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Abstract

We propose a method of probabilistic natural
language generation observing both a syntac-
tic structure and an input of situational con-
tent. We employed Monte Carlo Tree Search
for this nontrivial search problem, employ-
ing context-free grammar rules as search op-
erators and evaluating numerous putative gen-
erations from these two aspects using logis-
tic regression and n-gram language model.
Through several experiments, we confirmed
that our method can effectively generate sen-
tences with various words and phrasings.

1 Introduction

People unconsciously produce utterances in daily
life according to different situations. When a person
encounters a situation in which a dog eats a piece of
bread, he or she retrieves appropriate words and cre-
ates a natural sentence, retaining the dependent re-
lationships among the words in proper order, to de-
scribe the situation. This ability of natural language
generation (NLG) from situations will become es-
sential for robotics and conversational agents in the
future.

However, this problem is intrinsically difficult be-
cause it is hard to encode what to say into a sentence
while ensuring its syntactic correctness. We propose
to use Monte Carlo tree search (MCTS) (Kocsis and
Szepesvari, 2006; Browne et al., 2012), a stochastic
search algorithm for decision processes, to find an
optimal solution in the decision space. We build a
search tree of possible syntactic trees to generate a
sentence, by selecting proper rules through numer-
ous random simulations of possible yields.

2 NLG with MCTS simulations

2.1 MCTS

MCTS combines random simulation and best-first
search in its search process (Kocsis and Szepesvari,
2006). It has been successfully applied as an al-
gorithm for playing Go game and similar planning
problems. In fact, both Go game and NLG share
the same characteristic: their outputs can be evalu-
ated only when their process reaches the last state.
Therefore, we think that the process of NLG can be
represented in MCTS simulations.

MCTS uses the upper confidence bounds one
(UCB1) value to determine the next move from
a viewpoint of multi-armed bandit problem (Kate-
hakis and Veinott, 1987):

UCB1 = vi + C

√
log N

ni
. (1)

Here, vi is the winning rate of candidate i, C is an
adjustment coefficient, N is the total number of sim-
ulations, and ni is the number of visits to the candi-
date i. The first term of equation (1) corresponds to
exploitation and the second term corresponds to ex-
ploration in simulation, achieving a balanced search
between the two factors (Auer et al., 2002).

2.2 Algorithm

MCTS provides opportunities for selecting various
syntactic structures and words in a generated sen-
tence in our case. We use context-free grammar
(CFG) rules obtained from the Brown corpus as a
search operator in MCTS. The MCTS algorithm is
shown in Figure 1
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Figure 1: MCTS algorithm for NLG

Essentially, our MCTS builds a search space of
possible derivations, and starting from the initial
symbol S we iteratively determine what rule to ap-
ply to extend the current tree, by simulating numer-
ous possible derivations from the candidate rules.

3 Evaluating generated sentences

When using MCTS in NLG, it is important how the
simulation result, i.e., a generated sentence, is eval-
uated. In generating a sentence, unlike playing Go
game, it is not easy for a machine to decide whether
a generated sentence is natural for us because the
result cannot be naturally represented by a win or a
lose. This necessitates giving machines the ability to
evaluate whether a generated sentence is natural or
not. Regarding this problem, Okanohara and Tsu-
jii (2007) proposed a method to use a semi-Markov
class model to identify the grammaticality of the
sentence. Similarly, in this study we have introduced
two evaluation scores: one for syntactic structure
and the other for the n-gram language model.

3.1 Evaluation of syntactic structure
For this purpose, we use logistic regression with par-
tial syntactic trees of a sentence as its features for
identifying whether it is natural or not. Figure 2
illustrates the procedure of building a classifier for
structure evaluation.

We used the Brown corpus1 and extracted 4,661
sentences consisting of three to seven words other
than punctuation marks. Those extracted sentences
were parsed using the Stanford parser2, and a set of
CFGs was created based on its result. The CFGs
contained 7,220 grammar rules and 5,867 terminal
symbols.

As the training data for the classifier, we regard
syntactic subtrees of sentences in the Brown corpus
as the positive examples, and subtrees of the sen-
tences generated from random simulation of CFGs
as negative examples.

As we see in Figure 2, we have prepared 46,610

1http://clu.uni.no/icame/browneks.html
2http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: Building a classifier for structured sentences.

syntactically incorrect sentences as negative exam-
ples – the reason why there are ten times as many
negative examples as positive examples is that it
is highly possible that more syntactically incorrect
than correct sentences can be generated using MCTS
simulations with CFGs.

We use FREQuent Tree miner (FREQT)3 to ex-
tract syntactic subtrees of sentences (Abe et al.,
2002; Zaki, 2002). From all of the subtrees obtained,
we use the subtrees from which only the terminal
symbols have been removed as the features for the
classifier, because of our exclusive focus on syntac-
tic structure with nonterminal symbols. We call the
probability of the output from this classifier as Syn-
tactic Probability (SP) (see, Figure 2).

We evaluated the classifier with 10-fold cross val-
idation and obtained 98% accuracy for the test data.

3.2 Evaluation for n-gram language model
To evaluate the word sequence in a generated sen-
tence, we conducted an experiment to compare the
accuracy of evaluation between two kinds of the n-
gram based scores. One is the score calculating the
perplexity of trigrams with Kneser-Ney smoothing.
We call this score ‘PP’. The other is the score called
Acceptability proposed in Lau et al. (2015), which
measures the acceptability of a sentence for an En-
glish native speaker. In this study, we use the Ac-
ceptability (AP) below for a sentence s:

Acceptability(s) = log

(
p(s)

puni(s)

) 1
|s|

(2)

3http://chasen.org/˜taku/software/freqt/

As an n-gram language model p(s), we use tri-
grams with Kneser-Ney smoothing (Kneser and
Ney, 1995). In (2), puni(s) denotes the probability
with a unigram distribution and (2) measures a rela-
tive fluency per word as compared to baseline prob-
ability puni.

3.3 How to decide the win/lose of sentences
At the Step 5 in the MCTS algorithm, the final de-
cision of a win or a lose (1 or 0) about the sentence
is returned by the score based on the ‘SP’ and ‘PP
or AP’ decisions as follows: (i) if it wins on both
‘SP’ and ‘PP or AP’, the score is 1; (ii) if it fails
with ‘SP’, the score is 0; (iii) if it wins on ‘SP’ but
fails on ‘PP or AP’, the score is 0.5. This reflects our
assumption that the generated sentence from CFGs
must be syntactical at least. Those processes of (i),
(ii), and (iii) are summarized in Table 1.

Table 1: How to determine the final decision
SP PP or AP score
0 0 0
0 1 0
1 0 0.5
1 1 1

4 Generation with Situational Information

We have so far discussed “how to say” part of NLG.
Next, we consider “what to say” in terms of how to
flexibly choose words that are suitable for a given
situation. We will explain how words are chosen
in a generated sentence with the linguistic resources
shown in Figure 3.

Let us assume that some words have been spec-
ified as the content to speak about, say “dog” and
“run” (Given words in Figure 3) and we consider
how to incorporate them into the sentence to gen-
erate. There are multiple ways to describe the con-
tent with natural language sentences. For example,
we could say “dog” as “puppy” or “run” as “dash”.
Therefore, considering the possibility of flexibly
choosing words, we used word2vec (Mikolov et al.,
2013) trained on Wikipedia to determine the set
of similar words whose cosine distance > 0.5 as
the dictionary (Similar words). Further, in order to
adding the peripheral words of the given words to
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Figure 3: Relationship between linguistic resources. Boxes

with dashed lines are used as dictionaries for generation within

MCTS.

the dictionary, we prepared another dictionary from
two words window before/after of the given words
on Wikipedia as the candidate words other than noun
or verbs (Wiki-2-Ws). During generation, we gener-
ate sentences using these dictionaries depending on
the part-of-speech of each word to reduce the search
space, and classified a sentence as “lose” when it
contains words out of the Given words and Similar
words. Wiki-5 is the statistics from five-words win-
dow before/after of the Given words and the Similar
words on Wikipedia to compute AP or PP.

Figure 4 illustrates a generated syntax tree exam-
ple with the linguistic resources shown in Figure 3.

Note that selecting proper linguistic resources is a
nontrivial problem for generation: because there are
huge number of possibilities to use them with dif-
ferent syntactic trees, it requires a ingenious method
like MCTS to effectively combine them with a gram-
matical tree as well as retaining fluency with respect
to n-gram probabilities. We used the information to
feed as a bag of words for simplicity, and aim to use
more sophisticated use of input as a distinct problem
from the proposed algorithm.

5 Related studies

As for the nondeterministic approach to NLG, some
studies view NLG as a planning problem. Koller
and Stone (2007) used automated classical planning
techniques to derive a plan converted into a sen-
tence. Kondadadi et al. (2013) consolidated macro
and micro planning as well as surface realization
stages into one statistical learning process. As an-
other way to handle the indeterminate characteris-
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Figure 4: Example of a generated sentence.

tics of NLG, Lemon (2008; 2011) and Rieser and
Lemon (2009) modeled dialog as Markov decision
processes (MDPs) and solved them by means of re-
inforcement learning (Sutton and Barto, 1998).

Similar to our approach, McKinley and Ray
(2014) considered the NLG process as an MDP with
a suitably defined reward function to achieve effi-
cient sentence generation using an MCTS algorithm.
As another nondeterministic approach using a neu-
ral language model (Bengio et al., 2003), Wen et al.
(2015) used the Long Short-term Memory generator,
which can learn from unaligned data by concurrently
optimizing sentence planning and surface realization
using a simple cross-entropy training criterion and
easily achieve language variation by sampling from
output candidates. However, this method predicts
just a word sequence and does not consider syntac-
tic structures.

As another search-based algorithm to generate a
sentence considering syntactic structures, Liu et al.
(2015) proposed a syntactic linearization of given
words using beam-search for an appropriate struc-
ture of a sentence. However, it just treats the prob-
lem of word ordering and does not consider gener-
ations with the given words, which does not always
include the given words in themselves. Technically,
their method employs a beam search with a prede-
fined beamwidth. On the other hand, MCTS realizes
an efficient search that does not restrict the search
range in advance.

Moreover, Silver et al. (2016) developed AlphaGo
which defeated a top level professional Go player.
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They combined MCTS with a deep reinforcement
learning framework and then provided MCTS with
learning ability; both policy and value networks of
the system are trained to predict human expert be-
haviors using deep reinforcement learning. This
framework is expected to be applied to NLG in the
future.

6 Experiments

In this section, we conducted experiments with two
cases where we evaluate only syntactic structure of
a generated sentence, and evaluate both syntactic
structure and n-gram language model characteristic
of a generated sentence.

6.1 Experimental settings

We used the CFGs and the classifier to evaluate the
structure of a sentence mentioned in section 3.1.

In addition, we set the number of MCTS simula-
tions at a node as the number of wins that reach five
times as many as other candidate nodes at that time.
The reason we used a dynamic change of simulation
number is that the next root node must be chosen
based on a clear difference in winning percentage
compared to other candidate nodes.

6.2 Evaluation for syntactic structure

First, we focus on only syntactic structure, and con-
ducted generation experiments to evaluate it. As the
evaluation score for a generated sentence, we em-
ploy only ‘SP’. Table 3 shows some generated sen-
tences.

Looking at the above sentences, we see that they
are syntactically correct – they have syntactic struc-
ture of either SVO or SV. The scores of them are
approximately 0.99, therefore, we see that correct

Table 3: Generated sentences based on the evaluation for only

syntactic structure

Generated sentences SP
all mass nudged no teacher 0.999
this principle observed all super-condamine 0.999
all kay sank all round 0.999
some camping departs 0.994
those rim made these amount 0.999

syntactic structure are apparently generated based
on the classifier.

6.3 Generation with two evaluation indices
Next, we conducted an experiment based on both
evaluation criteria for syntactic structure and an n-
gram language model. The ‘win’ or ‘lose’ is decided
as explained in section 3.3.

Furthermore, in order to confirm that we can gen-
erate sentences of various lengths, we introduce a
constraint on sentence length: if a generated sen-
tence has a length shorter than the predefined length,
the simulation result is regarded as a lose. Moreover,
as mentioned in section 3.2, we used PP and AP to
compare the results evaluated by them.

Here, because lower perplexity is better, the sim-
ulation result is regarded as a win when the score
is less than the average of those of other candidate
nodes. Table 2 shows some generated sentences.

From the results shown in Table 2, we see that
syntactically correct sentences are generated. In the
case of using AP, we also see that low frequency
words were selected in generating sentences, and
a sentence is generated without any influence from
word frequency. On the other hand, we have con-
firmed that when a generated sentence is evaluated
by PP, the sentence is influenced more by word fre-

Table 2: Generation with AP and PP

Length Generated sentences SP AP
5 those memorial neglected neither contraction-extension 0.999 85.46
6 all marketing half-straightened neither contraction-extension un-

derstandingly
0.999 91.79

Length Generated sentences SP PP
5 no theirs defied no improvement 0.999 1008.63
6 no one said his own work 0.999 156.85
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Figure 5: Statistics during MCTS simulations to generate a sentence from the situation {boy, play, basketball}.

quency than when AP is used.

7 Experiment with situational information

In this experiment, we aim to generate sentences
with specific words as given situational information.

7.1 Experimental settings

We use the same linguistic resources mentioned in
section 4. In the experiment, we dealt with three
cases where the content for a generated sentence has
the words, either “dog, run”, “dog, eat, bread”, or
“boy, play, basketball”.

As for lexical selection, we put a constraint that a
word to generate must have positive bigram counts
from the preceding word in the Wiki-5 statistics.
Setting this constraint avoids unlikely words in ad-
vance to achieve more appropriate lexical selection
within MTCS framework.

Furthermore, as for the constraints on the num-
ber of simulations and on the length of a generated
sentence, they are the same settings mentioned in
section 6.1 and 6.3, respectively.

7.2 Experimental results

Table 4 shows an example of generated sentences
from different situations. Comparing AP with PP,
when AP is used, a wide variety of words are se-
lected. As a concrete example, in the case where the
words “dog”, “eat” and “bread” are specified, when
PP was used for evaluation of the n-gram language
model, the word “every” was selected as an adjective
many times. In contrast, when AP was used, words
such as “another”, “neither” and “all” were selected.

Figure 5(a) shows the trends in the average val-
ues of AP and SP whenever the root node is updated

in MCTS simulations with an example of generat-
ing a sentence with the specified words {boy, play,
basketball}. We see that the value of SP is approxi-
mately 0.1 initially and then converges around 0.99
as exploration deepens. As for AP, we have not ob-
served any clear convergence in the exploration pro-
cess, however, at the initial stage of exploration we
have observed instead that generated sentences do
not satisfy the generation constraints, e.g., whose
length is too short or too long, therefore, the val-
ues of more than 100 or less than 20 have been ob-
served. Figures 5(b) and 5(c) shows the values of
AP of the initial and final 1,000 simulations, respec-
tively. From these figures, we see that AP converges
to a particular value.

For the output of situation (a) in Table 4 “every
dog runs her cat”, we have observed the sentences
that resulted in “lose” during the generation in Ta-
ble 5.

Table 5: Sentences that resulted in “lose” to generate every dog

runs her cat during the MCTS generation.

Sentence SP AP
be more in 0.126 28.03
be shall run or dog american 0.056 41.41
either dog was puppy 0.999 46.76
le dog runs his mr. three 0.999 34.14

8 Conclusions

In this paper, we proposed the first attempt to ex-
ploit MCTS for natural language generation. Be-
cause MCTS allows a stochastic search using the
possible yields, namely the sentence from the cur-
rent point of search, we can leverage both the syntac-
tic structure (CFG) and statistical fluency (n-grams)

16



Table 4: NLG with situational information. Situation of (a) = {dog,run}, (b) = {dog,eat,bread}, (c) = {boy,play,basketball}.

Situ. Len Generated sentences SP AP

(a)
4 either dog runs his cat 0.999 39.95
5 every dog runs her cat 0.999 37.13

(b)

5 every dog eats his bread 0.999 37.58
5 another dog eats his bread 0.999 42.73
6 neither dog eats its own bread 0.999 42.71
6 all dog eats its original bread 0.999 41.33

(c)

5 girls tennis played the rugby 0.998 59.65
5 volleyball boys played both rugby 0.998 72.03
6 girls tennis was played senior football 0.996 71.96
6 girls tennis played played and los 0.996 66.55

Situ. Len Generated sentences SP PP

(a)
4 this cat is run 0.999 76.87
5 some dog runs his cat 0.999 350.72

(b)

5 every dog eats his bread 0.999 310.92
5 no dog eats its flour 0.999 383.59
6 every dog eats its first flour 0.999 380.06
6 every dog eats its original bread 0.999 358.97

(c)

5 boys soccer played the tennis 0.999 317.28
5 girls tennis played an football 0.999 448.10
6 le boy plays her own tennis 0.999 549.45
6 boys tennis was played to all the 0.996 114.92

through a logistic regression to determine the “win”
or “lose” of generated sentences.

While our results are still preliminary using lim-
ited linguistic resources, we believe this method is
beneficial for future NLG integrating both the syn-
tax and semantics in an ingenious statistical way.
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