

xT

Figure 4: Graphical structure of a linear-chain CRF, where

(y1, ..., yT ) represents language or POS labels and (x1, ..., xT )

is the observed sequence (tokens).

A factorial CRF (see Figure 5) combines multiple
linear-chain CRFs, one for each output level. Un-
like linear-chain CRFs, an FCRF deals with a vec-
tor of labels. In our case, the vector contains two
labels, a language label (y1 = y1

1:T ) and a POS la-
bel (y2 = y2

1:T ). The inputs (x = x1:T ) are shared
among these output labels (e.g. y1

1:T and y2
1:T ) and

the output labels also have interconnections (y1
i and

y2
i ∀i = 1, 2, ..., T ). The conditional probability is

expressed by Equation 4, where L is the number of
levels (in our case L = 2), ψt represents transitions
in each level (e.g. y1

1 to y1
2) and ϕt represents con-

temporal connections between two levels (e.g. y1
1 to

y2
1). The denominator z(x) is the partition function.

We implement this FCRF using the GRMM
toolkit (Sutton, 2006). We use three different feature
sets in our experiments. In cross-validation we find
that, using handcrafted features, the average lan-
guage tagging accuracy is 89.37% and average POS
tagging accuracy is 81.77%. Use of stacked fea-
tures gives 90.60% LID accuracy and 85.28% POS
tagging accuracy. Finally, the combined feature set
achieves 92.49% accuracy in LID and 85.64% in
POS tagging (see Table 6 and the last row of Ta-
ble 3).

y2
1

y1
1

x1

...

...

...

y2
T

y1
T

xT

Figure 5: Graphical structure of the 2-Level factorial CRF,

where (y1
1 , ..., y1

T ) represents language labels, (y2
1 , ..., y2

T ) rep-

resents POS labels and (x1, ..., xT ) is the observed sequence

(tokens).

5 Analysis and Discussion

We perform manual error analysis on the first test
split of cross-validation. This split is a collection of
246 posts and comments with 5,044 tokens.

5.1 Effect of LID and Transliteration as
Pre-processing modules

The most frequent error category for the SVM LID
classifier is the confusion of Hindi words as Ben-
gali words. We believe that the reason behind this
is the small number of Hindi tokens in our training
data. Most of these errors occur for tokens which are
lexically identical in Hindi and Bengali, e.g. ‘na’,
‘chup’, ‘sale’ and ‘toh’. All systems are trained with
our SVM language classifier prediction. To quantify
the error propagation from SVM language predic-
tion we repeat the experiments of V1, V2 and S2
with the gold language labels and observe that the
performance of each systems is slightly increased
(Table 5).

We manually evaluate the accuracy of Google’s
transliterations for Bengali and Hindi. For Hindi,

35



Type Systems Acc.

Baseline
SVM 85.00%
CRF 83.89%

Pipeline
V1: Vyas 71.12%
V2: Extn. of V1 71.27%

Stacking

S1: Solorio 86.57%
S2: Extn. of S1 87.59%
S3: Stacked-V1 85.99%
S4: Stacked-V2 85.83%

Joint Model FCRF 85.64%
Table 3: Average cross-validation accuracy of POS tagging sys-

tems.

% of Total Error
Total Gold Pred. V2 S2 FCRF
41 NUM PRT 0.73 0.00 0.00
138 X NOUN 0.57 0.10 0.00
138 X ADJ 0.36 0.00 0.00
421 ADJ NOUN 0.32 0.26 0.29
150 CONJ NOUN 0.26 0.06 0.08
246 ADP NOUN 0.15 0.08 0.12
147 ADV NOUN 0.23 0.15 0.19
843 VERB NOUN 0.26 0.12 0.14
246 ADP PRON 0.09 0.09 0.10

Table 4: Top error categories produced by top three POS tagging

systems.

Systems Gold LID SVM LID
V1 72.09 71.12
V2 72.07 71.27
S2 88.92 87.59

Table 5: POS tagging accuracy of V1, V2 and S2 with gold

language labels and predicted (SVM) language labels.

Features LID Accuracy POS Accuracy
Handcrafted 89.37% 81.77%
Stacking 90.60% 85.28%
Combined 92.49% 85.64%

Table 6: Performance of FCRF with handcrafted, stacking and

combined feature set. The detail of these features are described

in Section 4.

transliteration accuracy is 82.63% and for Bengali
it is 86.71%. Most of the transliteration errors oc-
curs for those tokens which (i) have a single char-
acter (e.g. ‘k’, ‘j’, ‘r’), (ii) have digits (e.g. ‘2mi’,
‘2make’, ‘as6e’) and (iii) have shortened spellings
(e.g. ‘amr’, ‘tmr’, ‘hygche’). Our inspection of
transliteration errors reveals that the transliteration
accuracy depends on the normalisation of romanised
tokens.

5.2 Statistical Significance Testing
For statistical significance testing we use two-sided
bootstrap re-sampling (Efron, 1979) by implement-
ing the pseudo-code of Graham et al. (2014). We
find that the small improvement of V2 over V1 is
statistically significant (p = 0.0313). However,
the 0.93% improvement of S1 over system FCRF is
not. Among other systems, we find that FCRFs and

SVMs are significantly better than the monolingual
tagger combinations (V1 and V2).

5.3 Stacked vs Pipeline Systems

A reason for the poor accuracy of V1 and V2 is the
difference between training and test data. The Tree-
Taggers are trained on monolingual non-romanised
formal content while the test data is romanised code-
mixed social media content. Secondly, error propa-
gation through transliteration and LID also have a
role to play. We find that the accuracy of Bengali
transliteration is 86.71% and for Hindi it is 82.63%.
This can be a reason for the poor performance of
the Bengali and the Hindi TreeTagger. Furthermore,
Table 5 shows that errors introduced by automatic
LID cause an absolute loss of accuracy of 0.97% for
V1 and 0.80% for V2. The accuracy of these sys-
tems improves (12.98% for V1 and 12.97% for V2)
when we engage these systems in stacking using in-
domain training data (see stacked-V1 and stacked-
V2 in Table 3). We find that choosing the tagger(s)
based on LID does not help in stacking approaches
(e.g. stacked-V1 and stacked-V2) but using all tag-
gers to generate features for the stacked classifier re-
sults in higher accuracy (e.g. S1 and S2). We find
that the stacked system S2 outperforms other POS
tagging systems in our experiments (see Table 3).

5.4 Effect of Joint Modelling

The accuracy of POS tagging in our joint modelling
approach using romanised code-mixed data is higher
than monolingual tagger combinations V1 and V2,
but it is outperformed by S2 and other stacking ap-

36



−3 −2 −1 0 1 2 3
60

65

70

75

80

85

90

distance from code-mixed point in tokens

ac
cu

ra
cy

V2 S2 FCRF

Figure 6: POS accuracy at code-mixed points and surround-

ings. The analysis is based on the first test split of cross-

validation.

proaches. Table 6 shows the performance of FCRF
with different feature sets. We find that combining
handcrafted and stacking features achieves highest
accuracy for both LID and POS tagging. In cross-
validation FCRF with the combined feature set out-
performs our SVM language classifier and achieves
a reasonable cross-validation POS tagging accuracy
of 85.64%, which is 2.05% less than the best stack-
ing approach S2.

5.5 Monolingual vs Code-mixed Sentences

We choose the top POS tagging systems of each
kind (V2, S2 and FCRF) and analyse the results in
more detail on the first test split of cross-validation.
First we test the accuracy on code-mixed sentences
and on monolingual sentences. The results are de-
picted in Figure 7. V2 achieves 70.49% accuracy on
code-mixed sentences and 72.20% on monolingual
sentences. S2 achieves 83.42% on code-mixed sen-
tences and 86.23% on the monolingual sentences.
FCRF achieves 81.78% in code-mixed and 84.58%
on monolingual sentences. All these systems per-
form better for monolingual sentences than their per-
formance in code-mixed sentence. This result sup-
ports the hypothesis that performing POS tagging is
harder on code-mixed sentences than it is on mono-
lingual sentences.

5.6 Known and Unknown Words

Figure 7 also shows the performance of each sys-
tem for known and unknown words based on the
first training fold of romanised code-mixed data.

All systems perform better for known words than
for unknown words, as expected. We find that S2
and FCRF perform very closely for unknown words.
For known words, S2 achieves 2.82% better accu-
racy than FCRF. The known-unknown analysis for
pipeline system, e.g. V2, differs from the stack-
ing (S2) and the FCRF-based methods. All pipeline
systems are trained on non-romanised monolingual
data (SNLTR Bengali and Hindi corpus). On the
other hand, stacking and FCRF based systems are
trained on romanised code-mixed data. Hence, for
V2, we compare tokens of the test split with the
tokens of the SNLTR Bengali and Hindi corpus to
complete the analysis. We find that 52% of test to-
kens (Bengali and Hindi) are present in the monolin-
gual training data, these are known words to the sys-
tems. V2 achieves 78.30% accuracy for the known
Bengali and Hindi words and 43.80% for the un-
known Bengali and Hindi words. As we use the de-
fault English model (distributed with the TreeTagger
package) and not an English corpus, we do not per-
form this analysis for English words for V2.

5.7 Code-mixing Points

We also observe that the POS tagger accuracy de-
pends on the distance to the code-mixed points. We
consider a token as a code-mixed point (token-0) if
the language of the token has been changed com-
pared to the language of the previous token. Figure 6
shows the result of our analysis, where +1 means one
token to right of a code-mixed point and -1 means
one token to the left. It can be seen that all tested
methods perform poorly at code-mixed points. Per-
formance of these systems increases by the distance
to code-mixed points. Among these systems, the
ranking is independent of the distance to the code-
mixed point.

5.8 Error Categories

The top error categories produced by different sys-
tems are shown in Table 4. The most common error
pattern produced by all three systems (see fourth row
of Table 4) is ADJ-NOUN, i.e. English adjectives
that are classified as NOUN. The number of these er-
rors decreases with the better performing models, as
expected. We observe that most of the chat-specific
tokens (e.g. emoticons) are misclassified by V2.
This system is trained with formal content. There-

37



Code-Mixed Monolingual Known Unknown
40

60

80

100

A
cc

ur
ac

y(
%

)

V2 S2 FCRF

Figure 7: Some evaluation results of POS tagging. The analysis

is based on the first test split of cross-validation.

fore, these tokens are misclassified as noun and ad-
jectives by V2. These errors are rectified in S2 and
FCRF. Other common error categories produced by
the three systems are ADV-NOUN (adverb predicted
as noun), VERB-NOUN (verb predicted as noun),
CONJ-NOUN and ADP-NOUN.

6 Conclusion

We have presented a trilingual code-mixed corpus
with POS annotation. We have performed POS tag-
ging using state-of-the-art methods and also investi-
gated the use of an FCRF-based joint model for this
task. We find that the best stacking method (S2) that
uses the combined features (see Section 4) performs
better than the joint model (FCRF) and the pipeline
systems. We also observe that joint modelling out-
performs the pipeline systems in our experiments.

FCRF lags behind the best POS tagging system
S2. Perhaps, using more training data would help
FCRF to achieve better performance than S2. We
consider this as a future work. The tagger combina-
tions use either no context or junk context (translit-
erations) for POS tagger input. As a future work it
would be interesting to modify these junk transliter-
ations using a language model to provide meaning-
ful context to the POS tagger.

Acknowledgement

This research is supported by the Science Founda-
tion Ireland (Grant 12/CE/I2267) as part of CNGL
(www.cngl.ie) at Dublin City University. The au-
thors wish to acknowledge the DJEI/DES/SFI/HEA
for the provision of computational facilities and sup-

port.

References
Utsab Barman, Amitava Das, Joachim Wagner, and Jen-

nifer Foster. 2014. Code mixing: A challenge for lan-
guage identification in the language of social media. In
Proceedings of the First Workshop on Computational
Approaches to Code Switching. EMNLP 2014, Con-
ference on Empirical Methods in Natural Language
Processing, pages 13–23, Doha, Qatar. Association for
Computational Linguistics.

Monojit Choudhury, Gokul Chittaranjan, Parth
Gupta, and Amitava Das. 2014. Overview
of FIRE 2014 Track on Transliterated
Search. http://www.isical.ac.in/

˜fire/working-notes/2014/MSR/
2014-trainslit_search-track_over.
pdf.

Amitava Das. 2016. Tool contest on POS tagging for
code-mixed Indian social media (Facebook, Twitter,
and Whatsapp) text. http://amitavadas.com/
Code-Mixing.html, retrieved 2016-06-10.

B. Efron. 1979. Bootstrap Methods: Another Look at the
Jackknife. The Annals of Statistics, 7(1):1–26.

Debasis Ganguly, Johannes Leveling, and Gareth J. F.
Jones. 2012. DCU@ FIRE-2012: rule-based stem-
mers for Bengali and Hindi. In FIRE 2012, Forum for
Information Retrieval and Evaluation, pages 34–42.

Yvette Graham, Nitika Mathur, and Timothy Baldwin.
2014. Randomized significance tests in machine trans-
lation. In Proceedings of the ACL 2014 Ninth Work-
shop on Statistical Machine Translation, pages 266–
274.

Anupam Jamatia and Amitava Das. 2014. Part-of-speech
tagging system for Indian social media text on Twit-
ter. In Social-India 2014, First Workshop on Language
Technologies for Indian Social Media Text, at the
Eleventh International Conference on Natural Lan-
guage Processing (ICON-2014), volume 2014, pages
21–28.

Wei Lu and Hwee Tou Ng. 2010. Better Punctuation
Prediction with Dynamic Conditional Random Fields.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 177–
186, Cambridge, MA, October. Association for Com-
putational Linguistics.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conver-
sational text with word clusters. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

38



Human Language Technologies, pages 380–390, At-
lanta, Georgia, June. Association for Computational
Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceed-
ings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istanbul,
Turkey, may. European Language Resources Associa-
tion (ELRA).

Prakash B. Pimpale and Raj Nath Patel. 2015. Ex-
periments with POS Tagging Code-mixed Indian So-
cial Media Text. http://amitavadas.com/
ICON2015/CDACM_ICON2015.pdf.

Kamal Sarkar. 2015. Part-of-Speech Tagging for
Code-mixed Indian Social Media Text at ICON
2015. http://amitavadas.com/ICON2015/
JU_ICON2015.pdf.

Helmut Schmid. 1994. Part-of-speech tagging with neu-
ral networks. In Proceedings of the 15th Conference
on Computational Linguistics - Volume 1, COLING
’94, pages 172–176, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Arnav Sharma and Raveesh Motlani. 2015. POS
Tagging for Code-Mixed Indian Social Media Text
: Systems from IIIT-H for ICON NLP Tools Con-
test. http://amitavadas.com/ICON2015/
IIITH_ICON2015.pdf.

Thamar Solorio and Yang Liu. 2008. Part-of-speech tag-
ging for English-Spanish code-switched text. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1051–1060. As-
sociation for Computational Linguistics.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steve
Bethard, Mona Diab, Mahmoud Gohneim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirshberg, Alison
Chang, and Pascale Fung. 2014. Overview for the
first shared task on language identification in code-
switched data. In Proceedings of the First Workshop
on Computational Approaches to Code-Switching.
EMNLP 2014, Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar. Associa-
tion for Computational Linguistics.

Charles Sutton, Andrew McCallum, and Khashayar Ro-
hanimanesh. 2007. Dynamic conditional random
fields: Factorized probabilistic models for labeling and
segmenting sequence data. The Journal of Machine
Learning Research, 8:693–723.

Charles Sutton. 2006. GRMM: Graphical Models
in Mallet. http://mallet.cs.umass.edu/
grmm, retrieved 2016-08-11.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. POS tagging
of English-Hindi code-mixed social media content.

In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 974–979, Doha, Qatar, October. Association for
Computational Linguistics.

39


