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Abstract

Social scientists who do not have specialized
natural language processing training often use
a unigram bag-of-words (BOW) representa-
tion when analyzing text corpora. We offer
a new phrase-based method, NPFST, for en-
riching a unigram BOW. NPFST uses a part-
of-speech tagger and a finite state transducer
to extract multiword phrases to be added to a
unigram BOW. We compare NPFST to both n-
gram and parsing methods in terms of yield,
recall, and efficiency. We then demonstrate
how to use NPFST for exploratory analyses;
it performs well, without configuration, on
many different kinds of English text. Finally,
we present a case study using NPFST to ana-
lyze a new corpus of U.S. congressional bills.

For our open-source implementation, see
http://slanglab.cs.umass.edu/phrases/.

1 Introduction

Social scientists typically use a unigram represen-
tation when analyzing text corpora; each document
is represented as a unigram bag-of-words (BOW),
while the corpus itself is represented as a document–
term matrix of counts. For example, Quinn et al.
(2010) and Grimmer (2010) used a unigram BOW
as input to a topic model, while Monroe et al. (2008)
used a unigram BOW to report the most partisan
terms from political speeches. Although the simplic-
ity of a unigram BOW is appealing, unigram analy-
ses do not preserve meaningful multiword phrases,
such as “health care” or “social security,” and cannot
distinguish between politically significant phrases
that share a word, such as “illegal immigrant” and
“undocumented immigrant.” To address these limi-
tations, we introduce NPFST, which extracts multi-
word phrases to enrich a unigram BOW as additional
columns in the document–term matrix. NPFST is
suitable for many different kinds of English text; it

uses modest computational resources and does not
require any specialized configuration or annotations.

2 Background

We compare NPFST to several other methods in
terms of yield, recall, efficiency, and interpretability.
Yield refers to the number of extracted phrases—a
lower yield requires fewer computational and human
resources to process the phrases. Recall refers to a
method’s ability to recover the most relevant or im-
portant phrases, as determined by a human. A good
method should have a low yield, but high recall.

2.1 n-grams

Our simplest baseline is AllNGrams(K). This
method extracts all n-grams, up to length K, from
tokenized, sentence-segmented text, excluding n-
grams that cross sentence boundaries. This method
is commonly used to extract features for text classifi-
cation (e.g., Yogatama et al. (2015)), but has several
disadvantages in a social scientific context. First,
social scientists often want to substantively inter-
pret individual phrases, but fragmentary phrases that
cross sentence constituents may not be meaning-
ful. For example, the Affordable Care Act includes
the hard-to-interpret 4-gram, “the Internet website
of.” Second, although AllNGrams(K) has high re-
call (provided that K is sufficiently large), it suffers
from a higher yield and can therefore require sub-
stantial resources to process the extracted phrases.

2.2 Parsing

An alternative approach1 is to use syntax to re-
strict the extracted phrases to constituents, such as
noun phrases (NPs). Unlike verb, prepositional,

1Statistical collocation methods provide another approach
(e.g., Dunning (1993), Hannah and Wallach (2014)). These
methods focus on within-n-gram statistical dependence. In
informal analyses, we found their recall unsatisfying for low-
frequency phrases, but defer a full comparison for future work.

114



or adjectival phrases, NPs often make sense even
when stripped from their surrounding context—
e.g., [Barack Obama]NP vs. [was inaugurated in
2008]V P . There are many methods for extracting
NPs. Given the long history of constituent parsing
research in NLP, one obvious approach is to run an
off-the-shelf constituent parser and then retrieve all
NP non-terminals from the trees.2 We refer to this
method as ConstitParse. Unfortunately, the major
sources of English training data, such as the Penn
Treebank (Marcus et al., 1993), include determin-
ers within the NP and non-nested flat NP annota-
tions,3 leading to low recall in our context (see §4).
Since modern parsers rely on these sources of train-
ing data, it is very difficult to change this behavior.

2.3 Part-of-Speech Grammars
Another approach, proposed by Justeson and Katz
(1995), is to use part-of-speech (POS) patterns to
find and extract NPs—a form of shallow partial pars-
ing (Abney, 1997). Researchers have used this ap-
proach in a variety of different contexts (Benoit and
Nulty, 2015; Frantzi et al., 2000; Kim et al., 2010;
Chuang et al., 2012; Bamman and Smith, 2014). A
pattern-based method can be specified in terms of a
triple of parameters: (G, K,M), where G is a gram-
mar, K is a maximum length, and M is a matching
strategy. The grammar G is a non-recursive regu-
lar expression that defines an infinite set of POS tag
sequences (i.e., a regular language); the maximum
length K limits the length of the extracted n-grams
to n ≤ K; while the matching strategy M specifies
how to extract text spans that match the grammar.

The simplest grammar that we consider is

(A |N) ∗N(PD ∗ (A |N) ∗N)∗
defined over a coarse tag set of adjectives, nouns
(both common and proper), prepositions, and deter-
miners. We refer to this grammar as SimpleNP. The
constituents that match this grammar are bare NPs
(with optional PP attachments), N-bars, and names.
We do not include any determiners at the root NP.

2Another type of syntactic structure prediction is NP chunk-
ing. This produces a shallower, non-nested representation.

3The English Web Treebank (LDC2012T13) has some more
nesting structure and OntoNotes (version 5, LDC2013T19) in-
cludes a variant of the Penn Treebank with Vadas and Curran
(2011)’s nested NP annotations. We look forward to the avail-
ability of constituent parsers trained on these data sources.

We also consider three baseline matching strate-
gies, each of which can (in theory) be used with any
G and K. The first, FilterEnum, enumerates all pos-
sible strings in the regular language, up to length K,
as a preprocessing step. Then, at runtime, it checks
whether each n-gram in the corpus is present in this
enumeration. This matching strategy is simple to
implement and extracts all matches up to length K,
but it is computationally infeasible if K is large. The
second, FilterFSA, compiles G into a finite-state au-
tomaton (FSA) as a preprocessing step. Then, at
runtime, it checks whether each n-gram matches this
FSA. Like FilterEnum, this matching strategy ex-
tracts all matches up to length K; however, it can
be inefficient if K is large. The third, GreedyFSA,
also compiles G into an FSA, but uses a standard
greedy matching approach at runtime to extract n-
grams that match G. Unlike the other two match-
ing strategies, it cannot extract overlapping or nested
matches, but it can extract very long matches.4

In their original presentation, Justeson and Katz
(1995) defined a grammar that is very similar to
SimpleNP and suggested using 2- and 3-grams (i.e.,
K = 3). With this restriction, their grammar com-
prises seven unique patterns. They also proposed us-
ing FilterEnum to extract text spans that match these
patterns. We refer to this method as JK = (Sim-
pleNP, K = 3, FilterEnum). Many researchers have
used this method, perhaps because it is described in
the NLP textbook by Manning and Schütze (1999).

3 NPFST

Our contribution is a new pattern-based extraction
method: NPFST = (FullNP, K =∞, RewriteFST).
In §3.1, we define the FullNP grammar, and in §3.2,
we define the RewriteFST matching strategy.

3.1 FullNP Grammar

FullNP extends SimpleNP by adding coordination
of pairs of words with the same tag (e.g., (VB
CC VB) in (cease and desist) order); coordination
of noun phrases; parenthetical post-modifiers (e.g.,
401(k), which is a 4-gram because of common NLP
tokenization conventions); numeric modifiers and
nominals; and support for the Penn Treebank tag set,

4We implemented both FilterFSA and GreedyFSA using
standard Python libraries—specifically, re.match and re.finditer.
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Figure 1: Composed rewrite lattice L = I ◦ P for input I =

(JJ NNP NN). Five spans are retrieved during lattice traversal.

the coarse universal tag set (Petrov et al., 2011), and
Gimpel et al. (2011)’s Twitter-specific coarse tag set.
We provide the complete definition in the appendix.

3.2 RewriteFST Matching Strategy

RewriteFST uses a finite-state transducer (FST) to
rapidly extract text spans that match G—including
overlapping and nested spans. This matching strat-
egy is a form of finite-state NLP (Roche and Sch-
abes, 1997), and therefore builds on an extensive
body of previous work on FST algorithms and tools.

The input to RewriteFST is a POS-tagged5 se-
quence of tokens I , represented as an FSA. For a
simple tag sequence, this FSA is a linear chain, but,
if there is uncertainty in the output of the tagger, it
can be a lattice with multiple tags for each position.

The grammar G is first compiled into a phrase
transducer P ,6 which takes an input sequence I
and outputs the same sequence, but with pairs of
start and end symbols—[S] and [E], respectively—
inserted to indicate possible NPs (see figure 1).
At runtime, RewriteFST computes an output lattice
L = I ◦ P using FST composition;7 since it is non-
deterministic, L includes all overlapping and nested
spans, rather than just the longest match. Finally,
FilterFST traverses L to find all edges with a [S]
symbol. From each one, it performs a depth-first
search to find all paths to an edge with an [E] sym-
bol, accumulating all [S]- and [E]-delimited spans.8

In table 1, we provide a comparison of FilterFST
and the three matching strategies described in §2.3.

5We used the ARK POS tagger for tweets (Gimpel et al.,
2011; Owoputi et al., 2013) and used Stanford CoreNLP for all
other corpora (Toutanova et al., 2003; Manning et al., 2014).

6We used foma (Hulden, 2009; Beesley and Karttunen,
2003) to compile G into P . foma was designed for building
morphological analyzers; it allows a developer to write a gram-
mar in terms of readable production rules with intermediate cat-
egories. The rules are then compiled into a single, compact FST.

7We implemented the FST composition using OpenNLP
(Allauzen et al., 2007) and pyfst (http://pyfst.github.io/).

8There are alternatives to this FST approach, such as a back-
tracking algorithm applied directly to the original grammar’s
FSA to retrieve all spans starting at each position in the input.

Matching Strategy All Matches? Large K?

FilterEnum yes infeasible
FilterFSA yes can be inefficient

GreedyFSA no yes

RewriteFST yes yes

Table 1: RewriteFST versus the matching strategies described

in §2.3. Like FilterEnum and FilterFSA, RewriteFST extracts

all matches up to length K; in contrast, GreedyFSA can-

not extract overlapping or nested matches. Like GreedyFSA,

RewriteFST can extract long matches; in contrast, FilterEnum

and is infeasible and FilterFSA can be inefficient if K is large.

4 Experimental Results

In this section, we provide experimental results com-
paring NPFST to the baselines described in §2 in
terms of yield, recall, efficiency, and interpretability.
As desired, NPFST has a low yield and high recall,
and efficiently extracts highly interpretable phrases.

4.1 Yield and Recall

Yield refers to the number of phrases extracted by
a method, while recall refers to a method’s ability
to recover the most relevant or important phrases,
as determined by a human. Because relevance and
importance are domain-specific concepts that are not
easy to define, we compared the methods using three
named-entity recognition (NER) data sets: mentions
of ten types of entities on Twitter from the WNUT
2015 shared task (Baldwin et al., 2015); mentions
of proteins in biomedical articles from the BioNLP
shared task 2011 (Kim et al., 2011); and a synthetic
data set of named entities in New York Times ar-
ticles (Sandhaus, 2008), identified using Stanford
NER (Manning et al., 2014). Named entities are un-
doubtedly relevant and important phrases in all three
of these different domains.9 For each data set, we
defined a method’s yield to be the total number of
spans that it extracted and a method’s recall to be
the percentage of the (labeled) named entity spans
that were present in its list of extracted spans.10

9Although we use NER data sets to compare the methods’
yield and recall, social scientists are obviously interested in
analyzing other phrases, such as “heath care reform,” which
have a less psycholinguistically concrete status (Brysbaert et al.,
2014). We focus on these kinds of phrases in §4.3 and §5.

10We assumed that all methods extracted all unigram spans.
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(a) WNUT (b) BioNLP (c) NYT

Figure 2: Recall versus yield for AllNGrams(K) with K = 1, . . . , 6, ConstitParse, JK, (SimpleNP, K =∞, GreedyFSA), and

NPFST. A good method should have a low yield, but high recall—i.e., the best methods are in the top-left corner of each plot. For

visual clarity, the y-axis starts at 0.5. We omit yield and recall values for AllNGrams(K) with K > 6 because recall approaches an

asymptote. For the WNUT data set, we omit yield and recall values for ConstitParse because there is no reliable constituent parser

for tweets. As described in §4.1, we also show yield and recall values for NPFST run on input lattices (denoted by 0.01 and 0.001).

Figure 2 depicts recall versus yield11 for NPFST
and the following baseline methods: AllNGrams(K)
with different values of K, ConstitParse,12 JK, and
(SimpleNP, K =∞, GreedyFSA). Because the yield
and recall values for (SimpleNP, K = 3, FilterFSA)
are the same as those of JK, we omit these values
from figure 2. We also omit yield and recall val-
ues for (FullNP, K =∞, FilterEnum) and (FullNP,
K = ∞, FilterFSA) because they are identical to
those of NPFST. Finally, we omit yield and recall
values for (FullNP, K = ∞, GreedyFSA) because
our implementation of GreedyFSA (using standard
Python libraries) is too slow to use with FullNP.

A good method should have a low yield, but
high recall—i.e., the best methods are in the top-
left corner of each plot. The pattern-based methods
all achieved high recall, with a considerably lower
yield than AllNGrams(K). ConstitParse achieved
a lower yield than NPFST, but also achieved lower
recall. JK performed worse than NPFST, in part
because it can only extract 2- and 3-grams, and,
for example, the BioNLP data set contains men-
tions of proteins that are as long as eleven tokens
(e.g., “Ca2+/calmodulin-dependent protein kinase
(CaMK) type IV/Gr”). Finally, (SimpleNP, K =∞,
GreedyFSA) performed much worse than JK be-
cause it cannot extract overlapping or nested spans.

11The WNUT data set is already tokenized; however, we ac-
cidentally re-tokenized it in our experiments. Figure 2 therefore
only depicts yield and recall for the 1,278 (out of 1,795) tweets
for which our re-tokenization matched the original tokenization.

12We used the Stanford CoreNLP shift–reduce parser.

Method Time

AllNGrams(∞) 44.4 ms
ConstitParse 825.3 ms

JK 45.3 ms
(SimpleNP, K =3, FilterFSA) 46.43 ms

(SimpleNP, K =∞, GreedyFSA) 39.34 ms

NPFST 82.2 ms

Table 2: Timing results for AllNGrams(∞), ConstitParse,

JK, (SimpleNP, K = 3, FilterFSA), (SimpleNP, K = ∞,

GreedyFSA), and NPFST on ten articles from the BioNLP data

set; AllNGrams(∞) is equivalent to AllNGrams(56) in this con-

text. The pattern-based methods’ times include POS tagging

(37.1 ms), while ConstitParse’s time includes parsing (748 ms).

For the WNUT data set, NPFST’s recall was rela-
tively low (91.8%). To test whether some of its false
negatives were due to POS-tagging errors, we used
NPFST’s ability to operate on an input lattice with
multiple tags for each position. Specifically, we con-
structed an input lattice I using the tags for each po-
sition whose posterior probability was at least t. We
experimented with t = 0.01 and t = 0.001. These
values increased recall to 96.2% and 98.3%, respec-
tively, in exchange for only a slightly higher yield
(lower than that of AllNGrams(2)). We suspect that
we did not see a greater increase in yield, even for
t = 0.001, because of posterior calibration (Nguyen
and O’Connor, 2015; Kuleshov and Liang, 2015).
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4.2 Efficiency

We used ten articles from the BioNLP data set
to compare the methods’ preprocessing and run-
time costs. Table 2 contains timing results13

for AllNGrams(∞), ConstitParse, JK, (SimpleNP,
K = 3, FilterFSA), and (SimpleNP, K = ∞,
GreedyFSA), and NPFST. We omit results for
(FullNP, K =∞, FilterEnum), (FullNP, K =∞, Fil-
terFSA), and (FullNP, K =∞, GreedyFSA) because
they are too slow to compete with the other methods.

POS tagging is about twenty times faster than
parsing, which is helpful for social scientists who
may not have fast servers. NPFST is slightly slower
than the simpler pattern-based methods; however,
80% of its time is spent constructing the input I and
traversing the output lattice L, both of which are
implemented in Python and could be made faster.

4.3 Interpretability

When analyzing text corpora, social scientists of-
ten examine ranked lists of terms, where each term
is ranked according to some score. We argue that
multiword phrases are more interpretable than uni-
grams when stripped from their surrounding context
and presented as a list. In §4.3.1 we explain how
to merge related terms, and in §4.3.2, we provide
ranked lists that demonstrate that NPFST extracts
more interpretable phrases than other methods.

4.3.1 Merging Related Terms
As described in §3.2, NPFST extracts overlapping

and nested spans. For example, when run on a data
set of congressional bills about crime, NPFST ex-
tracted “omnibus crime control and safe streets act,”
as well as the nested phrases “crime control” and
“safe streets act.” Although this behavior is gener-
ally desirable, it can also lead to repetition in ranked
lists. We therefore outline an high-level algorithm
for merging the highest-ranked terms in a ranked list.

The input to our algorithm is a list of terms L. The
algorithm iterates through the list, starting with the
highest-ranked term, aggregating similar terms ac-
cording to some user-defined criterion (e.g., whether
the terms share a substring) until it has generated C
distinct term clusters. The algorithm then selects a
single term to represent each cluster. Finally, the al-

13We used Python’s timeit module.

gorithm orders the clusters’ representative terms to
form a ranked list of length C. By starting with the
highest-ranked term and terminating after C clusters
have been formed, this algorithm avoids the ineffi-
ciency of examining all possible pairs of terms.

4.3.2 Ranked Lists
To assess the interpretability of the phrases ex-

tracted by NPFST, we used three data sets: tweets
about climate change, written by (manually identi-
fied) climate deniers;14 transcripts from criminal tri-
als at the Old Bailey in London during the 18th cen-
tury;15 and New York Times articles from Septem-
ber, 1993. For each data set, we extracted phrases
using ConstitParse, JK, and NPFST and produced
a list of terms for each method, ranked by count.
We excluded domain-specific stopwords and any
phrases that contained them.16 Finally, we merged
related terms using our term-merging algorithm, ag-
gregating terms only if one term was a substring of
another, to produce ranked lists of five representative
terms. Table 4.3 contains these lists, demonstrating
that NPFST produces highly interpretable phrases.

5 Case Study: Finding Partisan Terms in
U.S. Congressional Legislation

Many political scientists have studied the rela-
tionship between language usage and party affilia-
tion (Laver et al., 2003; Monroe et al., 2008; Slapin
and Proksch, 2008; Quinn et al., 2010; Grimmer and
Stewart, 2013). We present a case study, in which we
use NPFST to explore partisan differences in U.S.
congressional legislation about law and crime. In
§5.1, we describe our data set, and in §5.2, we ex-
plain our methodology and present our results.

5.1 The Congressional Bills Corpus

We used a new data set of 97,221 U.S. congressional
bills, introduced in the House and Senate between

14https://www.crowdflower.com/data/sentiment-analysis-
global-warmingclimate-change-2/

15http://www.oldbaileyonline.org/
16For example, for the tweets, we excluded phrases that con-

tained “climate” and “warming.” For the Old Bailey transcripts,
we excluded phrases that contained “st.” or “mr.” (e.g., “st.
john” or “mr. white”). We also used a regular expression to ex-
clude apparent abbreviated names (e.g., “b. smith”) and used a
stopword list to exclude dates like “5 of february.” For the New
York Times articles, we excluded phrases that contained “said.”
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Data Set Method Ranked List

Twitter unigrams snow, #tcot, al, dc, gore
JK al gore’s, snake oil science, snow in dc, mine safety

NPFST al gore’s, snake oil science, 15 months, snow in dc,
*bunch of snake oil science

Old Bailey unigrams jacques, goodridge, rust, prisoner, sawtell
ConsitParse the prisoner, the warden, the draught, the fleet, the house

JK middlesex jury, public house, warrant of attorney, baron perryn, justice grose

NPFST middlesex jury, public house, warrant of attorney, baron perryn,
*middlesex jury before lord loughborough

NYT unigrams will, united, one, government, new
ConstitParse he united states, the government, the agreement, the president, the white house

JK united states, united nations, white house, health care, prime minister

NPFST united states, united nations, white house, health care,
*secretary of state warren christopher

Table 3: Ranked lists of representative terms for unigrams, ConstitParse, JK, and NPFST. For NPSFT, we include the highest-

ranked phrase of length four or more (on its own line, denoted by *) in order to highlight the kinds of longer phrases that JK is

unable to extract. For the Twitter data set, we omit results for ConstitParse because there is no reliable constituent parser for tweets.

1993 and 2014. We created this data set by scraping
the Library of Congress website.17 We used Stan-
ford CoreNLP to tokenize and POS tag the bills. We
removed numbers and punctuation, and discarded all
terms that occurred in fewer than five bills. We also
augmented each bill with its author, its final outcome
(e.g., did it survive committee deliberations, did it
pass a floor vote in the Senate) from the Congres-
sional Bills Project (Adler and Wilkerson, 2014),
and its major topic area (Purpura and Hillard, 2006).

For our case study, we focused on a subset of
488 bills, introduced between 2013 and 2014, that
are primarily about law and crime. We chose this
subset because we anticipated that it would clearly
highlight partisan policy differences. For exam-
ple, the bills include legislation about immigration
enforcement and about incarceration of low-level
offenders—two areas where Democrats and Repub-
licans tend to have very different policy preferences.

5.2 Partisan Terms

We used NPFST to extract phrases from the bills,
and then created ranked lists of terms for each party
using the informative Dirichlet18 feature selection

17http://congress.gov/
18In order to lower the z-scores of uninformative, high-

frequency terms, we set the Dirichlet hyperparameters to be
proportional to the term counts from our full data set of bills.

method of Monroe et al. (2008). This method
computes a z-score for each term that reflects how
strongly that term is associated with Democrats
over Republicans—a positive z-score indicates that
Democrats are more likely to use the term, while
a negative z-score indicates that Republications are
more likely to use the term. We merged the highest-
ranked terms for each party, aggregating terms only
if one term was a substring of another and if the
terms were very likely to co-occur in a single bill,19

to form ranked lists of representative terms. Finally,
for comparison, we also used the same approach to
create ranked lists of unigrams, one for each party.

Figure 3 depicts z-score versus term count, while
table 4 lists the twenty highest-ranked terms. The
unigram lists suggest that Democratic lawmakers fo-
cus more on legislation related to mental health, ju-
venile offenders, and possibly domestic violence,
while Republican lawmakers focus more on illegal
immigration. However, many of the highest-ranked
unigrams are highly ambiguous when stripped from
their surrounding context. For example, we do
not know whether “domestic” refers to “domes-
tic violence,” “domestic terrorism,” or “domestic
programs” without manually reviewing the origi-

19We used the correlation between the terms’ tf-idf vectors
determine how likely the terms were to co-occur in a single bill.
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(a) unigrams (b) NPFST

Figure 3: z-score versus term count. Each dot represents a single term and is sized according to that term’s z-score. Terms that are

more likely to be used by Democrats are shown in blue; terms that are more likely to be used by Republicans are shown in dark red.

nal bills (e.g., using a keyword-in-context inter-
face (O’Connor, 2014)). Moreover, many of the
highest-ranked Republican unigrams, such as “com-
munication,” are not unique to law and crime.

In contrast, the phrase-based lists are less am-
biguous and much more interpretable. They include
names of bills (which are often long) and important
concepts, such as “mental health,” “victims of do-
mestic violence,” “interstate or foreign commerce,”
and “explosive materials.” These lists suggest that
Democratic lawmakers have a very strong focus on
programs to prevent child abuse and domestic vio-
lence, as well as issues related to mental health and
gang violence. Republican lawmakers appear to fo-
cus on immigration and incarceration. This focus on
immigration is not surprising given the media cov-
erage between 2013 and 2014; however, there was
much less media coverage of a Democratic focus on
crime-related legislation during that time period.

These results suggest that social scientists will
be less likely to draw incorrect conclusions from
ranked lists of terms if they include multiword
phrases. Because phrases are less ambiguous than
unigrams, social scientists can more quickly dis-
cover meaningful term-based associations for fur-
ther exploration, without undertaking a lengthy pro-
cess to validate their interpretation of the terms.

6 Conclusions and Future Work

Social scientists typically use a unigram BOW
representation when analyzing text corpora, even
though unigram analyses do not preserve meaning-
ful multiword phrases. To address this limitation,
we presented a new phrase-based method, NPFST,
for enriching a unigram BOW. NPFST is suitable for
many different kinds of English text; it does not re-
quire any specialized configuration or annotations.

We compared NPFST to several other methods
for extracting phrases, focusing on yield, recall, effi-
ciency, and interpretability. As desired, NPFST has
a low yield and high recall, and efficiently extracts
highly interpretable phrases. Finally, to demonstrate
the usefulness of NPFST for social scientists, we
used NPFST to explore partisan differences in U.S.
congressional legislation about law and crime. We
found that the phrases extracted by NPFST were less
ambiguous and more interpretable than unigrams.

In the future, we plan to use NPFST in combina-
tion with other text analysis methods, such as topic
modeling; we have already obtained encouraging
preliminary results. We have also experimented with
modifying the FullNP grammar to select broader
classes of phrases, such as subject–verb and verb–
object constructions (though we anticipate that more
structured syntactic parsing approaches will eventu-
ally be useful for these kinds of constructions).

120



Method Party Ranked List

unigrams Democrat and, deleted, health, mental, domestic, inserting, grant, programs, prevention, violence, program,
striking, education, forensic, standards, juvenile, grants, partner, science, research

Republican any, offense, property, imprisoned, whoever, person, more, alien, knowingly, officer, not, united,
intent, commerce, communication, forfeiture, immigration, official, interstate, subchapter

NPFST Democrat mental health, juvenile justice and delinquency prevention act, victims of domestic violence,
child support enforcement act of u.s.c., fiscal year, child abuse prevention and treatment act,
omnibus crime control and safe streets act of u.s.c., date of enactment of this act,
violence prevention, director of the national institute, former spouse,
section of the foreign intelligence surveillance act of u.s.c., justice system, substance abuse
criminal street gang, such youth, forensic science, authorization of appropriations, grant program

Republican special maritime and territorial jurisdiction of the united states, interstate or foreign commerce,
federal prison, section of the immigration and nationality act,
electronic communication service provider, motor vehicles, such persons, serious bodily injury,
controlled substances act, department or agency, one year, political subdivision of a state,
civil action, section of the immigration and nationality act u.s.c., offense under this section,
five years, bureau of prisons, foreign government, explosive materials, other person

Table 4: Ranked lists of unigrams and representative phrases of length two or more for Democrats and Republicans.

Our open-source implementation of NPFST is
available at http://slanglab.cs.umass.edu/phrases/.
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Appendix: FullNP Grammar

The following foma grammar defines the rewrite phrase transducer P :

# POS tag categories. "Coarse" refer to the Petrov Univeral tag set.
# We directly use PTB tags, but for Twitter, we assume they’ve been
# preprocessed to coarse tags.
# CD is intentionally under both Adj and Noun.
define Adj1 [JJ | JJR | JJS | CD | CoarseADJ];
define Det1 [DT | CoarseDET];
define Prep1 [IN | TO | CoarseADP];
define Adv1 [RB | RBR | RBS | CoarseADV];
# Note that Twitter and coarse tags subsume some of this under VERB.
define VerbMod1 [Adv1 | RP | MD | CoarsePRT];
# PTB FW goes to CoarseX, but we’re excluding CoarseX since for Gimpel et al.’s
# Twitter tags, that’s usually non-constituent-participating things like URLs.
define Noun [NN | NNS | NNP | NNPS | FW | CD | CoarseNOUN | CoarseNUM];
define Verb [VB | VBD | VBG | VBN | VBP | VBZ | CoarseVERB];
define AnyPOS [O | Adj1|Det1|Prep1|Adv1|VerbMod1|Noun|Verb |

CoarseDOT|CoarseADJ|CoarseADP|CoarseADV|CoarseCONJ|CoarseDET|
CoarseNOUN|CoarseNUM|CoarsePRON|CoarsePRT|CoarseVERB|CoarseX

]
define Lparen ["-LRB-" | "-LSB-" | "-LCB-"]; # Twitter doesnt have this.
define Rparen ["-RRB-" | "-RSB-" | "-RCB-"];
# Ideally, auxiliary verbs would be VerbMod, but PTB gives them VB* tags.

# single-word coordinations
define Adj Adj1 [CC Adj1]*;
define Det Det1 [CC Det1]*;
define Adv Adv1 [CC Adv1]*;
define Prep Prep1 [CC Prep1]*;
define VerbMod VerbMod1 [CC VerbMod1]*;

# NP (and thus BaseNP) have to be able to stand on their own. They are not
# allowed to start with a determiner, since it’s usually extraneous for our
# purposes. But when we want an NP right of something, we need to allow
# optional determiners since they’re in between.
define BaseNP [Adj|Noun]* Noun;
define PP Prep+ [Det|Adj]* BaseNP;
define ParenP Lparen AnyPOSˆ{1,50} Rparen;
define NP1 BaseNP [PP | ParenP]*;
define NP NP1 [CC [Det|Adj]* NP1]*;

regex NP -> START ... END;
write att compiled_fsts/NP.attfoma
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