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Abstract 

Importance of utilizing medical information is getting increased as electronic health records (EHRs) are 

widely used nowadays. We aim to assign international standardized disease codes, ICD-10, to Japanese 

textual information in EHRs for users to reuse the information accurately. In this paper, we propose 

methods to automatically extract diagnosis and to assign ICD codes to Japanese medical records. Due to 

the lack of available training data, we dare employed rule-based methods rather than machine learning. 

We observed characteristics of medical records carefully, writing rules to make effective methods by 

hand. We applied our system to the NTCIR-12 MedNLPDoc shared task data where participants are re-

quired to assign ICD-10 codes of possible diagnosis in given EHRs. In this shared task, our system 

achieved the highest F-measure score among all participants in the most severe evaluation criteria. 

Through comparison with other approaches, we show that our approach could be a useful milestone for 

the future development of Japanese medical record processing. 

1 Introduction 

In these years, more medical institutes adopt EHRs of electronic media replacing paper media. How-

ever, natural language processing (NLP) technologies in medical fields tend to be underdeveloped; 

hospitals and clinics have been extremely reluctant to allow access to clinical data for researchers from 

outside the associated institutions (Chapman et al., 2011).  

In order to develop NLP technologies of medical field, various shared tasks (contests, competitions, 

challenge evaluations, critical assessments) have been organized. One of the well-known medical-

related shared tasks is the Informatics for Integrating Biology and the Bedside (i2b2) by the National 

Institutes of Health (NIH), which started in 2006 (Uzuner, 2008) now brought in SemEval as Clinical 

TempEval 2015 (Bethard et al., 2015) and Clinical TempEval 2016 (Bethard et al., 2016). The Text 

Retrieval Conference (TREC), which addresses more diverse issues, also launched the Medical Re-

ports Track (Voorhees et al., 2012). The first European medical shared task was the ShARe/CLEF 

eHealth Evaluation Lab (Goeuriot et al., 2015; Kelly et al., 2014; Suominen et al., 2013). While they 

are mainly targeted at English, medical reports are written in native languages in most countries. 

Therefore, information retrieval techniques in individual languages are required to be developed. 

As a first step of our research for the development of Japanese medical NLP field, we propose 

methods that automatically extract diagnosis from Japanese EHRs, assigning ICD (International Clas-

sification of Diseases) codes
1
. ICD is made by the World Health Organization (WHO) to record, ana-

lyze, interpret and compare medical data (disease and cause of death) that has been collected all over 

the world. The latest version is ICD-10. An ICD code consists of a single letter prefix and numbers 

(e.g. “I48”). Single letter prefix mostly represents a kind of disease (e.g. “I” stands for ischemic heart 

disease) and numbers represent detailed information of disease (e.g. “I48” stands for “atrial fibrilla-

tion and flutter”). ICD could be used to create machine readable data. 

Even a human expert has difficulty assigning an appropriate ICD code. Only doctors with actual 

clinical experiences could understand real intention of diagnosis. In other words, expert techniques 
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and experiences are required if a non-professional guesses the intention to assign codes without exam-

ining an actual patient. This point makes the automatic ICD coding tasks difficult. 

We describe details of our methods in Section 2. Section 3 describes our experiments and results 

where we applied our system to the shared task data of the NTCIR-12 MedNLPDoc task (Aramaki et 

al., 2016). Our system achieved the best performance regarding the Sure match score of this Med-

NLPDoc task. Section 4 describes future works of our research and concluding this paper. 

2 Method 

We suggest five methods that output appropriate ICD code given a Japanese medical record text. In 

our system, method 2.1 is our base method. We defined methods 2.2-2.4 assuming results of method 

2.1. Method 2.5 and part of method 2.4 are independent of method 2.1. We describe our methods one 

by one below. 

2.1 Decision of target sentence 

We define a “sentence” as a line of text marked off by the Japanese periodical symbol, “。”.  

We suggest that there are two types of sentences in medical records: sentences that include 

diagnosis, and sentences that do not include any diagnosis. The latter type of sentences may include 

disease names which are not related to any diagnosis.  

When a sentence contains diagnosis, and when that sentence contains a name of disease, our system 

output a corresponding ICD code of that disease name. We describe details of our method below.  

We extract sentences that contain a keyphrase to narrow candidate sentences down. For example, 

the previous example sentence with diagnostic result “検査の結果で慢性化膿性中耳炎と診断され、

手術目的に入院となる。(As a result of medical check, diagnosed as chronic suppurative otitis 

media, and hospitalization is needed for an operation.)” has a keyphrase of “と診断され  (be 

diagnosed)” with its diagnosis name of disease before the keyphrase. In addition to the keyphrase “と

診断され”, we listed and used keyphrases of  “の診断 (diagnosis of)” , etc. 30 keyphrases in total. 

We chose these keyphrases by manually verifying medical records written in Toba (2006) and medical 

records of MedNLPDoc training data, which details are described later. If a sentence contains a 

negation, e.g. “認めない (not see)”, this sentence is discarded from the candidate sentences.  

After selecting sentence candidates, morphological analysis is performed by Kuromoji 

morphological analyzer
2
 with a custom dictionary where Wikipedia entry words and disease names are 

registered. Disease names are taken from Japanese Standard Disease-Code Master (Hatano et al., 

2003). We changed the weight of words in the dictionary in order to make disease names of the dic-

tionary appear preferentially. When a disease name is included in the morphological analysis result, 

we assign a corresponding ICD code in the table of Japanese Standard Disease-Code Master. 

2.2 Translation of medical technical words from English to Japanese 

There are many English words used as technical terms in the Japanese medical records, written in al-

phabets. Because these English words are often not registered in our custom dictionary, we cannot 

deal with it directly. We used Life Science Dictionary (Ohtake et al., 2008) to translate English words 

into Japanese words. In this method, we only use dictionary entries which exactly matched with the 

English words in the medical record. 

2.3 Unification of paraphrase words 

There are many inconsistent spelling variations appear in the medical records. We deal with this prob-

lem by our method below. We use the redirection relations of Wikipedia to make such normalizations, 

i.e. redirected words correspond to normalized words. 

2.4 Assigning ICD codes to disease names including various body parts 

In our method described in section 2.1, descriptions like “XX に癌,YY に損傷  (cancer of XX, 
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Figure 1. Comparison with other teams in 

 F-measure (Sure), where C indicates our result 

damage to YY)” will only output corresponding ICD codes of damage or cancer, ignoring “XX” and  

“YY”. However, these ignored words could include information required to output appropriate ICD 

codes. We decided to focus on “malignant neoplasm” and “damage” in our method. Our system out-

puts ICD codes from combination of words. 

We define rules to detect ICD codes using combination of words that express various parts of body, 

and the words which represent malignant neoplasm and damage. We manually made a list of body 

parts using the Japanese Standard Disease-Code Master. 

If a sentence contains both a word of the body parts and a word which represents malignant neo-

plasm or damage, our system outputs a corresponding ICD code. 

In case of damage, we only check sentences selected by our method described in section 2.1, while 

we used the whole medical record in case of malignant neoplasm. This is because there are special 

keyphrases used for malignant neoplasm. 

Our system covered almost all ICD codes of “malignant neoplasm” and “damage“, including vari-

ous body parts. We removed words which represent malignant neoplasm or damage from the diction-

ary used in method 2.1, because these words e.g. “癌 (cancer):C80” are sometimes used to refer spe-

cific concepts e.g. “肺癌 (lung cancer):C349” but not for the general meaning.  

2.5 Inferring ICD codes from XML tags 

We suggest another method that outputs ICD codes using information in XML tags of the Med-

NLPDoc task dataset. We focused on tags of anamnesis (既往歴) and family clinical history (家族歴), 

because there are categories of ICD codes directly correspond to these two types. If there is a tag of 

anamnesis or family clinical history, our system outputs an ICD code by extracting clues from words 

inside these tags. Then we apply the same method described in 2.4 to the extracted words. 

3 Experiment and Result 

3.1 Experiment Setting 

We applied our system to the NTCIR-12 MedNLPDoc task. MedNLP is a shared task series for Japa-

nese medical record texts in NTCIR (NII Testbeds and Community for Information access Research). 

Previous tasks include three sub tasks: named entity removal task (de-identification task), disease 

name extraction task (complaint and diagnosis), and normalization task (ICD coding task)(Morita et 

al., 2013). The MedNLPDoc task is more advanced and practical. In this task, participants' systems 

infer disease names in ICD. Due to this practical setting, task participants' systems could directly sup-

port actual daily clinical services and clinical studies in various areas (Aramaki et al., 2016). 

 Task organizers created a medical record corpus as a training dataset for this task which includes 

200 individual medical records. The average number of sentences per record is 7.82. The average 

number of codes per record is 3.86. 552 code types 

appeared in the corpus.  

Test dataset consists of 78 clinical texts, which 

were randomly selected from the past National Ex-

amination for Medical Practitioners
 3

. Question 

sentences and graphics were eliminated from the 

original documents. Then, three professional hu-

man coders (more than one-year experience) indi-

vidually added ICD-10 codes (Aramaki et al., 

2016) to the same documents in parallel.  

The MedNLPDoc task provides three evaluation 

metrics. Sure metric regards ICD codes which all 

of three annotators agreed to annotate, Major met-

ric for more than two annotators, Possible metric 

                                                 
3
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for more than a single annotator. Because the inter-annotator discrepancy is quite low in this dataset, 

the Sure metric is considered as most reliable.  

3.2 Result 

We measured our system performance by participating in the MedNLPDoc task. Figure 1 shows re-

sults of all participants in the Sure evaluation metric. Our result is shown as Team C, which is the best 

score in F-measure Sure metric. Team C is rule-based, while others use machine learning methods, 

like CRF (Team B, E),  CRF and SVM (Team G) (Aramaki et al., 2016).  

3.3 Effect Analysis of Methods 

As gold standard annotations of the test dataset are not provided, we conducted another experiment 

using the training data to show effectiveness of each of our methods. Table 1 shows result of this ex-

periment. “perfect match” means the number of codes perfectly matched with the correct ICD codes. 

“3-digits match” means the number of output codes which three digits (first letter and next two num-

bers) are matched. Total number of correct answers was 772. We compared a couple of different com-

binations of our sub-methods, each described in section 2.1, 2.2, 2.3, 2.4, and 2.5, respectively. 

Because the F-measure becomes better when methods 2.2-2.5 are added to 2.1, each individual 

method can be regarded as effective. When the method 2.4 is added, the growth of F-measure is the 

largest. Regarding malignant neoplasms and damage, we can write coding rules easier by hand be-

cause corresponding ICD descriptions explicitly discriminates “[body_part] and damage”, 

“[body_part] and the cancer”, etc. Additionally, malignant neoplasms and damage are frequently ap-

peared in the training data, which made the contribution larger. 

When method 2.3 is added, the growth of F-measure is the smallest. Reasons would be that cover-

age of paraphrases is insufficient with Wikipedia. Another reason is that the training data does not 

contain many paraphrases. 

4 Future work and Conclusion 

There should be two criteria required to achieve the ultimate goal of this ICD codes assignment study. 

The first criterion is whether symptoms are explicitly described or not in medical records. This deci-

sion would have almost been achieved by our approach except for cancers. Regarding cancers, our 

system could not select candidate sentences effectively in some cases because there were no 

keyphrases found as other phrases are used. Extracting such indirect expressions would be required. 

The second criterion is whether we should output ICD codes or not, when we find out symptom or 

name of disease. Let us consider cough for example, which often appears in medical records. In order 

for the code of the cough to be assigned, we need to know how strong an effect of the cough gives to a 

patient’s diagnosis by deriving relationship of the cough and main diagnosis. Then we can recognize 

relationships between symptoms and diagnosis that could contribute to the real clinical works.  

If we could properly define these two criteria, we can output more accurate ICD codes. 

Japanese medical records contain language specific features like inclusion of diagnosis names, par-

aphrases, etc. From such features, we made five rule-based methods consisting our system that output 

ICD codes accurately. Our system performed best among participants in the MedNLPDoc task. How-

ever, it is still difficult to output ICD codes perfectly. In order to make better ICD coding in future, it 

will be required to analyze relationships between a patient’s symptom and his/her disease.  

Combination  

of Methods  

# of system  

output 

# and scores of perfect match # and scores of 3-digits match 

# P R F # P R F 

2.1 424 101 23.82 13.08 16.89 161 37.97 20.85 26.92 

2.1+2.2 450 110 24.44 14.25 18.00 176 39.11 22.80 28.81 

2.1+2.3 479 107 22.34 13.86 17.11 170 35.49 22.02 27.18 

2.1+2.4 494 120 24.29 15.54 18.96 208 42.11 26.94 32.86 

2.1+2.5 446 111 24.89 14.38 18.23 174 39.01 22.54 28.57 

2.1+2.2+2.3+2.4+2.5 597 145 24.29 18.78 21.18 245 41.04 31.74 35.79 

Table 1. Evaluation for combinations of methods in Precision (P), Recall (R) and F-measure (F)  
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