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Abstract

Very few datasets have been released for the evaluation of diagnosis coding with the International
Classification of Diseases, and only one so far in a language other than English. This paper de-
scribes a large-scale dataset prepared from French death certificates, and the problems which
needed to be solved to turn it into a dataset suitable for the application of machine learning and
natural language processing methods of ICD-10 coding. The dataset includes the free-text state-
ments written by medical doctors, the associated meta-data, the human coder-assigned codes for
each statement, as well as the statement segments which supported the coder’s decision for each
code. The dataset comprises 93,694 death certificates totalling 276,103 statements and 377,677
ICD-10 code assignments (3,457 unique codes). It was made available for an international auto-
mated coding shared task, which attracted five participating teams. An extended version of the
dataset will be used in a new edition of the shared task.

1 Introduction

Over the past decade, biomedical named entity recognition (NER) and concept normalization have been
widely covered in NLP challenges. Different types of texts were explored: clinical texts were used in the
CMC (Pestian et al., 2007) and the i2b2 NLP Challenges (Uzuner et al., 2007; Uzuner et al., 2011) while
the biomedical literature provided material for the BioNLP-Shared Tasks (Kim et al., 2011; Nédellec et
al., 2015). Few challenges offered datasets in more than one languages, such as the CLEF ER (Rebholz-
Schuhmann et al., 2013) and CLEF eHealth Challenges (Goeuriot et al., 2015)

The assignment of codes from the International Classification of Diseases (ICD) to clinical texts is
primarily used for billing purposes but also has a wide range of applications including epidemiologi-
cal studies (Woodfield et al., 2015), monitoring disease activity (Koopman et al., 2015a), or predicting
cancer incidence through retrospective and prospective studies (Bedford et al., 2014). Nevertheless, use-
ful results can only be achieved if ICD code assignment is accurate (Mieno et al., 2016), and studies
evidenced that it is a challenging task even when performed manually (Dalianis, 2014).

This is a motivation for creating shareable datasets for ICD coding from natural language text: text
corpora annotated with associated ICD codes that can be used to train and evaluate automatic coding
systems. Automatic coding has the potential to reduce the cost of physician involvement in the coding
process and to increase the consistency of coding.

A potential source of ICD coding datasets comes from death certificates, which are coded in countries
around the world according to the World Health Organization (WHO) international standards, using
ICD-10. This coding process exists in virtually every country, hence in a large variety of languages. We
describe herein the creation of a large-scale ICD coding dataset from death certificates, instantiated in
the case of France and the French language. This experience can pave the way for other instantiations in
other countries and languages.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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We first review related work on ICD coding datasets, briefly mentioning associated automated coding
methods. We then present the material we started from, the issues we encountered and how we solved
them. We describe the resulting data and its use in an international shared task.

2 Related work

In 2007, the Computational Medicine Center (CMC) challenge proposed to identify ICD-9-CM disease
codes on a corpus of outpatient chest x-ray and renal procedures (Pestian et al., 2007). In those docu-
ments, two sections are identified as more likely to yield codes: ‘clinical history’ and ‘impression’. Both
training set and test set are well balanced (respectively 978 and 976 documents). The corpus targeted
a subset of only 45 ICD-9-CM codes so that each one of the 94 distinct combination of codes from the
test set were seen during the training stage. The best system used a decision tree and achieved a 0.89
F-measure on the test set.

Apart from the CMC challenge, various studies have addressed automatic ICD-10 coding. Koopman
et al. (2015a) classified Australian death certificates into 3-digit ICD-10 codes such as E10 with SVM
classifiers based on n-grams and SNOMED CT concepts, and with rules. They also trained SVM clas-
sifiers (Koopman et al., 2015b) to find ICD-10 diagnostic codes for death certificates. In contrast to the
dataset presented here, they only addressed cancer-related certificates. In addition, they tackled the level
of 3-digit ICD-10 codes (e.g., C00, C97) instead of the full 4-digit level usually required for ICD-10
coding (e.g., C90.2). Another important difference is that they focused on the underlying cause of death,
i.e., one diagnosis per death certificate. The present dataset keeps all the diagnoses mentioned in each
statement of a given death certificate, so that the number of codes to assign to a certificate varies from
document to document and is not known a-priori. This dataset is intended to support a statement-coding
task rather than as a certificate-coding task.

Perotte et al. (2014) took advantage of the presence of ICD-9 codes in the MIMIC-II database along
with free text notes. They tested the use of the hierarchical structure of the ICD codes system to improve
automatic coding. They compared two coding approaches to assign ICD-9 codes to documents, using
SVM classifiers: one took into account the hierarchical structure of ICD-9 codes (hierarchy-based clas-
sifier); the other did not (flat classifier). They report higher recall (0.300) and F-measure (0.395) when
using the hierarchy-based classifier.

All of this work addressed English language free text. Additionally, ICD-10 coding shared tasks from
Japanese clinical records were organized at NTCIR-11 (MedNLP-2) (Aramaki et al., 2014) and NTCIR-
12 (MedNLPDoc) (Aramaki et al., 2016). The latter included 200 medical records with an average 7.82
sentences and 3.86 ICD codes per record, totalling 552 distinct codes. However, the inter-annotator
agreement was low, with an F-measure of 0.235. The best system obtained an F-measure of 0.348.

We present here the construction and use of a much larger-scale ICD-10 coding dataset in French.
Instead of clinical records, it is based on much shorter narratives, viz. death certificates.

3 Material and methods

This section describes the original data; it presents the issues that prevented direct use for a shared task
as well as the processing methods we designed to create a dataset suitable for a shared task.

3.1 The coding process at the French WHO collaborative center

Causes of death statistics are essential data to monitor population health, undertake epidemiological
studies and international comparisons.

Death certification by a medical practitioner is a mandatory procedure for any death occuring on the
French territory. It can be done on a paper certificate or through a secure Web application. In 2007,
electronic certification was introduced in France with the objective (among others) to provide a much
quicker process for health surveillance and alert systems (Pavillon et al., 2007). Currently, around 12%
of death certificates are electronically certified. The system is run on a completely voluntary basis.

Paper death certificates are keyed in by contractors. In this process, contractors may normalize parts
of the text to facilitate its subsequent coding; for instance, disease mentions may be replaced with an
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equivalent from a standard dictionary.
Causes of death data is centralized at the French Epidemiological Center for the Medical Causes of

Death (CépiDc – Inserm). Death certificates are coded with the international software IRIS (Johansson
and Pavillon, 2005) in order to assign a code selected from the International Classification of Diseases,
tenth revision (ICD-10) to each reported nosologic entity. Then several ICD rules are applied in order to
select the so-called underlying cause of death, which is used in most statistics compilations.

Death certificates are now increasingly produced electronically. While this makes the documents
more easily available for machine processing, it also creates new challenges. Since electronic certificates
are not handled by contractors, their variability of expression is higher than that of transcribed paper
certificates; they can also contain spelling errors. Therefore, it is more difficult to handle automatic
processing of electronic certificates compared to transcribed certificates which are currently handled
by IRIS. This creates an additional motivation for testing state-of-the-art automatic coding methods on
modern death certificates, as can be done in a shared task. For these reasons, we used electronic death
certificates to create the dataset described herein.

3.2 Data produced by this coding process
In compliance with the World Health Organization (WHO) international standards (Wor, 2011), French
death certificates are composed of two parts: Part I is dedicated to the reporting of diseases related to
the main train of events leading directly to death, and Part II is dedicated to the reporting of contributory
conditions not directly involved in the main death process. According to WHO recommendations, the
completion of both parts is free of any automatic assistance that might influence the certifying physician.

In the course of coding practice, the data is stored in different files: a file that records the native
text entered in the death certificates (called ‘raw causes’ thereafter) and a file containing the result of
normalizing the text and assigning ICD codes (called ‘computed causes’ thereafter). An example of
‘raw’ and ‘computed’ causes is show below in Table 1.

3.3 Encountered issues
We found that the formatting of the data into raw and computed causes made it difficult to directly relate
the codes assigned to original death certificate texts, which would reduce the interest of the data for a
shared task. The main issues we identified were:

1. Outside information needed. Some coding decisions were made after complementary information
was obtained through another channel, such as by contacting the author of the certificate. No trace
of this communication is present inside the death certificate itself, hence its contents are not relevant
as a source for coding.

2. Alignment challenge. The correspondence between the ‘computed causes’ records in the computed
causes file and the statements in the raw causes file could not be easily recovered through the
information present in these files. The raw causes file used actual line numbers of the source death
certificate (1–4 and 5), but the computed causes file sometimes did not keep the order of the causes
as mentioned in the raw causes, and used line numbering that could arbitrarily differ from that of
the raw causes. Further more, the text of the computed causes consists of a normalized excerpt of
the raw causes text that lead to the specific code assignment. In practice, this means that the specific
text strings were related, but often not identical.

The certificates which needed outside information to assign the correct code could be identified
through the mention of conditions that prevent a specific code assignment: décès de cause inconnue
(unknown cause of death), autopsie en cours (autopsy requested) or through the automatic detection of
incoherence between the cause mention and the patient age or gender. In those circumstances, a letter
is addressed to the doctor, in order to request additional information. Every year, about 1,800 letters
are sent and 500 answers received. With this feedback, codes are directly assigned to the corresponding
certificates without revising the original text; instead, a free text comment reporting on the support-
ing correspondance is entered in the coding software. The certificates meeting these criteria were then
removed from the dataset.
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The alignment issue required to find a method to align the source statements with the computed causes
records. We describe this method in the next section.

3.4 Pre-processing of death certificate through alignment
The goal of the alignment process is to obtain (statement, code) pairs, where the statement includes the
original text and its associated meta-information, as per the raw causes file, and the code is one of those
which should be assigned to this statement as per the computed causes file, together with the associated
normalized text. Input statements with multiple codes are repeated in multiple (statement, code) pairs.

A sample document is presented in table 1. This example illustrates different types of difficulty of the
alignment step:

• cause order is reversed (e.g., choc septique appears in line 1 of the raw causes but in line 3 of the
computed causes),

• multiple causes are merged on a single raw line (e.g. peritonite stercorale and perforation colique
on line 2),

• different capitalization and stopwords (e.g. see line 3 of aligned causes),

• different spelling. There is no occurrence of this in our sample document; however, a raw cause
such as bactériémie à K. pneumoniae would be normalized to bactériémie klebsiella pneumoniae,
using a variant of the name of the bacteria involved in the reported infection.

Table 1: A sample document from the CépiDC French Death Certificates Corpus: alignment of the raw
causes and computed causes. English translations for each text line are provided in footnotes.

data line text normalized text ICD
type codes

R
aw

ca
us

es 1 choc septique1 -
2 peritonite stercorale sur perforation colique2 -
3 Syndrome de détresse respiratoire aiguë3 -
4 defaillance multivicerale4 -
5 HTA5 -

C
om

pu
te

d
ca

us
es

1 defaillance multivicerale R57.9
2 syndrome détresse respiratoire aiguë J80.0
3 choc septique A41.9
4 peritonite stercorale K65.9
5 perforation colique K63.1
6 hta I10.0

A
lig

ne
d

ca
us

es 1 choc septique choc septique A41.9
2 peritonite stercorale sur perforation colique peritonite stercorale K65.9
2 peritonite stercorale sur perforation colique perforation colique K63.1
3 Syndrome de détresse respiratoire aiguë syndrome détresse respiratoire aiguë J80.0
4 defaillance multivicerale défaillance multiviscérale R57.9
5 HTA hta I10.0

Our alignment method relied both on the order that causes and codes occurred in the files and on string
similarity between the texts of raw and computed causes. More specifically, the principles we followed
to reconcile raw and computed causes were the following:

1septic shock
2colon perforation leading to stercoral peritonitis
3Acute Respiratory Distress Syndrome
4multiple organ failure
5HBP: High Blood Pressure
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• Alignments have the form (0, 1)→ m

• All computed causes must be supported by an input statement

• No alignment should have the form n → m. However, some death certificates contain separate
input statements which must be taken as a whole to produce a relevant code. An example is the
set of two lines 1. Strangulation au lien (ligature strangulation) and 2. Suicide which is coded as
X70.9 (Intentional self-harm by hanging strangulation and suffocation home during unspecified
activity), where the suicide must be coded by taking into account the specific circumstance that lead
to it (here, strangulation). In such cases we kept the input statements separate. The most generic
statement (e.g. suicide) was considered inconclusive and did not receive a code assignment while
the ‘head’ statement (e.g. ligature strangulation, which provided the defining information for code
assignment) was aligned with the output code.

To align the statements, we used a model originally intended for bilingual word alignment in paral-
lel sentences: a log-linear reparameterization of the IBM2 model (Dyer et al., 2013). The alignments
were produced from the computed clauses without allowing for null alignment in order to satisfy our
constraints, and with a Dirichlet prior to favor diagonal alignments.

The model underperforms on multi-word segments as it relies on co-occurrence counts of raw and
computed causes, which are very sparse. To overcome this problem, both causes were pre-processed
by removing stopwords and applying stemming. Next, the Damerau-Levenshtein distance between two
segments was linearly combined with the occurrence count to act as a prior on the alignment probabilities.

4 Results

We applied the above-described methods to the 2006–2013 death certificates created by the electronic
work-flow and describe the resulting data and its usage.

4.1 Corpus characteristics

Table 2 presents the fields found in each line of the produced dataset. One line is produced for each
(input line, output code) pair. Some input lines have no associated output code: the corresponding values
are empty. As explained in Section 3.4, this also occurs when two “raw cause” input lines need to be
considered together to be coded. In that case, only one of them has an associated code.

The dataset was split into training and test sets: the training set contains statements of years 2006–
2012, and the test set contains statements of year 2013. We now provide more detail on the training
set.

The distribution of statement length in tokens, after stop-word removal (French stop words of the
NLTK toolkit), is shown on Figure 1a. It shows that statement length follows a Zipfian distribution from
length 2 to length 31. Statements over 20 tokens are rare (455 = 0.17%), over 10 tokens too (9538 =
3.6%). The maximum length of a statement is 120 tokens.

Figure 1b shows the most frequent codes. The top five are R092 (Respiratory arrest), A419 (Sep-
ticaemia, unspecified), R688 (Other specified general symptoms and signs), I10 (Essential (primary)
hypertension), I509 (Heart failure, unspecified). These top diagnoses, as well as those in the rest of the
figure, display a mixture of very general diagnoses (unspecified, other) and most frequent causes of death
(infection, hypertension, pneumonia, cancer, etc.).

ICD-10 is divided into 21 chapters. Figure 1c shows the number of codes in each chapter in the
training set. The most represented chapters are Chapters IX (codes I00–I999, Diseases of the circula-
tory system), II (C00–D489, Neoplasms), XVIII (R00–R999, Symptoms, signs and abnormal clinical
and laboratory findings, not elsewhere classified), etc. Figure 1d shows the number of occurrences of
each age group for each chapter. A few chapters have a skewed distribution of age groups: P00-P969
(Certain conditions originating in the perinatal period: 99.8% for age group 0), Q00-Q999 (Congenital
malformations, deformations and chromosomal abnormalities, 55.4% for age group 0), and O00-O999
(Pregnancy, childbirth and the puerperium: 15.4% for age group 25, 46.3% for 30, 34.6% for 35).
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Field Contents
DocID Death certificate ID.
YearCoded Year the death certificate was processed by the human coder.
Gender gender of the deceased
Age Age at the time of death, rounded to the nearest five-year age group.
LocationOfDeath Location of death, according to the following categories: 1 = Home; 2 = Hospital;

3 = Private Clinic; 4 = Hopice, Retirement home; 5 = Public place; 6 = Other
Location.

LineID Line number within the death certificate. Note that if a statement is assigned multi-
ple ICD10 codes, it is repeated for each code, each time with the same LineID.

RawText Raw text entered in the death certificate.
IntType Type of time interval the patient had been suffering from coded cause, according to

the following categories: 1 = minutes; 2 = hours; 3 = days; 4 = months; 5 = years.
IntValue Length of time the patient had been suffering from coded cause; for example, if

the patient had been experiencing the cause for 6 months, IntValue should be 6 and
IntType should be 4.

CauseRank Rank of the ICD10 code assigned by the human coder. The rank (e.g., 2-1) is
composed of two items found in the original CausesCalculees file: the num-
ber of the line (NumLigne, e.g., 2) followed by the rank of the cause in that line
(RangCause, e.g., 1).

StandardText Dictionary entry or excerpt of the raw text that supports the selection of an ICD10
code.

ICD10 Gold standard ICD10 code.

Table 2: Fields in each row of the dataset. The last three fields are the output of the coding process.

4.2 Use in a shared task

The resulting dataset was used in an international shared task (Névéol et al., 2016). The certificates
corresponding to year 2006-2012 were used as a training set (N=65,844) while certificates corresponding
to the year 2013 were used as a test set (N=27,850). A small number of codes (N=244, about 10% of
the unique codes in the test set) in the test set were unseen in the training set. Five teams from three
countries submitted a total of seven runs for this task. Participating teams used methods relying either
on knowledge-base linking or statistical machine learning. Table 3 shows the performance of the official
runs, compared to a baseline run, which consisted in assigning codes to lines in the test set when an
exactly identical line was also found in the training set. When the line occurred multiple times in the
training set, the most frequent code was selected. It can be seen from the table that all runs submitted
by participants outperformed the baseline by at least 20 points in F-measure, thus demonstrating that the
state of the art in ICD10 coding is quite advanced.

We examined the relative difficulty of finding each expected statement code for the submitted systems:
for each death certificate statement and expected code for this statement, we counted the number of
systems which correctly found this code. Figure 2 shows the results.

We found out that among the 110767 distinct entries of the test dataset, 29100 were easy to find: all
systems found the correct answer; 25215 were fairly easy: all but one system found them; 20743 were
less easy (3 systems); 15933 were harder (2 systems); 10685 were rather hard: only one system found
them; and 7714 were hard: no system found them at all. The latter may help identify to difficult, hence
interesting problems, such as codes which need to refer to the broader context of the full death certificate,
beyond the current individual statement, to be assigned properly. They may also point at cases where
human coding might not be correct.
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Figure 1: Statistics on training set. (a) Distribution of statement length (after normalization, log-y scale).
(b) Most frequent codes. (c) Distribution of ICD-10 chapters. (d) Occurrences of age groups for each
chapter.

5 Discussion

With 93,694 death certificates totalling 276,103 statements and 377,677 ICD-10 code assignments (3,457
distinct codes), the size of the presented dataset is comparable to the largest so far on English (Perotte et
al., 2014) (22,815 discharge summaries and 215,826 ICD9 codes (5,030 distinct codes)), and is several
orders of magnitude above the other ICD coding datasets we identified (Pestian et al., 2007; Aramaki et
al., 2014; Aramaki et al., 2016).

An important difference though is that the present dataset consists of death certificate statements,
whereas the other cited datasets are made of clinical records such as discharge summaries. Death cer-
tificate statements are fairly short and focused on nosologic entities, whereas clinical records are usually
longer and mention a broader set of entities and events. Medical records exhibit a large range of sizes
however: for instance, texts in the MedNLPDoc dataset (Aramaki et al., 2016) contained on average 7.82
sentences.

A consequence of the difference between death certificate statements and for instance discharge sum-
maries is that death certificate statement coding might be more easily addressed as a text classification
task, whereas clinical record coding may need to rely on a step of entity detection and normalization
methods to identify more relevant pieces of information before ICD coding proper. This makes the
clinical record coding task more difficult and explains the lower F-measures obtained in that context.

Future plans include the extension of the present dataset with death certificates of more recent years
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Table 3: System performance for ICD10 coding on the death certificate test corpus. A * symbol indicates
statistically significant difference of a run with the runs ranked before and after it, according to a Student
test.

Team TP FP FN Precision Recall F-measure
TeamA-run2* 88497 11423 20321 0.886 0.813 0.848
TeamA-run1* 87404 10823 21414 0.890 0.803 0.844
TeamB-run2* 71319 9479 37499 0.882 0.655 0.752
TeamB-run1* 66954 15605 41864 0.811 0.615 0.700
TeamC-run1* 72192 31480 36626 0.696 0.663 0.680
TeamD-run1* 61874 19002 46984 0.765 0.569 0.652
TeamE-run1* 57256 40650 51562 0.585 0.526 0.554
Baseline-Zipf-Top1* 26688 23610 82130 0.531 0.245 0.336

Figure 2: Distribution of coding difficulty based on system results, based on the best run of each of the
five participating teams. Samples = number of systems which found the expected code for a statement.
Counts = number of (statement, code) pairs found by a given number of systems.

as they are processed by human coders. In an upcoming edition of the shared task, he dataset described
herein will be used as a training set while more recent data will be offered as a test set. This time-ordered
distribution of certificates in the datasets is guided by the practical use case of coding death certificates,
where historical data is available to coders who then need to work with current data. The goal of this
series of shared tasks is to engage the community in the development of ICD-10 coding methods that can
then be integrated to coders work flow as coding assistance and productivity enhancing tools.

We also plan to include additional languages in future datasets, as other WHO collaborating centers
express their interest in this enterprise. We hope that the development of a multilingual ICD-10 coding
dataset will foster the development of portable methods that can be easily adapted to several languages.

6 Conclusion

This paper presents a new dataset for ICD-10 coding based on death certificates in French. This is a large
dataset comprising death certificate statements in a language other than English as well as rich metadata
and professionally assigned gold-standard ICD10 codes. The preparation of the dataset involved the use
of complex alignment techniques to ensure the quality of the text-code pairings. It was shown to be a
suitable tool for evaluating the state of the art in ICD-10 coding in an international shared task. In future
work we plan to enhance the dataset with newer data for French as well as other languages in order to
foster global approaches to ICD10 coding.
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