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Abstract

Concomitant with the globalization of food culture, demand for the recipes of specialty dishes
has been increasing. The recent growth in recipe sharing websites and food blogs has resulted
in numerous recipe texts being available for diverse foods in various languages. However, little
work has been done on machine translation of recipe texts. In this paper, we address the task
of translating recipes and investigate the advantages and disadvantages of traditional phrase-
based statistical machine translation and more recent neural machine translation. Specifically,
we translate Japanese recipes into English, analyze errors in the translated recipes, and discuss
available room for improvements.

1 Introduction

In recent years, an increasing amount of recipe data has become available on the web. For example, as
of September 2016, more than 2.45 million recipes are available on cookpad, 1 million on Yummly, and
0.3 million on Allrecipes, to name a few. These recipes are from all over the world, and are written in
various languages, including English and Japanese. However, language barriers may prevent the users
from discovering recipes of local specialities.

Many researchers have focused on various tasks such as recipe analysis (Maeta et al., 2015), infor-
mation retrieval (Yasukawa et al., 2014), summarization (Yamakata et al., 2013), and recommenda-
tion (Forbes and Zhu, 2011). However, to date, little work has been done on machine translation of
recipe texts. In particular, Japanese foods are gaining popularity because they are considered healthy.
We believe that many people would be able to use cooking recipes currently available only in Japanese
if those Japanese recipes were translated into other languages.

In this study, we translated recipes via machine translation and investigated the advantages and dis-
advantages of machine translation in the recipe domain. First, we translated Japanese recipes into En-
glish using phrase-based statistical machine translation (PBSMT) and neural machine translation (NMT).
Then, we classified translation errors into several categories in accordance with Multidimensional Qual-
ity Metrics (MQM) (Burchardt and Lommel, 2014). Finally, we analyzed the classified errors and dis-
cussed how to mitigate them.

2 Recipe Parallel Corpus

As described in the previous section, we focused on translating Japanese recipe texts into English, be-
cause almost all of the recipe texts on cookpad, which is one of the largest recipe sharing services in the
world, are written in Japanese. We used a Japanese-English parallel corpus provided by Cookpad Inc.
that includes 16, 283 recipes. Each recipe mainly consists of a title, ingredients, and steps. Examples of
a title, an ingredient, and a step are shown in Table 1.1 Unlike general parallel corpora, a translation pair
of a step does not always consist of one parallel sentence. Examples of step texts in Table 1 show the
case where there are two sentences in the translation pair.

1In this paper, we use the abbreviation of the cases: NOM (nominative), ACC (accusative), and TOP (topic marker).
This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Table 1: Examples of title, ingredient and step.
Title 簡単シンプル !ふわふわ卵 のオムライス

easy simple ! fluffy egg of omurice
Easy and Simple Fluffy Omurice

Ingredient ご飯 (冷やご飯でも可 )
rice ( cold rice also available )
Rice (or cold rice)

Step ケチャップと ソースを 混ぜ合わせます . 味見しながら比率は 調節 してください .
ketchup and sauce ACC mix . taste while ratio TOP adjust please .
Mix the ketchup and Japanese Worcestershire-style sauce. Taste and adjust the ratio.

Table 2: Number of sentences and words in each field.
Language Title Ingredient Step Total

sentence 16, 170 131, 938 124, 771 272, 879
word Japanese 115, 336 322, 529 1, 830, 209 2, 268, 074

English 100, 796 361, 931 1, 932, 636 2, 395, 363

These translation pairs were collected through the following two processes: translation and modifica-
tion. First, a Japanese native speaker fluent in English translated Japanese recipes into English. Then, two
native English speakers checked the translation and modified it as necessary. Note that the participants
in these two processes were familiar with cooking.

We adopted the following three preprocessing procedures to this corpus in order to easily handle it.
First, each Japanese text and its English translation in steps were split into sentences by a period. We used
sentences that met the following conditions in our experiments: (1) the number of the split sentences in
Japanese is the same as that in English or (2) there are exactly one Japanese and two English sentences.
In the sentences in English that met the second condition, the first period was changed into ‘, and’ to join
two English sentences. This preprocessing excluded 25, 654 texts where there were 59, 282 Japanese
step sentences and 57, 016 English step sentences. Second, we excluded sentence pairs where the longer
sentence is more than two times longer than the other. This process is necessary because some English
sentences were translated as simple expressions, and hence the ratio of the length of the sentence pairs
was sometimes large. An example is shown below.

(1) 関西の
kansai-style

お店の
restaurant

味
taste

!
!
我が家の
my own home

お好み焼き
okonomiyaki

．
.

kansai-style okonomiyaki .

Third, sentences that contain more than 40 words were excluded from our experiments. Table 2 shows
the number of sentences and words in each field after preprocessing. The size of the Japanese vocabulary
was 23, 519, while that of the English vocabulary was 17, 307.

After prepossessing, we randomly chose 100 recipes as a development set (1, 706 sentences) and 100
recipes as a test set (1, 647 sentences). The former was used to tune our translation models, while the
latter was used to analyze translation errors and to evaluate the translation models.

3 Machine Translation Methods

We used two methods in our experiments: PBSMT and NMT. The former has been widely accepted as
one of the bases of machine translation systems that we generally use, whereas the latter has been gaining
great attention in research community because of its fluency and simplicity.

PBSMT obtains a language model and a translation model (phrase table) from a parallel corpus and
translates sentences based on these models (Koehn et al., 2003). The method achieves good performance
on any language pair consisting of languages whose word orders are similar to each other, as in the case
of English and French. Conversely, it performs poorly when the word orders of the languages differ, as in
the case of English and Japanese. In addition, PBSMT often generates ungrammatical sentences because
it does not consider syntactic information.

59



NMT embeds each source word into a d-dimensional vector and generates a target sentence from the
vectors (Sutskever et al., 2014). Even though the method does not use any syntactic information, it can
generate grammatical sentences. However, due to the execution time it requires, NMT generally limits
the size of the vocabulary for a target language. Therefore, compared with PBSMT, which can handle
many phrases in the target language, NMT has a disadvantage in that it cannot generate low frequent
words. The method also has the disadvantage that it often generates target words that do not correspond
to any words in the source sentences (Tu et al., 2016).

The setting for each method in this study was as follows. We used the parallel corpus described in
Section 2 as our corpus, Moses (ver.2.1.1) (Koehn et al., 2007) as the PBSMT method, and conducted
Japanese word segmentation using MeCab (Kudo et al., 2004) with IPADIC (ver.2.7.0) as the dictionary.
Word alignment was obtained by running Giza++. The language model was learned with the English
side of the recipe corpus using KenLM (Heafield, 2011) with 5-gram. Other resources in English were
not used for training the language model because the style of recipe texts is different from general corpus
in that it contains many noun phrases in title and ingredient, and many imperatives in step. The size of
the phrase table was approximately 3 million pairs, and we used the development set to tune the weights
for all features by minimum error rate training (MERT) (Och, 2003). We used the default parameter 6
for the distortion limit.

We reimplemented the NMT model in accordance with (Bahdanau et al., 2015). Note that we
used long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) instead of gated recurrent
unit (Cho et al., 2014) for each recurrent neural network (RNN) unit of the model. The model had
512-dimensional word embeddings and 512-dimensional hidden units with one layer LSTM. We set the
vocabulary size of the model to 30, 000, and we did not perform any unknown word processing during
training. Adagrad (Duchi et al., 2011) was used with the initial learning rate of 0.01 as an optimization
method. The initial values for word embeddings on both sides were obtained by training word2vec2

with default setting because better results were shown in our preliminary experiments. The initial word
embeddings on the source side were learned with a raw Japanese recipe corpus (Harashima et al., 2016)
consisting of approximately 13 million step sentences. Conversely, initial word embeddings on the target
side were learned with approximately 120, 000 English step sentences included in the parallel corpus.
Title sentences were not used for learning because they were often written with free expression largely
different depending on each recipe. Ingredient sentences were also not used because most of them con-
sisted of a few words. The batch size was set to 64 and the number of epochs was set to 10. We selected
the model that gave the highest BLEU score in the development set for testing. Beam search for decoding
in NMT was not carried out. When testing, the output length was set up to 40 words.

Each output was evaluated via two metrics: bilingual evaluation understudy (BLEU) (Papineni et al.,
2002) score and rank-based intuitive bilingual evaluation score (RIBES) (Isozaki et al., 2010). BLEU is
more sensitive to word agreement than RIBES, whereas RIBES is more sensitive to word order evalua-
tion. We set two hyper-parameters for RIBES: α was 0.25 and β was 0.10.

4 Error Classification of Recipe Translation

We conducted blackbox analysis on the outputs of PBSMT and NMT. Blackbox analysis is a type of
analysis that does not take into account how translation output is obtained. The error classification used
for this analysis is based on the MQM ANNOTATION DECISION TREE (Burchardt and Lommel, 2014)
because it makes the classification of each error more consistent. The method classifies each error by
following a decision tree where each node asks a Yes/No question. If the question is answered with a
‘Yes’, the corresponding text span is classified as the error specified by the tree node. When a text span
is classified as an error at higher priority, that part is not classified as other errors. The same process
continues until the lowest priority error is checked.

The error classification defined in MQM is roughly divided into two parts: Accuracy and Fluency.
Accuracy addresses the extent to which the target text accurately renders the meaning of the source text.
It is usually called ‘Adequacy’ in the literature. Fluency relates to the monolingual qualities of the target

2https://radimrehurek.com/gensim/models/word2vec.html
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text. In this section, we explain the fine classification of accuracy and fluency metrics in detail and
describe how to classify and analyze the errors.

4.1 Accuracy

In terms of accuracy, MQM defines (1) Omission, (2) Untranslated, (3) Addition, (4) Terminology, (5)
Mistranslation and (6) General. In this study, we adapted the MQM ANNOTATION DECISION TREE
to recipe translation to classify each error. We modified the original MQM ANNOTATION DECISION
TREE in three different ways. First, we divided mistranslation errors into substitution and word order
and considered them independently. This is because the tendency of substitution and word order is so
different in a distant language pair such as Japanese and English that the difference should be reflected.
Second, we defined a new order to classify each error, in which substitution and word order are given
the highest priority. This makes the classification of substitution easy, especially for NMT, which some-
times outputs completely different target words from source sentences. Third, we excluded terminology
because terminology-related errors do not occur when only a single domain, such as food recipes, is
considered. Therefore, in this study, the following fine classification was applied: (1) Substitution, (2)
Word order, (3) Omission, (4) Untranslated, (5) Addition, (6) General. Here, we explain the definition of
each error classification with examples.

Accuracy (Substitution) The target content does not represent the source content owing to inappro-
priate words. In the following example, ‘Heat’ is used for ‘割る’ (break).

(2) 卵
egg
を
ACC

割る
break

．
.

Heat an egg .

Accuracy (Word order) The target content does not represent the source content owing to inappropri-
ate word positions. In the following example, ‘from step 1’ should be placed after ‘into a bowl .’.

(3) 1の
1 from

器
bowl

に
into
レタス
lettuce

を
ACC

入れる
add

．
.

Add the lettuce from step 1 into a bowl .

Accuracy (Omission) Content in the source sentence is missing from the translation. In the following
example, the translation does not contain a word for ‘はちみつ’ (honey).

(4) はちみつ
honey

生地
dough

は
ACC

1次
first

発酵
fermenatation

まで
until

済ませる
finish

．
.

Make the dough until the first rising .

Accuracy (Untranslated) Source words have been left untranslated. From the following example, it
can be seen that there is an untranslated word ‘狭い’ (narrow).

(5) 長さ
length

を
ACC

整え
adjust

,
,
幅
width

の
NOM

狭いほう
narrow

で
with

カットする
cut

．
.

Adjust the length , and cut the狭い into it .

Accuracy (Addition) The translation includes words or phrases that are not present in the source
sentence. In the following example, ‘red’ and ‘into a pot’ should not have been added.

(6) ソース
sauce

を
ACC

加える
add

．
.

Add the red sauce into a pot .
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Accuracy (General) It is applied when the translation error is difficult to classify into a certain cat-
egory in terms of accuracy. The number of errors is counted by phrases in the source that are not
represented in the target. In the following example, there are four errors.

(7) 出来上がった
finished

時に
when

倒れない
fall not

ためです
for

．
.

It will be hard to cover the cake .

4.2 Fluency
In terms of fluency, MQM defines (1) Word order, (2) Word form, (3) Function words, (4) Grammar
general, (5) Fluency general. Here, we explain the definition of each error classes with examples.

Grammar (Word order) The word order is incorrect. In the following example, the position of the
word ‘place’ is incorrect and is considered to be before the word ‘parts’. The number of errors equals
the number of content words at wrong positions.

(8) Parts of the face , place on a baking sheet .

Grammar (Word form) The wrong form of a word is used. The following example includes one error
because ‘uses’ is incorrect.

(9) I uses the dough for step 4 .

Grammar (Function Words) This is a misuse of function words such as preposition, particle, and
pronoun. From the following example, it can be seen that the function word ‘to’ is unnecessary.

(10) It ’s finished to .

Grammar (General) In addition to the errors identified above, there are other grammatical errors such
as insertion and omission of unnecessary content words. In the following example, there is not a verb.

(11) The honey dough for the first rising .

Fluency (General) Even when a sentence is grammatically correct, it may have some issues in terms
of fluency. The sentence used as the example of this category is unintelligible because of the phrase ‘from
the cake’. For each unintelligible phrase, we count content words in it as errors (in this case, ‘cake’ and
‘future.’).

(12) I was going to be taken from the cake in the future .

5 Results and Discussion

We translated Japanese sentences in the corpus described in Section 2 into English sentences following
the procedure described in Section 3. We then evaluated the outputs with automatic evaluation metrics,
BLEU and RIBES. Finally, we discussed the results for each type of sentence, title, ingredient, and step.
The outputs were also analyzed following the error classification procedure outlined in Section 4. Note
that all the recipes in the test set were used for the automatic evaluation and 25 recipes randomly chosen
from the test set were used for error analysis.

5.1 Automatic Evaluation
The results obtained following automatic evaluation by BLEU and RIBES are shown in Table 3.

Title is represented with a relatively large vocabulary and free expression largely different depending
on each recipe. In other words, it includes low frequent expressions. The percentage of the number of
sentences for which title accounts is very low compared with ingredient and step as shown in Table 2.
Hence, the translation of title is more difficult than that of ingredient and step owing to data sparsity.
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Table 3: Automatic evaluation BLEU/RIBES results.
Method Title Ingredient Step Total
PBSMT 22.15 / 61.85 56.10 / 90.03 25.37 / 74.98 28.09 / 81.72
NMT 19.68 / 61.49 55.75 / 89.70 25.68 / 77.84 28.01 / 82.79

Table 4: Number of accuracy errors in 25 recipes.
Method Substitution Word order Omission Untranslated Addition General Total
PBSMT 49 (11.0%) 98 (21.9%) 139 (31.1%) 23 (5.1%) 95 (21.3%) 43 (9.6%) 447
NMT 102 (19.2%) 20 (3.8%) 176 (33.1%) 0 (0.0%) 114 (21.5%) 119 (22.4%) 531

PBSMT shows better performance for title translation than NMT both in BLEU and RIBES, because it is
possible for PBSMT to partially translate title using the phrase table created from infrequent expressions.
On the other hand, some NMT outputs are very short and do not include any word that corresponds to
any source words. It resulted in poor performance of BLEU.

Ingredient has very short sentences, with an average length of 3.0 words. In addition, there are not
many translation candidates for each ingredient. Consequently, the BLEU and RIBES scores for both
methods are very high. Although the margin between PBSMT and NMT is small, PBSMT exhibited
better performance in both metrics. Translating the names of ingredients was similar to translation using
a dictionary, at which PBSMT is better.

In the translation of step, NMT shows better performance than PBSMT in BLEU and RIBES. When
several nouns are enumerated, the reordering distance tends to be long because the target sentence is usu-
ally written in imperative form. However, it appears that NMT does not have any difficulty in translating
such sentences. This is because NMT is good at modeling long dependencies owing to the use of RNN.
There is also a case where omission occurs in a source sentence and zero-anaphora and/or coreference
resolution will be required to generate the omitted word in a target sentence. It appears difficult for both
methods to output a word for the omitted word but NMT tended to estimate more words than PBSMT.

Finally, let us look at the results for RIBES. It is possible that RIBES is a metric that can be higher for
NMT than for PBSMT. NMT tends to output shorter sentences than the references. Conversely, PBSMT
does not output sentences that are as short as those of NMT because it ensures that all the source phrases
are translated. However, the default parameter of RIBES optimized for patent translation (Isozaki et al.,
2010) does not significantly penalize omission errors that frequently occur in NMT. Instead, it penalizes
substitution errors and word order errors, which are abundant in PBSMT. This suggests that we need to
investigate a better evaluation metric for assessing the quality of NMT.

5.2 Error Analysis

5.2.1 Accuracy

The number of accuracy errors is shown in Table 4. Compared with NMT, PBSMT has many errors re-
lated to the word order. In general, PBSMT exhibits poor results against syntactically different language
pairs because reordering words is difficult in such cases. As the sentence length becomes longer, word
order errors increase, because reordering words becomes more difficult. The majority of the corpus used
in this study comprised short sentences, especially for title and ingredient. Ingredient sentences are very
short and title sentences are relatively short. The average length of step sentences is also not so long, and
is 14.0 words in Japanese and 15.0 words in English. However, many steps are written in imperative or-
der form in English. Consequently, even when the sentence length is short, inevitably a word order error
occurs because word reordering frequently occurs in the case of long distances. The example below is a
part of a sentence in which some ingredients are enumerated; thus, PBSMT has difficulty in reordering
word positions.
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(13) 4
4
の
from

鍋
pan
に
to

1の
1 from

ブリ
amberjack

＆
and

3の
3 from

大根
daikon radish

＆
and
しいたけ
shiitake mashrooms

＆
and
生姜
ginger

を
ACC

入れ
add

，
,

PBSMT: Amberjack and daikon radish and shiitake mushrooms , and add the ginger from step 1
to the pan from step 3

This error is frequently seen because the names of ingredients often appear in steps. It appears that the
solution in order for PBSMT to handle these errors requires a translation model with a syntactic rule such
as a constituent structure or dependency structure.

On the other hand, NMT has many more errors in terms of substitution than with PBSMT. In substi-
tution, there were errors in which the meanings of the source word and the target word were not similar
at all. For example, ‘sweet potato’ was output as the translated word for ‘キャベツ’ (cabbage). To solve
this problem, the use of lexicon probability obtained from a phrase table or a dictionary is considered
promising for the NMT model (Arthur et al., 2016).

There were many omission errors and addition errors in both PBSMT and NMT. In particular, omission
errors account for a large percentage in both methods. The following example shows that omission errors
or addition errors occur in either, or both methods.

(14) ホームベーカリー
bread maker

の
of
生地作りコース
dough setting

で
with

生地
dough

を
ACC

作る
make.

．

PBSMT: Make the dough in the bread maker to make the dough.
NMT: Make the dough using the dough setting.
Reference: Use the bread dough function on the bread maker to make the bread dough.

In terms of omission or addition errors, PBSMT and NMT output errors occur in the same sentences
although the error positions are different. In the example above, omission of ‘生地作りコース’ (dough
setting) and addition of ‘to make’ and ‘the dough’ are seen in the PBSMT output. On the other hand,
NMT omits the translation of ‘ホーム ベーカリー の’ (on the bread maker). Thus, it appears that
sentences in which machine translation output errors occur in both methods are somewhat similar.

Addition is seen in a sentence where an object in Japanese is omitted. Recipe steps in Japanese tend
to omit words that have already appeared in the same recipe. In the translation of such sentences, some
words should be inserted in the target sentence. An example is given below.

(15) 紙
paper

に
in
包んで
wrap

，
,

NMT: Wrap the cake in the cake paper,
Reference: Wrap the cakes in parchment paper,

This sentence does not contain the source word that corresponds to ‘the cake‘, but the word exists in the
reference. NMT succeeded in generating ‘the cake’ in this example. However, in general, performing
zero-anaphora resolution for inter-sentential arguments is difficult. NMT is more promising than PBSMT
in terms of modeling of long dependency to estimate omitted arguments. It appears important to take
into account the ingredients used or the order in which actions are completed in the flow of the recipe.

Although ‘untranslated’ is considered an error that occurs only in PBSMT, the ratio proves to be very
low. The corpus used in this study did not have a large vocabulary; therefore, the words that appeared in
the training dataset include almost all of the words in the test set. Therefore, untranslated errors rarely
occurred in this dataset.

5.2.2 Fluency
The number of fluency errors is shown in Table 5. Word order errors appear to have occurred for the
same reason as word order errors that adversely affect accuracy.

Few word form errors were seen in both methods. There was little ambiguity in tense, because title and
ingredient are mostly noun phrases, and most of the steps are written in imperative form. In addition,
disagreement between subject and verb or that of tense rarely occurred, because most of the subjects
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Table 5: Number of fluency errors in 25 recipes.
Grammar Fluency

Method Word order Word form Function words General General Total
PBSMT 18 (14.0%) 2 (1.6%) 24 (18.6%) 73 (56.9%) 12 (9.3%) 129
NMT 4 (4.8%) 1 (1.2%) 6 (7.2%) 17 (20.5%) 55 (66.3%) 83

corresponded to ingredients, which are expressed in third person singular.

More function word errors were seen in PBSMT than in NMT. The main class of word error encoun-
tered was the addition of an unnecessary function word. The reason for this appears to be the noise in the
phrase extraction process when creating a phrase table. Output consisting of phrases with noise can be
avoided by taking syntactic constraints into account. In the following example, ‘in’ is an inappropriate
word:

(16) PBSMT: Remove the sinew from the chicken tenders and fold in lightly .

The errors in grammar in general were mainly errors related to a content word. In particular, omission
and addition of a noun and a verb are observed in many outputs. This appears to have the same cause as
function word errors. The following example shows the omission of a verb:

(17) PBSMT: Basic chiffon cake milk to make the dough .

The output of NMT has many unintelligible sentences that are classified under fluency general. NMT
outputs a few grammar-related errors, such as word order, function word, and grammar general. Repeti-
tion of the same word and phrase were commonly seen in NMT but never in PBSMT.

(18) NMT: leave to steam for about 2 hours , and open the pot , and open the pot .

6 Related Work

In machine translation in the recipe domain, solving zero-anaphora analysis problems appears to be es-
sential because some of step sentences have an order relationship in which reference is made to words
that have previously appeared, especially ingredients with zero pronouns. In other words, better transla-
tion performance can be obtained if ingredients in the flow of the recipe are correctly detected. Mori et
al. (2014) annotated a role label for each ingredient in a monolingual recipe corpus to model the recipe
flow. If the information is appropriately adapted to the machine translation process well, some problems
encountered by the machine translation systems in the recipe domain can be solved.

Bentivogli et al. (2016) conducted error analysis of PBSMT and NMT with the English-German lan-
guage pair. THe authors were the first to work on error analysis of NMT and also with PBSMT and
tree-based statistical machine translation in which they analyzed errors in several ways. The auto-
matic evaluation metrics used in their study were BLEU and two types of modified translation error
rate (TER) (Snover et al., 2006): Human-targeted TER and Multi-reference TER. For analysis of lin-
guistic errors, three error categories were used: morphology errors, lexical errors and word order errors.
In terms of word order errors, they also conducted fine-grained word order error analysis in which they
took part-of-speech tagging and dependency parsing into account.

Ishiwatari et al. (2016) used the same recipe corpus as we used for domain adaptation of SMT without
a sentence-aligned parallel corpus. In their research, the MT system was trained only with an out-domain
corpus that consisted of words related to Japanese history and the temples of shrines in Kyoto. Then,
they adapted the MT system to a recipe corpus in which there were many words that did not appear in
the out-domain corpus, using count-based vectors to translate unknown words. Although their method
performed well in the translation of the out-domain corpus, it did not focus on recipe translation itself.
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7 Conclusion and Future Work

In this paper, we proposed a new task of translating cooking recipes. We translated Japanese recipes
into English using PBSMT and NMT and evaluated the outputs with BLEU and RIBES. Further, we
discussed the tendency observed by studying the outputs. Each of three parts comprising a recipe (title,
ingredient, and step) had its own characteristics. Title proved difficult to translate owing to a relatively
large vocabulary despite its limited length. Good performance was achieved in the translation of ingredi-
ent because it is very simply written compared with title and step. In translating step, PBSMT and NMT
exhibited different tendencies. Many word order errors were found in PBSMT outputs corresponding to
step, resulting in a lower score for RIBES in PBSMT than in NMT.

Error analysis of the outputs was also conducted with the error classification expanded from the MQM
ANNOTATION DECISION TREE. The results of the error analysis showed that the tendency of each
type of errors differs according to the translation method applied. Compared with that of NMT, the output
of PBSMT contained many grammatical errors. On the other hand, NMT had more substitution errors
than PBSMT. NMT also tended to output target words that differ in meaning form the original source
word. In addition, although the outputs of NMT were usually grammatically correct, some of them were
unintelligible. Many omission errors and addition errors were found in both methods.

As our future work, we plan to tackle on the machine translation of recipe texts, taking into account
the ingredients used and the order in which actions are completed in the flow of the recipe. It may be
possible to solve omission errors in either or both sides using the information. To achieve that, we also
need to perform machine translation without sentence-alignment, but with the whole document.
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