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Abstract

Automatic detection of five language components, which are all relevant for expressing opinions
and for stance taking, was studied: positive sentiment, negative sentiment, speculation, contrast
and condition. A resource-aware approach was taken, which included manual annotation of
500 training samples and the use of limited lexical resources. Active learning was compared to
random selection of training data, as well as to a lexicon-based method. Active learning was
successful for the categories speculation, contrast and condition, but not for the two sentiment
categories, for which results achieved when using active learning were similar to those achieved
when applying a random selection of training data. This difference is likely due to a larger
variation in how sentiment is expressed than in how speakers express the other three categories.
This larger variation was also shown by the lower recall results achieved by the lexicon-based
approach for sentiment than for the categories speculation, contrast and condition.

1 Introduction

In studies of automatic detection of opinions, it is typically assumed that there are substantial resources
available in the form of annotated text corpora (Konstantinova et al., 2012; Socher et al., 2013). However,
such large resources of annotated data cannot always be obtained, e.g., when crowd-sourced or commu-
nity annotations are not possible or not desirable (Fort et al., 2011; Xia and Yetisgen-Yildiz, 2012). The
aim of this study is, therefore, to explore the possibility to detect language components that are relevant
for opinion mining and stance detection, when using very limited resources of manually annotated data.

Five language components, which are relevant as topic-independent components for expressing opin-
ions and for stance taking, were investigated: positive and negative sentiment, speculation, contrast and
condition. Sentiment analysis is an important component of stance detection, as knowledge of whether
positive or negative sentiment is expressed towards a target of interest has been shown useful for the task
of binary stance detection, i.e., stance taking for or against a certain target (Mohammad et al., 2016).

Speculation, contrast and condition were assessed as important components for stance taking, as they
can all be used as modifications of opinions. For instance, an expression of contrast could indicate that
opinions of different polarities are expressed, e.g., “I did enjoy reading some of this book, but the two
tales in the middle dragged too much for me to be able to really recommend this book”. A positive
opinion that is expressed with speculation might be less positive, e.g., “His description of the 50’s seems
accurate and readers might enjoy the trip back in time”. Finally, when a positive opinion is expressed
in the context of a condition, it is not necessarily positive anymore, e.g., ”If the plot had been more
gripping, more intense, this would have worked perfectly”.

2 Previous research

There is a large number of previous sentiment analysis studies, which use different techniques, corpora
and task definitions (Täckström and McDonald, 2011; Wang et al., 2012). For instance, an accuracy of
0.85 was achieved when recursive neural networks were used to classify movie review sentences from the
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Stanford Sentiment Treebank into the categories positive and negative sentiment. When the sentences
were classified into a five-level scale of sentiment, with the category neutral included (Socher et al.,
2013), an accuracy of 0.81 was achieved.

The three opinion modifying categories have all been defined in previous research. Speculation has,
for instance, been defined as “the possible existence of a thing [that] is claimed – neither its existence nor
its non-existence is known for sure” (Vincze, 2010). Contrast has been defined as “Contrast(α,β) holds
when α and β have similar semantic structures, but contrasting themes, i.e. sentence topics, or when
one constituent negates a default consequence of the other” (Reese et al., 2007). Finally, the category
condition is defined within in Rhetorical Structure Theory as something which “presents a hypothetical,
future, or otherwise unrealized situation” (Mann and Taboada, 2016).

There are several studies on speculation/uncertainty detection (Vincze et al., 2008; Farkas et al., 2010;
Velupillai, 2012; Wei et al., 2013). On the SFU Review corpus, which consists of English consumer
generated reviews of books, movies, music, cars, computers, cookware and hotels (Taboada and Grieve,
2004; Taboada et al., 2006), speculation cues, together with their scopes, have been annotated (Kon-
stantinova et al., 2012). An F-score of 0.92 (Cruz et al., 2015) was achieved when training a support
vector machine to automatically detect the annotated cues. The SFU Review corpus has also been anno-
tated for contrasts and conditions (Taboada and Hay, 2008). Experiments have been carried out on the
task of determining whether a sentence in this corpus contains an expression of speculation, contrast or
condition. A classifier F-score of around 0.90 was achieved for speculation, around 0.60 for contrast and
around 0.70 for condition, when using around 3,000 training samples (Skeppstedt et al., 2015).

The standard method to randomly select samples for training the machine learning models were used
in all studies described above. However, instead of a random selection, it is possible to use an active
selection of useful training data. Although there are some studies on the use of such active learning
techniques for sentiment analysis (Li et al., 2012; Kranjc et al., 2015), few studies measure results for
resource-aware approaches when using a very limited amount of manually annotated data. The useful-
ness of active learning for sentence-level detection of language components relevant when expressing
stance, and when using a very limited amount of training data, is, therefore, the focus of this study.

3 Method

As the main resource-aware method for detecting the five categories studied, active learning was used.
Lexicons of marker words for the categories were also incorporated when training the classifier. A
baseline was formed by a simple look-up method that used these lexicons.

3.1 Corpora and lexicons

All classification experiments consisted of the task of sentence classification. That is, each training and
testing sample consisted of a sentence and the models were trained to detect whether a sentence contained
the category of interest or not. For exploring negative and positive sentiment, the previously mentioned
corpus of 11,855 sentences (the Stanford Sentiment Treebank) that was annotated for sentiment was used
(Socher et al., 2013). The annotations were collapsed into the three categories positive, negative, and
neutral. These categories were then transformed into two binary text categorisation tasks: a) the detection
of sentences that express positive sentiment in contrast to negative or neutral, and b) the detection of
sentences that express negative sentiment in contrast to positive or neutral.

Data used for the other three categories consisted of the, above mentioned, corpora created by Kon-
stantinova et al. (2012) and by Taboada and Hay (2008). Both of these two annotation projects were
carried out on the 12,663 sentences included in the SFU Review corpus. The speculation category an-
notated by Konstantinova et al. and the condition category annotated by Taboada and Hay were used
without modifications. The closely related categories contrast and concession, which were annotated
by Taboada and Hay, were, however, merged into the one category that is here referred to as contrast.
The annotations were transformed into three separate binary classifications tasks, i.e., the task to detect
whether a sentence contained speculation, contrast and/or condition, respectively. The same procedure
as used in the first of the CoNLL-2010 shared tasks (Farkas et al., 2010) for transforming the data into
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this format was applied. That is, if either the scope of a speculation cue or a segment annotated for
concession/contrast or condition was present in a sentence, the sentence was categorised as belonging to
this category (or categories, when several applied).

Limited-sized lexicons of marker words for the five categories were used. For positive and negative
sentiment, SentiWordNet (Baccianella et al., 2010) was used to compile the lexicons. The 500 most
positive and the 500 most negative words were extracted, and one annotator manually removed words
from these lists that would not be considered as typically positive or negative in a movie review setting.
Which words to extract as the most positive/negative was determined by ranking the words according
to the difference between the positive and negative score of the SentiWordNet synset to which the word
belonged. For words that belonged to several synsets, the score resulting in the best ranking on the the
positive/negative list was used. The extraction and manual classification resulted in a final list of 373
markers for positive sentiment and 414 markers for negative sentiment.

The lexicons for speculation and contrast were based on marker words/constructions that have previ-
ously been listed by Konstantinova et al. (2012) and Velupillai et al. (2014), and by Reese et al. (2007),
respectively. These markers were then used as seed words to expand the lists, by also adding their neigh-
bours in a distributional semantics space to the lists (Sahlgren et al., 2016), as well as their synonyms
from a traditional synonym lexicon (Oxford University Press, 2013). In the same fashion as for the sen-
timent words, the candidates on these expanded lists were then manually classified according to their
suitability as marker words. This resulted in a list of 191 markers for speculation, and 39 for contrast.
The condition category is a subset of what is defined as speculation by Konstantinova et al. (2012).
The 26 markers used for this category were, therefore, compiled by manually extracting a subset of the
speculation markers that were classified as suitable as markers for condition.

3.2 Machine learning and active learning methods used
Active learning is built on the idea to reduce the number of training samples required to train a machine
learning classifier, by actively selecting useful samples from a pool of unlabelled data. Sample selection
could, for instance, be based on the level of uncertainty for a classifier, on the level of disagreement
among a number of different classifiers (Olsson, 2008, pp. 25–29), or on the expected model change
when adding new data to the pool of labelled data (Tomanek, 2010). The sample selection method
used in this study, simple margin, is based on expected model change. It is a computationally efficient
approach for support vector machines, where the unlabelled sample closest to the separating hyperplane
of the classifier is selected (Tong and Koller, 2002).

Support vector machines were used in all experiments, regardless of whether active or random selec-
tion of training samples was carried out. The Scikit-learn implementation of the SVC-class with a linear
kernel was used (Pedregosa et al., 2011). For all approaches, except approach number four (see section
3.3, below), the machine learning features used were limited to unigrams and bigrams. For approach
number four, the output of the lexicon-matching approach was also included as a feature. A minimum
of two occurrences in the labelled data was used as a cut-off for including a bigram as a feature, and
two occurrences in the entire data pool (labelled and unlabelled) was used as a cut-off for inclusion of
unigrams. A corpus created through active selection instead of random selection is not representative of
the true data distribution, and standard methods for parameter setting and feature selection do not give
reliable results (Schohn and Cohn, 2000). Therefore, the default Scikit-learn SVC parameters were used,
and the heuristics of limiting the number of features included to the n best was applied. An n equal
to the number of samples was used, and, thereby the number of features was allowed to grow with an
increasing number of training data samples. Which features were the best was, however, estimated by a
χ2-based feature selection.

3.3 Experiments
A total of five different approaches for detecting the categories investigated were compared, three meth-
ods based on active learning, one based on random sampling and one lexicon-matching approach:

(1) The lexicon-matching was the most basic approach. Sentences that contained a marker in any of the
five compiled lexicons were classified as belonging to the category for which the lexicon was compiled.
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(2) The second most basic approach was to use machine learning with random selection of data. (3)
As the third approach, active learning based on simple margin for selecting a potentially useful training
sample was used. An initial machine learning model was first trained on 30 randomly selected samples.
Thereafter, the new training samples were chosen based on their distance to the separating hyperplane
of the classifier. Two new training samples, i.e., the two samples closest to the separating hyperplane,
were selected in each iteration. (4) The same active learning setup as for approach three was applied,
but the output of the lexicon matching was used as one of the features for training the classifier. (5) The
final approach was also identical to approach number three, but the initial seed set of 30 training samples
was not randomly chosen. Instead, a set of 30 samples was selected, with the criterion of requiring each
sample to contain a different marker from the lexicon compiled for this category. This follows previous
work (Tomanek et al., 2007), in which results have been improved by the extraction of samples that
contain known entities for forming the seed set. For the category condition, for which there were less
than 30 items in the lexicon, the same lexicon item was used for selecting several seed samples.

3.4 Evaluation

A situation was simulated in which limited resources would be available to create an annotated corpus,
and thereby a maximum of 500 annotated sentences would be available for training a classifier. Given
a hypothetical annotation speed of 50 sentences per hour, it would be possible to construct such an
annotated corpus in ten working hours. The five stance categories were evaluated separately, and separate
binary classifiers were trained for each of the categories.

The work of the manual annotator was simulated by using the annotations in the corpora described
above. Each corpus was split into two equally large sets: an evaluation set and a set to use as the pool
of data from which training samples were to be selected. The pool of data from which samples were
selected was thus used as simulated unlabelled data, and manual annotation of the selected samples was
simulated by using the labelling available in the annotated corpus. The same randomly selected seed set
of 30 training samples was used for all machine learning approaches, except for approach number five,
for which the lexicons were used for selecting samples.

There is a large difference between the proportion of samples belonging to the minority category for
the different categories. That is, a proportion of 24% for speculation, 8% for contrast and 4% for condi-
tion, compared to a proportion of 42% and 39% for positive and negative sentiment, respectively. In order
to investigate whether potential differences between categories depend on these proportion differences,
rather than on differences between how the categories are expressed, additional experiments were per-
formed for modified versions of the positive and negative sentiment corpora. The original training data
for the sentiment classifiers was modified to instead contain a 24% proportion of the minority category,
i.e., the same proportion of minority category samples as the speculation category. This was achieved by
removing a randomly selected set of instances that belonged to the minority category from the training
data. That is, the instances classified as positive when investigating positive sentiment, and the instances
classified as negative for negative sentiment.

For each of the seven data sets (five with original minority category frequencies and two with modified
frequencies), the experiments were repeated 60 times, with a new random split into an evaluation set
and into a pool of data from which to select training samples. For each of the 60 folds, a new randomly
selected seed set (or a seed set selected based on the lexicon for approach number five) was used. Average
precision, recall and F-score between the 60 folds were measured.

4 Results

Results for the five categories of stance are shown in Figures 1-4. The methods evaluated showed one
trend for the two sentiment categories, and another trend for the three other categories.

For sentiment, results for active learning were very similar to those achieved when randomly sampling
training data. When using 500 training samples, both methods achieved an average F-score of around
0.57 for detecting positive sentiment and an average F-score of around 0.52/0.53 for detecting negative
sentiment. For the two versions of the sentiment corpora that had been modified to contain a lower
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Figure 1: Results for the categories positive and negative sentiment. Average precision, recall and F-
score for the 60 folds are shown. The bars for the distribution of F-score show the 5th to 95th percentile
of the results for the 60 folds for Active learning with a random seed set and Random selection.
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Figure 2: Results when the training data sets have been artificially modified to contain 24% of instances
that belong to the minority categories, i.e., to the categories positive and negative sentiment, respectively.
Average precision, recall and F-score for the 60 folds are shown. The bars for the distribution of F-score
show the 5th to 95th percentile of the results for the 60 folds for Active learning with a random seed set
and Random selection.
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Figure 3: Results for the categories speculation and contrast. Average precision, recall and F-score for
the 60 folds are shown. The bars for the distribution of F-score show the 5th to 95th percentile of the
results for the 60 folds for Active learning with a random seed set and Random selection.
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Figure 4: Results for the category condition. Average precision, recall and F-score for the 60 folds are
shown. The bars for the distribution of F-score show the 5th to 95th percentile of the results for the 60
folds for Active learning with a random seed set and Random selection.
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proportion of the minority categories, the same trend with similar results for active learning and random
sampling was shown for positive sentiment, while random sample selection was slightly more successful
than active learning for negative sentiment.

For speculation, contrast and condition on the other hand, active learning clearly outperformed random
sampling. For speculation, an average F-score of 0.89 was achieved for active learning and an average
F-score of 0.83 for random sampling, when using 500 training samples. The performance improvement
for active learning started to level out already at 300 training samples for speculation, and at that point
of measure, the difference between active learning and random selection of training samples was even
larger. When using 500 training samples for contrast, an average F-score of 0.56 was achieved when
using active learning and an average F-score of 0.47 for random sampling. The corresponding results for
condition were an average F-score of 0.73 for active learning and 0.66 for random selection.

Another difference between these two groups of categories was the results of the lexicon-matching
strategy. For speculation and condition, the lexicon matching performed in line with the classifier trained
on randomly sampled data. For contrast, lexicon-matching outperformed the random sampling method
and achieved results in line with the classifier trained on actively selected data using 500 training samples.
However, the machine learning-based classifier showed a better balance between precision and recall.

The use of a seed set containing lexicon terms, instead of a randomly selected seed set, had almost
no effect on the results. The use of the lexicon for generating features for training the classifier had a
detrimental effect on the average F-score for all categories evaluated with a naturally occurring minority
category proportion, except for condition for which it had no effect. For the sentiment categories, the use
of the lexicon-matching feature led to a lower recall and a very limited increase in precision. The opposite
results were observed for speculation and condition, with a much lower precision and an improvement
in recall (for approximately the first 150 samples, a large improvement in recall). In contrast, when the
sentiment corpora were modified to only contain 24% samples belonging to the minority category, the
inclusion of lexicon-generated features led to a substantial improvement of results for very small data
sets. Machine learning was, however, more successful when using 500 training samples.

5 Discussion

For this experiment, in which a very small training data set was used, active learning was successful for
speculation, contrast and condition, but not for sentiment classification. This was observed regardless
of which of the two minority category proportions for sentiment that was used. These differences are,
therefore, likely to be due to a variation in how the different categories are expressed by the speakers.

Positive and negative sentiment are likely to be described with a larger set of words and constructions
than the other three categories studied. This is indicated by the low recall results of the lexicon-matching
approach for sentiment in comparison to the speculation/contrast/condition categories. Lower recall was
achieved despite the fact that much larger lexical resources were used for detection of the sentiment
categories. This larger variation in how the sentiment categories are expressed might be a reason why
active learning did not have a positive effect for sentiment classification, since more variation in how a
category is expressed results in a larger, natural, frequency of informative samples. This has the effect
that a random selection of training samples for sentiment detection has a large probability of resulting in
an informative sample being selected. For the three other categories, on the other hand, there is a lower
probability that a randomly selected sample will be informative to the classifier, since there is a lower
frequency of samples which contain information that is still unknown to the classifier.

The use of 500 training samples and an active learning approach gave results for speculation and
condition that were in line with those previously achieved when more training data was used (Skeppstedt
et al., 2015). Results for contrast were, however, slightly lower than those previously achieved. An active
learning-based annotation effort of 500 samples, or possibly additional samples for contrast, would thus
be the approach recommended for these three categories. For contrast, the same average F-score was
achieved by lexicon-matching as for the classifier trained on 500 actively selected training samples.
Although the compilation of a small lexicon of words and constructions signifying contrast is less time-
consuming than the annotation of 500 sentences, the machine learning approach might be preferable, as
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it results in a better precision/recall balance.
In contrast, an F-score of 0.5 for detecting positive and negative sentiment is far from the results

achieved in previous studies on the same classification task (Socher et al., 2013). A manual annotation
of 11,855 sentences (including a more detailed annotation of 200,000 phrases in these sentences) was,
however, required to achieve the average accuracy of above 0.8 that has been presented in previous
studies. That is, an annotation effort that is far from reasonable in a project with limited resources.
Whether to recommend such a limited-resource project to venture the construction of a sentence-level
sentiment classifier, depends on the user requirements for this system. To be able to find around 60% of
the sentences in which a negative or positive opinion is expressed, and to generate a list of such sentences
of which around half are correctly categorised as positive/negative, is likely to be acceptable in some,
but not all, circumstances. For sentiment, it is also less clear what training data selection method to
recommended, since active and random sampling led to similar results.

It can be concluded that for the categories and text genre evaluated, i.e., the review genre, it is not worth
the effort of compiling a limited lexical resource for selecting the seed set or for generating classifier
features. However, the lexicons were useful for feature generation in the sentiment corpora with a smaller
minority category proportion, when the data set contained up to around 300 training samples. It is,
therefore, likely that lexical sentiment resources are more useful in a genre that lacks large resources of
annotated data, and in which positive and negative sentiment is less frequently occurring.

5.1 Future work

Although the limited lexical resources compiled for this study did not contribute positively to the re-
sults for sentiment detection, it is still likely that an approach fully focusing on detection rules based on
extensive and high-quality lexical resources could (i) either be a viable alternative to the machine learn-
ing models trained on limited data, which were explored here, or (ii) contribute positively when used
as features for training a machine learning model. For instance, by compiling an extended version of
SentiWordNet, and leveraging the sentiment scores of positive and negative terms in the resource, Dang
et al. (2010) achieved precision and recall scores of around 80% for document level sentiment classifi-
cation. Future work, therefore, includes the evaluation of such lexicon-based methods on sentence-level
sentiment analysis, taking the resource-aware approach used in this study for evaluating its usefulness
for projects with limited resources. In particular, there is previous research in which the active learning
process has been improved by allowing the annotator to also rank features according to their importance
to the category in question (Settles, 2011). Such an approach has the potential of being resource efficient,
as it combines the process of compiling a sentiment lexicon with the process of creating labelled data
that is useful for training a classifier.

6 Conclusion

Active learning was a successful strategy for three of the categories studied. When using 500 training
samples and applying active learning, average F-scores of 0.89, 0.56, and 0.73 were achieved for de-
tecting sentences containing speculation, contrast and condition, while the corresponding figures using
random selection of training data were 0.83, 0.47, and 0.66.

For training classifiers to detect the categories positive and negative sentiment, however, similar results
were achieved by active learning and random sampling of training data, an average F-score of 0.57 for
detecting positive sentiment and an average F-score of around 0.52/0.53 for detecting negative sentiment.
The reason for active learning not being successful for sentiment was not the high proportion of samples
that belong to the minority categories in the sentiment corpora. Similar results were achieved when
the training data set for sentiment was artificially modified to contain the same proportion of minority
category samples as the corpus annotated for speculation. Instead, the difference is likely to be due
to a larger variation in how positive and negative sentiment can be expressed, than in how speakers
express speculation, contrast and condition. The larger variation in speakers’ expressions for positive
and negative sentiment is also indicated by the lower recall achieved by the lexicon-matching approach
for sentiment than for the other three categories.
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