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Abstract 

This paper presents the comparison of how using different neural network based language mod-

elling tools for selecting the best candidate fragments affects the final output translation quality 

in a hybrid multi-system machine translation setup. Experiments were conducted by comparing 

perplexity and BLEU scores on common test cases using the same training data set. A 12-gram 

statistical language model was selected as a baseline to oppose three neural network based mod-

els of different characteristics. The models were integrated in a hybrid system that depends on 

the perplexity score of a sentence fragment to produce the best fitting translations. The results 

show a correlation between language model perplexity and BLEU scores as well as overall im-

provements in BLEU. 

1 Introduction 

Multi-system machine translation (MT) is a subset of hybrid MT where multiple MT systems are com-

bined in a single system in order to boost the accuracy and fluency of the translations. It is also referred 

to as multi-engine MT, MT coupling or just MT system combination. Some recent open-source multi-

system MT (MSMT) approaches tend to use statistical language models (LMs) for scoring and compar-

ing candidate translations or translation fragments. It is understandable, because the statistical ap-

proaches have been dominant for the past decades. Whereas lately, neural networks (NNs) have been 

showing increasingly greater potential in modelling long distance dependencies in data when compared 

to state of the art statistical models. Therefore, the aim of this research is to utilise this potential in 

combining translations. 

Since LMs are probability distributions over sequences of words, they are a great tool for estimating 

the relative likelihood of whether some sequence of words belongs to a certain language. Sentence per-

plexity – a probability score that can be generated by querying a LM – has been proven to correlate with 

human judgments close to the BLEU score (Papineni et al., 2002), that has become the main metric for 

scoring MT, and is a good evaluation method for MT without reference translations (Gamon, et al., 

2005). It has been also used in other previous attempts of MSMT to score output from different MT 

engines as mentioned by Callison-Burch et al. (2001) and Akiba et al. (2002). 

Most recently, different order LMs have been used in open-source MSMT approaches like ChunkMT 

(Rikters and Skadiņa, 2016). This system and the statistical model from KenLM (Heafield, 2011) that it 

uses will be treated as the baseline for further experiments. 

This paper presents an enrichment of the existing MSMT tool with the addition of neural language 

models. The experiments described use multiple combinations of outputs from online MT sources. Ex-
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periments described in this paper are performed for English-Latvian. Translating from and to other lan-

guages is supported, but it has some limitations as described in the original paper. The code of the 

developed system is freely available at GitHub1. 

The structure of this paper is as following: Section 2 summarizes related work. Section 3 describes 

the architecture of the baseline system. Section 4 outlines the LM toolkits that are used in the experi-

ments and section 5 provides the experiment setup and results. Finally, conclusions and aims for further 

directions of work are summarized. 

2 Related Work 

Ahsan and Kolachina (2010) describe a way of combining SMT and RBMT systems in multiple setups 

where each one had input from the SMT system added in a different phase of the RBMT system.  

Barrault (2010) describes a MT system combination method where he combines multiple confusion 

networks of 1-best hypotheses from MT systems into one lattice and uses a language model for decoding 

the lattice to generate the best hypothesis. 

Mellebeek et al. (2006) introduced a hybrid MT system that utilised online MT engines for MSMT. 

Their system at first attempts to split sentences into smaller parts for easier translation by the means of 

syntactic analysis, then translate each part with each individual MT system while also providing some 

context, and finally recompose the output from the best scored translations of each part (they use three 

heuristics for selecting the best translation). 

Freitag et al. (2015) use a combination of a confusion network and a neural network model. A feed-

forward neural network is trained to improve upon the traditional binary voting model of the confusion 

network. This gives the confusion network the option to prefer other systems at different positions even 

in the same sentence.  

3 System Architecture 

The main workflow consists of three main constituents – 1) pre-processing of the source sentences, 2) 

the acquisition of translations and 3) post-processing - selection of the best-translated chunks and crea-

tion of MT output. A visualisation of the whole workflow is presented in Figure 1. It outlines the main 

constituents and sketches their internals.  

Going into more detail on the chunking part of the pre-processing step, Figure 2 represents the basic 

workflow for that. The syntax tree of a sentence is traversed bottom-up, right to left and combines 

smaller subtrees with bigger ones when possible thereby creating chunks that are no longer than a quarter 

of tokens or words in the sentence. This specific maximum length for chunks was chosen in previous 

experiments that showed a general decrease of translation quality or no changes at all for longer maxi-

mum chunks. However, if the chunker returns a high amount of chunks for a single sentence, this max-

imum ratio can be adjusted further. More details on the chunking can be found in the paper of Rikters 

and Skadiņa (2016) and Rikters (2016). 

For translation, several online MT systems are used. The paper of the baseline system described using 

Google Translate2, Bing Translator3, Yandex Translate4 and Hugo5. Source languages require compli-

ance with Berkeley Parser (Petrov et al., 2006) parse grammars. The parser is able to learn new gram-

mars from treebanks. Target languages require a language model that is compliant with either KenLM 

or one of the NN LM tools. New LMs can also be trained using monolingual plain text files as input. 

                                                 
1 Machine translation system combination using neural network language models - https://github.com/M4t1ss/Batch-

ChunkCombiner 
2 Google Translate API - https://cloud.google.com/translate/ 
3 Microsoft Translator Text API - https://www.microsoft.com/en-us/translator/translatorapi.aspx 
4 Yandex Translate API - https://tech.yandex.com/translate/  
5 Latvian public administration machine translation service API - http://hugo.lv/TranslationAPI   
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Figure 1. General workflow of the translation process. (Rikters and Skadiņa 2016) 
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Figure 2. Illustration of how chunks are selected 

4 Language Models 

4.1 Baseline 

The baseline language model was trained with the statistical LM toolkit – KenLM. It is an open-source 

tool for fast and scalable estimation, filtering, and querying of language models. It is one of the most 

popular LM tools and is integrated into many phrase-based MT systems like Moses (Koehn et al., 2007), 

cdec (Dyer et al., 2010), and Joshua (Li et al., 2009). It does the job quite efficiently, thus, it was included 

as the only LM option in the baseline system. For training, a large order of 12 was chosen for maximum 

quality. 

4.2 RWTHLM 

RWTHLM is a toolkit for training many different types of neural network language models (Sunder-

meyer et al., 2014). It has support for feed-forward, recurrent and long short-term memory NNs. While 

training different NN configurations, the best results were achieved with a model consisting of one feed-
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forward input layer with a 3-word history, followed by one linear layer of 200 neurons with sigmoid 

activation function. 

4.3 MemN2N 

MemN2N trains an end-to-end memory network (Sainbayar et al., 2015) model for language modelling. 

It is a neural network with a recurrent attention model over a possibly large external memory with ar-

chitecture of a memory network. Because it is trained end-to-end, the approach requires significantly 

less supervision during training. 

MemN2N requires Torch6 scientific computing framework to be installed for running. Torch is an 

open source machine learning library that provides a wide range of algorithms for deep learning. For 

training, the default configuration was used with an internal state dimension of 150, linear part of the 

state 75 and number of hops set to six. 

4.4 Char-RNN 

Char-RNN7 is a multi-layer recurrent neural network for training character-level language models. It 

has support for recurrent NNs, long short-term memory (LSTM) and rated recurrent units. 

To run Char-RNN on a CPU, a minimum installation of Torch is also required. Running on a GPU 

requires some additional Torch packages. The best scoring model was trained using 2 LSTM layers with 

1,024 neurons each and the dropout parameter set to 0.5.  

4.5 Environment 

The translation experiments were carried out on Ubuntu server with 16GB RAM and 4 cores. This was 

sufficient because querying the models requires far less computation power than training. 

Experiments for LM training and perplexity evaluation were done on three desktop workstation ma-

chines with different configurations. The KenLM and RWTHLM models were trained on an 8-core CPU 

with 16GB of RAM. For training MemN2N a GeForce Titan X (12GB memory, 3,072 CUDA cores) 

GPU with a 12-core CPU and 64GB RAM. The Char-RNN model was trained on a Radeon HD 7950 

(3GB memory, 1,792 cores) GPU with an 8-core CPU and 16GB RAM. 

5 Experiments 

5.1 Data 

To train the LMs the Latvian monolingual part of the DGT-TM (Steinberger et al., 2013) was used. It 

consists of 3.1 million legal domain sentences. In the case of training an LM with Char-RNN only the 

first half of this corpus (1.5 million sentences) was used in order to speed up the training process as well 

as because the character level model requires much less training data when compared with the others. 

When training all NN LMs evaluation and validation datasets were automatically derived from the train-

ing data with the proportion of 97% for training, 1.5% for validation and 1.5% for testing. The final 

evaluation data consisted of 1,134 sentences randomly selected out of a different legal domain corpus – 

the JRC Acquis corpus version 3.0 (Steinberger et al., 2006). 

The translation experiments were conducted on the English – Latvian part of the JRC Acquis corpus 

from which both the test data and data for training of the language model were retrieved. The test data 

contained 1,581 randomly selected legal domain sentences.  

For testing on a general domain, the ACCURAT balanced evaluation corpus (Skadiņš et al., 2010) 

was selected. The general domain test data consists of 512 sentences. 

A 12-gram language model for the baseline was trained using KenLM. 

                                                 
6 A scientific computing framework for luajit - http://torch.ch  
7 Multi-layer Recurrent Neural Networks (LSTM, GRU, RNN) for character-level language models in Torch 

https://github.com/karpathy/char-rnn  
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5.2 Language Modelling Experiments 

To justify using different language modelling approaches, different language models were trained with 

the same and similar (half of the corpus in one case) training data. Table 1 shows differences in perplex-

ity evaluations that outline the superiority of NN LMs. It also shows that the statistical model is much 

faster to train on a CPU and that NN LMs train more efficiently on GPUs. 

System Perplexity 
Training 

corpus size 

Trained  

on 

Training 

time 
BLEU 

KenLM 34.67 3.1M CPU 1 hour 19.23 

RWTHLM 136.47 3.1M CPU 7 days 18.78 

MemN2N 25.77 3.1M GPU 4 days 18.81 

Char-RNN 24.46 1.5M GPU 2 days 19.53 

Table 1. Results of language model perplexity experiments. 

Since Char-RNN achieved the best results, several in-depth experiments were conducted using just 

this tool with varying training dataset sizes (for faster training) and NN layer combinations. Figure 3 

shows how the network evolves in a setup with two 512-neuron layers. This experiment was conducted 

on a smaller dataset – only 1/6th of the corpus – allowing it to run for more epochs without early stopping. 

The perplexity on test data gradually decreased, reaching a lowest score of 22.18. 

 
Figure 3. Changes of training loss and perplexity when training a two-layer Char-RNN with 512 neurons on 500 000 sentences. 

Another variation for training a LM with Char-RNN is shown in Figure 4. Here 1/3rd of the corpus 

was used to train a 3-layer RNN with 1,024 neurons per layer. The lowest achieved perplexity was 21.23 

after training one day on a GPU. 

 
Figure 4. Changes of training loss and perplexity when training a three-layer Char-RNN with 1024 neurons on 1 million sentences 
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5.3 Machine Translation Experiments 

The last column of Table 1 shows differences in BLEU scores when NN LMs were used. Correlation 

between LM perplexity and the resulting BLEU score is visible as well as a slight improvement in the 

overall result. Again, due to the outstanding scores of Char-RNN models, they were inspected closer to 

see how BLEU changes along with perplexity. 

The following charts show how perplexity correlates with BLEU in translation test cases on the gen-

eral domain and legal domain test datasets. Figure 5 represents results from evaluating a combination of 

Google and Bing (BG) online MT translations (denoted with darker blue colours) and a combination of 

Hugo and Yandex (HY) online MT (brighter blue colours) on the general domain test dataset. The trend 

lines (dotted) indicate that for this dataset the combination of BG stays mostly stable but the combination 

of HY gradually improves as the perplexity of the LM gets lower. 

Whereas Figure 6 shows results of combining the same MT on the legal domain test dataset. In this 

case, while perplexity becomes lower at each time step, the linear trend line for BLEU score of the BG 

hybrid system does not show a tendency towards climbing higher. As opposed to the BLEU score trend 

line for HY hybrid system, that showcases improvement along with perplexity. 

 
Figure 5. Changes of perplexity when training a three-layer Char-RNN with 1,024 neurons on 1 million sentences and its effect on BLEU score 

when used in MSMT for combining Bing and Google (BG); Hugo and Yandex (HY) on the general domain test dataset. 

 
Figure 6. Changes of perplexity when training a three-layer Char-RNN with 1,024 neurons on 1 million sentences and its effect on BLEU 

score when used in MSMT for combining Bing and Google (BG); Hugo and Yandex (HY) on the legal domain test dataset. 

Conclusion 

This paper described ways to improve the baseline MSMT system with neural network language models. 

The main goals were to provide more options for language modelling in the translation combination tool 
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and to improve translation quality over the baseline. Test cases showed an improvement in BLEU score, 

when used only with Google and Bing, of 0.35 BLEU points.  

In the detailed translation experiments where a BLEU score was obtained in every stage of the LM 

training there was only a steady correlation of BLEU and perplexity in the case of using Hugo and 

Yandex translations, which were very different (0.52 – 1.10 BLEU difference with each other) to begin 

with. In the case of combining Google and Bing translations where the difference was far less significant 

(0.3 – 0.8 BLEU difference with each other), the BLEU scores of the NN model hybrid were less uni-

form with perplexity. This indicates that out of very similar options, even the NN model fluctuates with 

its predictions but it does get more confident in cases where the difference is more obvious. 

Adding alternative resources to select from in each step of the translation process could benefit the 

more advanced user base. For instance, the addition of more online translation APIs like Baidu Translate 

(Zhongjun, 2015) would expand the variety of choices for translations. A configurable usage of different 

syntactic parsers like SyntaxNet - Neural Models of Syntax (Andor et al., 2016) is likely to improve the 

translation process. 

Another interesting direction to investigate would be how this system performs when given transla-

tions of chunks from locally trained (instead of online) MT systems. For instance, a combination a Mo-

ses system with Apertium (Forcada et al., 2011) and even a neural MT system like Nematus (Sennrich 

et al., 2016). 
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