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Abstract

Methods based on deep learning approaches have recently achieved state-of-the-art performance
in a range of machine learning tasks and are increasingly applied to natural language process-
ing (NLP). Despite strong results in various established NLP tasks involving general domain
texts, there is only limited work applying these models to biomedical NLP. In this paper, we
consider a Convolutional Neural Network (CNN) approach to biomedical text classification.
Evaluation using a recently introduced cancer domain dataset involving the categorization of
documents according to the well-established hallmarks of cancer shows that a basic CNN model
can achieve a level of performance competitive with a Support Vector Machine (SVM) trained
using complex manually engineered features optimized to the task. We further show that sim-
ple modifications to the CNN hyperparameters, initialization, and training process allow the
model to notably outperform the SVM, establishing a new state of the art result at this task.
We make all of the resources and tools introduced in this study available under open licenses
from https://cambridgeltl.github.io/cancer-hallmark-cnn/ .

1 Introduction

A major goal of cancer research is to understand the biological mechanisms involved in tumorous
growths starting in the body, being sustained, and turning malignant. Cancer is often described in the
biomedical literature by its hallmarks; a set of interrelated biological properties and behaviors that en-
able cancer to thrive in the body. The hallmarks of cancer were first introduced in the seminal paper
of Hanahan and Weinberg (2000), the most cited paper in the journal Cell. The paper introduces six
hallmarks, which were then extended in a follow-up paper (Hanahan and Weinberg, 2011) by another
four, forming the set of ten hallmarks that are known today. The current set of hallmarks distill our
knowledge of the disease into a fixed set of alterations in cell physiology that affect malignant growth,
such as self-sufficiency in growth signals, insensitivity to growth-inhibitors, evasion of programmed cell
death, limitless replicative potential, sustained angiogenesis, and tissue invasion.

In the context of biomedical text mining, the original six hallmarks of cancer were used as an orga-
nizing principle in the BioNLP Shared Task 2013 Cancer Genetics task (Pyysalo et al., 2013b), which
involved the extraction of events (biological processes) from cancer domain texts. The hallmarks have
also inspired other information extraction efforts and the development of tools such as OncoSearch (Lee,
2014) and OncoCL (Doland, 2014). In recent work, Baker et al. (2016) introduced a corpus comprised of
over 1,800 abstracts from biomedical publications annotated with the ten hallmarks of cancer. Baker et al.
also proposed a machine learning based method for classifying text according to the hallmarks. The ap-
proach utilizes a conventional NLP pipeline that extracts a feature-rich representation that is used to train
support vector machine (SVM) classifiers. The method achieves a respectable level of performance,
identifying hallmarks with an average F-score of 77%, but with the cost of involving a lengthy and
computationally demanding NLP pipeline.
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In this work, our focus is on studying biomedical text classification using machine learning methods
that emphasize feature learning rather than manual feature engineering. We adopt the task setting and
dataset of Baker et al. (2016), but instead of SVMs, we focus on convolutional neural networks (CNN).
CNNs were first proposed for image processing (LeCun and Bengio, 1995) and have been recently shown
to achieve state-of-the-art performance in a range of NLP tasks, in particular in text classification (Zhang
et al., 2015; Severyn and Moschitti, 2015; Zhang and Wallace, 2015). While neural network-based
methods in general and “deep” networks in particular are increasingly popular for general domain NLP,
there has been comparatively little work applying this class of methods to biomedical text. One recent
study applying a CNN model to biomedical text classification task was presented by (Limsopatham and
Collier, 2016), who applied CNNs to the task of adverse drug reaction detection in social media messages
(Ginn et al., 2014). In addition to the specific subdomain of the source texts and the novel categories
represented by the hallmarks of cancer, one factor that sets apart the task here from this previous work
is the length of the texts: instead of sentences or brief social media messages, our task involves the
classification of publication abstracts typically consisting of hundreds of words.

2 Data

For training and evaluating our methods, we use the corpus of 1852 biomedical publication abstracts
annotated for the hallmarks of cancer by Baker et al. (2016). Each abstract in the dataset may be labeled
with zero or more of the ten hallmarks, i.e. the task is multi-label classification. The ten hallmarks are
summarized below:

Sustaining proliferative signaling: Healthy cells require molecules that act as signals for them to grow
and divide. Cancer cells, on the other hand, are able to grow without these external signals.

Evading growth suppressors: Cells have processes that halt growth and division. In cancer cells, these
processes are altered so that they don’t effectively prevent cell division.

Resisting cell death: Apoptosis is a mechanism by which cells are programmed to die in the event that
they become damaged. Cancer cells are able to bypass these mechanisms.

Enabling replicative immortality: Non-cancer cells die after a certain number of divisions. Cancer
cells, however, are capable of indefinite growth and division (immortality).

Inducing angiogenesis: Cancer cells are able to initiate angiogenesis, the process by which new blood
vessels are formed, thus ensuring the supply of oxygen and other nutrients.

Activating invasion & metastasis: Cancer cells can break away from their site of origin to invade
surrounding tissue and spread to distant body parts.

Genome instability & mutation: Cancer cells generally have severe chromosomal abnormalities, which
worsen as the disease progresses.

Tumor-promoting inflammation: Inflammation affects the microenvironment surrounding tumors, con-
tributing to the proliferation, survival and metastasis of cancer cells.

Deregulating cellular energetics: Most cancer cells use abnormal metabolic pathways to generate en-
ergy, e.g. exhibiting glucose fermentation even when enough oxygen is present to properly respire.
Avoiding immune destruction: Cancer cells are invisible to the immune system.

We divide the dataset into ten binary-labeled datasets (one per hallmark), where the positive examples in
each are the abstracts annotated with the hallmark, and negative examples are those that are not. While
we generally aim to follow the experimental setup of Baker et al., we chose to split the annotated data
into training, development and test subsets instead of applying the cross-validation setup of the study
introducing the dataset. Cross-validation setups using all available data fail to make a clear separation
between data used for method development and blind data held out for final testing only, and should
be avoided in studies involving experimentally driven model refinement (as we do here). Consequently,
we initially split the corpus in 70/10/20% proportion to train, development and test sets with a random
sampling strategy that aimed to roughly preserve the overall class distribution in each sample. The test set
was held out during development and only used in the final experiments. Table 1 shows the distribution
of positive and negative labels for each hallmark.



Train Devel Test Total

Hallmark pos neg pos neg Ppos neg | pos neg

Sustaining proliferative signaling 328 975 43 140 91 275|462 1390
Evading growth suppressors 172 1131 22 161 46 320|240 1612
Resisting cell death 303 1000 42 141 84 282 | 429 1423
Enabling replicative immortality 81 1222 11 172 23 343 | 115 1737
Inducing angiogenesis 99 1204 13 170 31 335|143 1709

Activating invasion and metastasis 208 1095 29 154 54 312 | 291 1561
Genomic instability and mutation 227 1076 38 145 68 298 | 333 1519
Tumor promoting inflammation 169 1134 24 159 47 319|240 1612
Cellular energetics 74 1229 10 173 21 345|105 1747
Avoiding immune destruction 77 1226 10 173 21 345 | 108 1744

Table 1: Annotation statistics

3 Methods

We implement and evaluate two SVM-based methods and two CNN variants, described in the following.
All of these machine learning methods are applied to the multi-label task by training ten binary classifiers,
one for each hallmark label.

3.1 SVM with Bag of Words Features

We implement a simple classifier using only Bag of Words (BoW) features as a basic SVM baseline. In
the BoW approach each document is represented by the set of words appearing in it, discarding word
order and frequency information. For training the model, we use the linear kernel SVM implemented
in the Scikit-learn (Pedregosa et al., 2011) toolkit. We fine-tune the regularization hyperparameter c
conventionally using evaluation on the development dataset with a search between 10~2 and 102 on a
log scale.

3.2 SVM with Rich Features

For our primary point of reference, we replicated the NLP pipeline and SVM model of Baker et al. (2016)
for hallmark classification. This model uses a rich set of features derived from the application of several
state-of-the-art systems for biomedical NLP, summarized briefly in the following.!

Lemmatized bag of words All non-stop words in the documents are lemmatized using BioLemmatizer
(Liu et al., 2012) and included as features using a BoW-style representation.

Noun bigrams Compound nouns (without lemmatization) are combined to generate bigram features.
Nouns pairs often represent specific, discriminative concepts such as “gene mutation”.

Grammatical relations triples The C&C Parser with a biomedical domain model (Rimell and Clark,
2009) is used to parse the documents, and the dobj (direct object), ncsubj (non-clausal subject) and iobj
(indirect object) relations, and their head and dependent words then represented as features.

Verb classes The hierarchical classification of 399 verbs of Sun and Korhonen (2009) is used to gen-
erate features for verbs, utilizing all three levels of abstraction by allocating three bits in the feature
representation for each concrete class, i.e. one bit for each level of the verb class hierarchy.

Named entities (NE) The ABNER NER tool (Settles, 2005) is used to identify five named entity types
that are particularly relevant to cancer research: proteins, DNA, RNA, cell lines and cell types. Features
are then created pairing each entity type and its associated words.

Medical subject headings (MeSH) The MeSH headings assigned to the documents in the biomedical
publication indexing process are included as features using a bag-of-headings representation.

Chemical lists Similarly to MeSH terms, many documents are indexed with chemical identifiers. These
identifiers are used analogously to the MeSH terms to generate features.

"We refer to Baker et al. (2016) for the further details on this feature representation.
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Figure 1: Network architecture

All features are extracted from the training data and are then filtered by frequency to remove features that
are too common or too rare, leaving behind only the most discriminating features. We use a linear kernel
and fine-tune the regularization parameter c on the development dataset using the same process applied
for the BoW model. As there are significantly more negatively labelled documents than positives, we use
inverse class weighting in order to correct for the class imbalance when training the classifiers.

3.3 Convolutional Neural Network

We base our CNN architecture on the simple model of Kim (2014). In brief, this model consists of
an initial embedding layer that maps input texts into matrices, followed by convolutions of different
filter sizes and 1-max pooling, and finally a fully connected layer. The architecture is illustrated in
Figure 1. We implemented the neural network using Keras (Chollet, 2015). Model hyperparameters and
the training setup were initially based on those applied by Kim (2014), summarized in the following:

Parameter Value
Word vector size 300 (Google News vectors)
Filter sizes 3,4,and 5

Number of filters 300 (100 of each size)
Dropout probability 0.5
Minibatch size 50

Table 2: Kim (2014) model parameters

Some of these parameters were further refined in experiments using only the training and development
portions of the data (see Section 4.1). In the final test set experiments, we evaluate the network using
both the set of parameters used by Kim (2014) as well as with those selected in our development set
experiments. We train the models for 20 epochs using categorical cross-entropy loss and the Adam
optimization method (Kingma and Ba, 2014).

For regularization, we only apply dropout (Srivastava et al., 2014) before the output layer. We also
considered Lo regularization but did not find a consistent improvement in preliminary experiments.

3.4 Word embeddings

The first layer of the CNN involves mapping words in the input to dense, low-dimensional vectors. These
word embeddings are critically important as they represent the “meaning” of the words in the model, e.g.
how similar one word is to another. Although it is possible to learn these embeddings from scratch (i.e.
random initialization) during the normal training process, recent studies have shown that it is effective
to use embeddings that have been separately induced on large, unannotated corpora (Collobert et al.,
2011; Kim, 2014). Work in biomedical NLP has further established that word embeddings are domain-
dependent: to get the maximal benefit from using pre-trained embeddings for biomedical NLP tasks, the
embeddings must be induced using biomedical texts (Stenetorp et al., 2012).

We consider a variety of word embeddings induced using models implemented in the popular
word2vec package (Mikolov et al., 2013a). First, we use the general-domain Google News vectors



Source texts Vectors

Name domain size words dim OOV  Reference

Google News General 100B  3M 300 31.0% (Mikolov et al., 2013b)
Pyysalo PM Bio 3B 2.3M 200  0.52%  (Pyysalo et al., 2013a)
Pyysalo PMC Bio 25B  2.5M 200  0.51%  (Pyysalo et al., 2013a)
Pyysalo PM+PMC Bio 55B 4M 200 0.49%  (Pyysalo et al., 2013a)
Pyysalo Wiki+PM+PMC  General and bio 7.5B  5.4M 200  0.53%  (Pyysalo et al., 2013a)
Chiu win-2 Bio 27B  22M 200 0.49% (Chiuetal., 2016)
Chiu win-30 Bio 27B  22M 200 0.49% (Chiuetal., 2016)

Table 3: Word vectors

also applied by Kim (2014).2. Second, we evaluate three sets of word vectors induced on various com-
binations of PubMed (PM), PMC and Wikipedia texts by Pyysalo et al. (2013a).> Finally, we consider
two variants of PubMed-based vectors introduced by Chiu et al. (2016).* The properties of these word
vectors are detailed in Table 3. Note that unlike the other properties, the out-of-vocabulary rate (OOV) is
not a characteristic of the word vectors alone, but the ratio of words in the task training data that do not
appear in the work vectors. The high OOV rate for the Google News vectors is due primarily to removal
of stopwords, punctuation, and numbers (see also Section 4.1).

3.5 Experimental Setup

Classifier performance is evaluated using the standard precision, recall, and F-score metrics as well as
with the area under the receiver operating characteristic curve (AUC). Unlike precision and F-score,
AUC is invariant to the positive/negative class distribution. AUC is also more sensitive in summarizing
performance over all possible classification thresholds and eliminates the need to pick a specific threshold
for evaluation. AUC is therefore recommended for evaluating imbalanced datasets (Zhang and Wallace,
2015). As the dataset is comparatively small and the number of positive examples in particular is very
limited for many labels, the random factors in CNN initialization and training can have a substantial
effect on the resulting model. To address this issue, we systematically repeated each CNN experiment 10
times and report the mean of the evaluation results.’ To address overfitting in the CNN, we apply a form
of early stopping, testing only the model that achieved the highest results on the development set. In the
development experiments, we correspondingly report the highest f-score and AUC from any epoch.

4 Results

In the following, we first summarize results from adapting the basic CNN to the task using the develop-
ment data, and then present the comparative results on the test set.

4.1 Development results

We considered a range of modifications to the basic CNN model to better adapt it to biomedical domain
text classification in general and the specific task studied in this work in particular. Of these modifi-
cations, evaluation on the development set identified three that appeared to have beneficial effects on
performance: oversampling to address the class imbalance, using in-domain word vectors, and adjusting
the filter sizes to the task. We next briefly describe these modifications and the associated results.

Oversampling The dataset is highly biased, with negative examples outnumbering positives more than
10-fold for a number of the labels (Table 1). Standard training on such data is likely to result in models
with high precision, low recall, and thus comparatively low F-scores. Addressing this, we oversample
the positive examples in the training set with replacement so that their number matches that of the neg-
atives. This modification increased the average F-score on the development set from 85.3% to 86.1%.
As expected, the effect on the distribution-independent AUC metric was more limited, improving from
97.3% to 97.5% with oversampling.

2 Available from https://code.google.com/archive/p/word2vec/
3 Available from http://bio.nlplab.org/

4 Available from https://github.com/cambridgeltl/BioNLP-2016
>As SVM optimization is convex, repetitions are unnecessary.



F-score (%) AUC (%)

GoogleNews 86.1 GoogleNews 97.5
PMC 85.3 PMC 97.2
PM 85.2 PM 97.3
PM+PMC 85.2 PM+PMC 97.2
Wiki+PM+PMC 84.9 Wiki+PM+PMC 97.2
Chiu-win-2 86.1 Chiu-win-2 97.6
Chiu-win-30 85.6. Chiu-win-30 97.3
84.0 84.5 85.0 85.5 86.0 86.5 97.0 97.2 97.4 97.6

Figure 2: Embedding performance (macro-averaged) on the development dataset

Word embeddings As discussed in Section 3.4, the word vectors used to initialize the embedding
layer of the network can have a significant effect on performance. We trained the models using each
of the word vectors shown in Table 3 with oversampling (see above) and evaluated development set
performance using the maximum F-score and AUC metrics. The results are summarized in Figure 2.
Surprisingly, we find that the general domain Google News vectors give very competitive performance
despite their high out-of-vocabulary rate (see Table 3), outperforming all in-domain vectors with the
exception of the window size 2 word vectors of Chiu et al. (2016). Even these biomedical word vectors
only show very modest advantage over the Google News vectors for AUC. In the last development set
experiments below and the final test set experiments, we apply the PubMed-based vectors induced with
window size 2 from Chiu et al. that were shown to give the best results here.
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Figure 3: Macro-average AUC with respect to a varying number of filter sizes. Each point on the graph
represents the maximum size of filter used (e.g. for 2 filter sizes, performance with filters of sizes 2 and
3 is plotted at 3).

Filter sizes We experiment with varying the number of filter sizes in the convolutions. The base model
of Kim (2014) uses three filter sizes (3,4,5); as part of our hyperparameter search, we investigated what
happens to the performance (AUC) with respect to varying filter sizes (1-10) and numbers of filter sizes
(1-5), while keeping the total number of filters constant at 300 and filter sizes are ordered consecutively.
Figure 3 shows that performance generally falls when increasing the filter size, and the best performance
is achieved using three filters of sizes (2,3,4). Another important observation is that the variation in
performance is not very substantial, implying that the model is fairly robust to the specific setting of this
parameter.



4.2 Test results

SVM CNN
Hallmark BoW Rich Base  Tuned
Sustaining proliferative signaling 70.0% 674% 663% 67.9%
Evading growth suppressors 53.5% 653% 66.7% 71.5%
Resisting cell death 759% 827% 86.9% 86.7%
Enabling replicative immortality 73.1% 909% 91.2% 91.5%
Inducing angiogenesis 73.9% 85.7% T14.8% 79.4%

Activating invasion and metastasis  72.5% 72.7% 82.0% 82.6%
Genomic instability and mutation ~ 71.2% 69.2% 72.2% 81.7%
Tumor promoting inflammation 69.9% 76.6% 81.6% 84.2%

Cellular energetics 781% 85.7% 76.6% 88.3%
Avoiding immune destruction 543% 71.8% 67.7% 75.8%
Average 692% 76.8% 76.6% 81.0%

Table 4: Comparison of test results using F-score

SVM CNN
Hallmark BoW Rich Base Tuned
Sustaining proliferative signaling 88.6 889 921% 91.0%
Evading growth suppressors 879 917 948% 96.4%
Resisting cell death 924 955 971% 97.7%
Enabling replicative immortality 924 974 998% 99.5%
Inducing angiogenesis 947 984 979% 99.1%

Activating invasion and metastasis  96.0 940 97.8% 98.2%
Genomic instability and mutation 925 91.7 958% 97.0%

Tumor promoting inflammation 92.7 959 983% 98.1%
Cellular energetics 99.1 996 99.5% 99.6%
Avoiding immune destruction 946 96.1 97.8% 99.1%
Average 93.1 949  971% 97.6%

Table 5: Comparison of test results using AUC

The results of the evaluation on the test data are shown in Table 4 for F-score and 5 for AUC. Overall,
both metrics agree that the SVM with bag-of-words features has the lowest performance, and the CNN
tuned to the task the highest. As could be expected, the SVM with rich features outperforms the base
CNN in terms of F-score; however, the latter, generic model achieves a notably higher AUC than the
SVM, suggesting that the slight advantage of the former for F-score may be due in part to a better
position of the decision boundary.

The CNN tuned to the task achieves the highest performance on average by both metrics, and further
has the highest performance for 7/10 individual classification tasks in terms of both F-score and AUC,
outperforming the previous state-of-the-art on this dataset.

5 Discussion

Our evaluation contrasts methods separated by two methodological divides: discrete, interpretable, hand-
engineered features vs. continuous, opaque, automatically learned features for one, and convex optimiza-
tion vs. gradient descent in a complex landscape with many local minima for the other. The choice be-
tween the SVM representing the former choices and the CNN representing the latter is not necessarily
only a question of which performs better, but also of methodological fit, both to the broader machine
learning framework and for the practitioners applying the approach.

A key point of interest in neural methods is feature learning, i.e. their capacity to learn complex
models with minimal manual effort in feature engineering. As shown again in our experiments, a CNN
taking only document text and word embeddings induced from unlabeled text as input can outperform
an SVM with extensive manually engineered features derived from sources such as syntactic analysis
and named entity recognition. While the 3-4% point differences in AUC and F-score are positive results
in favor of the CNN, the relative simplicity and generality of the model is arguably a greater advantage
supporting the choice of the CNN over the feature-rich SVM — indeed, one might well argue that the



most interesting of our results is that the basic general CNN without any task or domain adaptation only
narrowly loses to the SVM in F-score, and outperforms it in terms of AUC. The CNNs can be more
readily adapted to other tasks and carry much fewer technical requirements: while the SVM system of
Baker et al. (2016) requires running separate tools for lemmatization, parsing, and named entity tagging
in addition to the machine learning method, the CNN has no such external dependencies.

For practitioners familiar with SVMs and domain NLP tools, it should be noted that the potential shift
to neural methods is not without its own issues. As detailed by Zhang and Wallace (2015), even the
simple CNN model considered here comes with a potentially overwhelming number of hyperparameters
and related modeling and optimization choices, many of which have task-specific optima, and the cost
of training and evaluating large numbers of model variants can be prohibitive even on modern GPU-
based systems.® For machine learning researchers used to working with convex optimization problems,
the random elements involved in training neural network models can also be a source of frustration,
and the need to account for variance from network initialization and training also imposes additional
computational costs.

Nevertheless, we believe that the simplicity, performance and rich potential for extension and further
development of CNNs are more than sufficient to motivate further research on this class of models also
in biomedical NLP and anticipate that many domain text classification tasks will see new state of the art
results through the use of this class of neural networks.

6 Conclusions

In this study, we have considered the application of convolutional neural networks to the biomedical do-
main text classification task of identifying the hallmarks of cancer associated with publication abstracts.

Using a recently introduced corpus, we demonstrated that a CNN model taking only the document text
and word representations induced from unannotated general-domain text as input can achieve competitive
performance with a previously proposed SVM-based state-of-the-art classifier with rich manually engi-
neered features including syntactic analyses and named entity recognition outputs. We further adapted
the CNN to the task by oversampling positive examples to counteract the class bias, using word vectors
induced on biomedical domain text, and optimizing the filter sizes through evaluation on the development
set. The adapted model was shown to outperform the SVM, establishing a new state-of-the-art result for
this dataset.

We make all of the resources involved in this study available under open source and open data licenses
from https://cambridgeltl.github.io/cancer-hallmark-cnn/ .
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