Tagging Ingush — Language Technology For Low-Resource Languages
Using Resources From Linguistic Field Work

Jorg Tiedemann Johanna Nichols and Ronald Sprouse
Department of Modern Languages Department of Linguistics
University of Helsinki, Finland University of California, Berkeley

firstname.lastname@helsinki.fi firstname@berkeley.edu

Abstract

This paper presents on-going work on creating NLP tools for under-resourced languages from
very sparse training data coming from linguistic field work. In this work, we focus on Ingush,
a Nakh-Daghestanian language spoken by about 300,000 people in the Russian republics In-
gushetia and Chechnya. We present work on morphosyntactic taggers trained on transcribed and
linguistically analyzed recordings and dependency parsers using English glosses to project an-
notation for creating synthetic treebanks. Our preliminary results are promising, supporting the
goal of bootstrapping efficient NLP tools with limited or no task-specific annotated data resources
available.

1 Introduction

Linguistic diversity is not only a fascinating research area for general linguists but also represents one
of the main challenges for language technology. Natural language processing (NLP) becomes essential
for people in the digital age and support of low-resource languages is a natural task that needs to be
emphasised in the development of tools and applications. Modern language technology relies to a large
extent on data-driven techniques that focus on machine learning techniques based on annotated linguistic
data and large quantities of raw text. However, such techniques are usually not applicable for low-
resource languages where sufficient training data is not available. On the other hand, a lot of effort is
spent in field linguistics to record, transcribe and analyse minority languages — a resource that is under-
explored in language technology.

In this paper, we take the example of Ingush, a Nakh-Daghestanian language, which has been thor-
oughly described by general linguists with data sets collected over several years. We use those manually
created and curated collections of transcribed recording to bootstrap tools that can be used to process the
language and to annotate utterances with interlinear glosses and syntactic dependencies. The paper is the
first step in developing technology that could be used to support linguistic field work but also to develop
NLP applications that can work with the Ingush language.

In the following, we first introduce Ingush and the linguistic resources developed for that language.
Thereafter, we present our work on developing an interlinear gloss tagger and outline an approach for
bootstrapping part-of-speech taggers and dependency parser by means of alignment and cross-lingual
transfer models.

2 The Ingush Language

Ingush (glottolog code ingu1240) is a Nakh-Daghestanian language with some 300,000 speakers, tradi-
tionally spoken in the central Caucasus highlands in the Republic of Ingushetia and Chechen Republic
of Russia. The language has extensive systems of both consonants and vowels, largely suffixing mor-
phology, mostly dependent-marking morphosyntax, ergative alignment, and German-like AOV/V2 word
order complete with detachable prefixes and proclitics in final position of V2 clauses, though with some

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

148

Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH),
pages 148-155, Osaka, Japan, December 11-17 2016.

flexibility to use AOV order even in main clauses. Nouns belong to gender classes marked by root-initial
agreement on about one-third of the verbs and one-fourth of the adjectives; there are four gender markers.
Clause combining mostly uses converbs, some of which require S/O sharing and all of which use much
null anaphora. Null arguments result from sharing (in some converb clauses and all infinitive and relative
clauses) and unspecified reference; though not a pro-drop language there are many null arguments. The
language is further described in Nichols (2011).

An active program to record the speech of the oldest generations of Ingush began in the mid 1990s and
reached speed in 2002, with 50-100 hours of recorded speech added annually. Recordings are mostly
made in the homes of speakers. There are also some legacy recordings made in the late 1980s and early
1990s. A number of the recorded speakers were born in the very early 20th century and at least one in
the very late 19th century. Quality varies: legacy materials were made on inexpensive household cassette
recorders; more recent recordings are often made on mobile telephones. There are also about 100 hours
of video recordings.

The corpus for this project is the transcribed portion of those recordings, plus a number of transcribed
published folklore and literature works which have no audio or have a recorded reading of the pub-
lished text. The transcription is an all-lower-ASCII Latin system, slightly more abstract than phonemic.
It is not ismorphic to the Cyrillic orthography, which is mostly phonemic for consonants but greatly
underdifferentiates the vowels. Annotation is standard single-line interlinears with lexical gloss and
morpheme/category identifications, plus a smooth translation.

Most of the annotated data was created with dedicated tools developed for the Berkeley Interlinear Text
Corpus, BITC. They are designed for group collaborations and support semi-automatic interlinearization
by building a lexicon of interlinears on the fly, which enables systematic annotations of large quantities
of data. The system also provides powerful search capacities making it very useful as a dictionary. These
tools and data sets have contributed greatly to the efficiency of grammatical analysis and grammar writing
and in this work, we investigate their use in automatic language processing.

3 Data Preparation

As described above, the Berkeley Ingush Corpus includes a well organised collection of transcribed ut-
terances together with interlinear glosses and translations into fluent English. Figure 1 shows an example
taken from the corpus.

Ingush: Cwaqqa hama dwajihwaajaacar, jihwaajarii?
Tokenized: cwaqqa hama dwajihwaajaacar jihwaajarii
Interlinear glosses: any thing DX-J.take away.PNW.NEG J.take away. PNW=Q
English: Nothing had been taken away, right?

Figure 1: An example record from the Berkeley Ingush Corpus.

In this way, the data forms a manually curated parallel corpus with three dimensions that are all useful
for our purposes. The interlinear glosses are the actual annotation that we try to produce from transcribed
Ingush input and the English translations become interesting for transfer models we will discuss towards
the end of the paper.

One of the main problems is that manually annotated data sets from many years of linguistic field work
contain inconsistencies, which is unavoidable even with extensive efforts on normalizing their contents.
The records include incomplete annotations and analyses, which we have to take care of when preparing
data sets for training models that rely on the correctness of the examples. Therefore, we implemented a
tool that extracts and converts data sets into a format that we can feed into our training procedures.

The first step is to convert the character encoding from mainly MacRoman to Unicode UTFS. The
second step includes various heuristics to normalize the data and to exclude unreliable records. The
following list summarizes the processing steps we have taken:

e Remove comments and separate alternative translations: Some records include alternatives for the
translations into English. They are sometimes included in square brackets but most of the time

149

they are separated by multiple space characters. Square brackets otherwise contain comments and
explanations, which we cannot safely use, and, therefore, we remove them. Possible translation
alternatives that we extract by splitting on multiple space characters are then tested by comparing
the lengths (in terms of tokens) to the lengths of the Ingush original string. If the length-ratio
between the smallest potential translation alternative is smaller than the ratio between the raw input
string and the concatenated English translation then we will discard splitting the translation string
and consider it as one single translation. Otherwise, we keep multiple translation alternatives and
duplicate the record with different translations in each of them.

e We replace spaces (that usually indicate multi-word-units) with underscores to make it easier to
handle the data by subsequent processes. An example can be seen in Figure 1 (take away). Some
morphosyntactic descriptions also include spaces and we replace them by dots.

e Some interlinears are incomplete and do not cover all tokens in the input. In many cases, this may
only exclude some unimportant final tokens and we use the heuristics that we accept interlinears
that are at most two items too short.

e We save all records that have non-empty entries for all three records, tokenized Ingush, interlinear
glosses and English translations and convert the interlinear glosses into a factorized representation.
Here, we separate lexical information from morphosyntactic descriptions to create a generalized
tagset that we can use to train automatic annotation tools by means of standard sequence labeling
models.

Figure 2 shows the result of our pre-processing on the previous example. Lexical information in the
interlinear annotation is replaced by a placeholder 'xx’ and the lexical information is included as a
separate factor (before the slash). The delexicalized gloss terms are then also added to the original
Ingush tokens to form the essential training data that we will use in our tagging experiments below. The
task is, hence, to tag each Ingush token from arbitrary input with the complex but delexicalised tags given
by our training data (line one in Figure 2).

Tagged Ingush: cwaqqga/xx hama/xx dwajihwaajaacar/DX-J.xx. PNW.NEG jihwaajarii/].xx.PNW=Q
Tagged Glosses: any/xx thing/xx take_away/DX-J.xx. PNW.NEG take_away/J.xx. PNW=Q
English: nothing had been taken away , right ?

Figure 2: Preprocessed data: Tagged source language, split glosses and tokenized English.

Note that we had to perform various additional pre-processing steps to increase consistency of the data.
We had to normalize the use of dots (older versions used mid-dots for marking morpheme boundaries),
we removed question marks, normalized the use of brackets, spaces, multiple dots, the use of conjunctive
markers, normalized the specification of alternatives, foreign languages and multi-word units. We also
made the inflectional markup for person and number more consistent and added a special tag for foreign
words.

Ingush Tags English
tokens types | tokens types | tokens types
training | 102,043 19,964 | 101,826 8,190 | 130,186 7,257
test 6,222 2,375 6,165 1,261 7,099 1,268

Table 1: Statistics of the data sets. Tags refers to the delexicalised interlinears. The test data contains
888 sentences and the training data includes 9,209 sentences.

The final data may still contain additional noise and inconsistencies but our main interest is now to see

whether it is sufficient to train annotation tools that can produce interlinear-like tags from unrestricted In-
gush input. For this we divided the corpus into training and test sets. Table 1 summarizes the statistics of

150

the data sets. We can clearly see the inflectional complexity of Ingush which is striking in the type/token
ratio in comparison to English. The statistics also show the complexity of the tagset we are looking at
even after delexicalization. Note that the glosses are certainly not a fixed tagset but a productive anno-
tation scheme. Nevertheless, we will treat the task as a standard classification-based sequence-labeling
process as we will explain below.

4 Tagging with Interlinear Glosses

One of the goals of our experiments is to automatically create glosses and interlinears. The first step to
approach this goal is to be able to produce delexicalized interlinears for arbitrary utterances in transcribed
Ingush. We model the task as a sequence labeling task in which we search for the optimal tag sequence
given a sequence of input tokens and a model that is trained on annotated data. We use the tagged corpus
described in the previous section and train a model based on conditional random fields (CRFs) (Lafferty
et al., 2001), which is optimized for large tag sets that contain morphological features rather than single
part-of-speech labels. We apply marmot (Mueller et al., 2013),! a popular tool for morphologically-rich
languages and treat morpheme descriptions separated by dots as our inflectional features to be produced
by the tagger. The model describes a structural prediction task and a standard CRF defines a globally
normalized log-linear model of the conditional probability of a tag sequence ¥ = y1,¥2, .., Yn given a
sentence ¥ = x1, T, ..., Ty, Of n tokens that can be used to guide the predictions:

exTp Zt,i)‘Z : ¢Z (ga f’ t)
Z(X, T)

p(H17) =

In this formulation, ¢; is a feature function and); its associated weight, ¢ is the token index and
A (X, Z) is a normalising constant. Marmot provides an efficient implementation of that model using
pruned training and tag decomposition. The latter is especially important for tasks like ours where the
tag set becomes extremely large. In training, we then learn the parameters of the model that maximise
the prediction accuracy with respect to the training data and at test time we apply common inference
procedures to search for the best tag sequence given some input data and the model we have created.

The main challenge is certainly the complexity of the interlinears we wish to produce. We simplify
the task by ignoring the compositional way of interlinear glosses and assume that we can treat their
components as individual morphological features. We, hence, train the tagger with standard settings
using the morpheme-delimiter to split the interlinears into sub-tags and hope that the model can cope well
enough with predicting even complex annotations. Let us first look at the overall outcome of this model
before diving into a deeper analyses of the results and some simple ways of improving the performance.
Table 2 summarizes the performance of the tagger when applied to our unseen test set.

(scores in %) including xx without xx
average precision 82.68 71.43
average recall 81.51 67.76
accuracy 65.50 54.72

Table 2: Tagging transcribed Ingush with delexicalized interlinears.

We present three metrics that demonstrate the performance of the model: Precision, recall and accuracy.
The latter refers to the standard metric of comparing gold standard labels with the proposed ones. This
means that the metric only accepts exact matches of the entire interlinear string per token. However,
the interlinear glosses are typically composed of various elements and, therefore, we are interested in
measuring the closeness of the tags created.> Hence, we divide the tags into parts again (separated by
morpheme-boundary markers) and compare gold standard interlinears with proposed tags by means of
string similarity measures. In particular, we compute the longest common subsequence (LCS) between

! Available from http://cistern.cis.lmu.de/marmot/.
Note that dot-separated elements sometimes refer to categories that are fused into a single morpheme but in general the
sequential order matters referring to the sequence of morphological elements of the corresponding word.

151

including xx without xx
reference predicted P R P R token
xx.NW.D.NEG xx.NW.D.NEG 100 100 100 100 xeattaadaac
DEM.PL.OBL DEM.OBL 100 67 100 67 «cy
xx.PL.DAT xx.PL.DAT 100 100 100 100 bierazhta
D.PST=PTC D.xx.PST=CUM 50 67 67 67 dar=q
DX-xx-J xx NW.J.NEG DX-xx.AUX.NEG.PRS 25 20 25 25 dwachyjeannajaac
xx:NEG.PRS xx.PRS.NEG 33 50 50 50 xaac
xx-J.xx.CVtemp xx-D.xx.CVtemp 67 67 50 50 chyjiecha
J.xx.NEG.WP JLAUX.NEG.WP 75 75 75 100 jaxandzar

Table 3: Examples of predicted interlinear glosses (precision (P) and recall (R) scores in %).

the two strings of morpheme descriptions (not characters) and use that subsequence to estimate precision
and recall. Recall is then the ratio of correctly tagged morpheme descriptions (the sum of the lengths
of each LCS) and the total number of morpheme descriptions included in the reference set. Precision
is the ratio of the same number of correctly tagged morpheme descriptions divided by the number of
proposed morpheme descriptions in the automatically tagged data. To illustrate this on an example, in
the second row of Table 3, the longest common subsequence ('DEM.OBL’) has length 2, which is the
same as the length of the predicted tag (giving precision = 100%) whereas the reference annotation has
length 3 which gives recall=67% in that example.

As we can see in the Table 2, the tagger reaches quite reasonable performances in terms of precision
and recall. The scores go down for more complex tags as we can see when leaving out the placeholder
tags for lexical information (xx). Table 3 shows some examples of predicted interlinears and their ref-
erences from the test set. The examples show that the model is capable of predicting quite complex
descriptions. In many cases, the errors are rather minor and in many cases acceptable or just an artifact
of the manual annotation as manual inspections reveal.

ambiguous
(scores in %) | unambiguous (train) (test+train) unknown
precision 95.06 83.64 49.19 72.13
recall 95.44 83.50 49.72 66.27
accuracy 90.38 70.74 4.24 34.39

Table 4: Tagger performance for ambiguous and unknown words. 1207 unambiguous cases, 1209 un-
known words, 3457 ambiguous cases (train) and 165 tokens that are unambiguous in training but have a
different tag in the test data (test+train).

An important question is how well the system handles ambiguous and unknown words. The latter is
important, in particular, to show the ability of classifying unseen items that may appear in new material
that is collected. Table 4 lists the scores for different categories with respect to tagging ambiguity and
overlap with the training data. Not surprisingly, words that are unambiguous obtain high scores in all
metrics (above 90%). Still, some of the words are mistagged, which is due to the contextual dependencies
in the CRF model. Even though glosses are very much standardized, more than half of the test tokens
refer to ambiguously analyzed words. There are two categories of ambiguous words, the ones that have
multiple interlinears in the training data and the ones that are unambiguous (but probably very infrequent)
in training but have a different interlinear in the test set compared to the one in training. Naturally, the
latter case is particularly difficult for the tagger to handle correctly as the only information available in
training is without variation whereas the model is expected to produce a different result at test time. The
problem can especially be seen in the accuracy score (=4.24%). Fortunately, this is a very infrequent
case. Finally, we have unknown words and we can say that the model is well capable of analyzing those
words with reasonable precision. Considering the data size and the complexity of the task this is a very

152

encouraging result.

Looking at the result above, one also wonders if the performance can still be improved. Especially the
errors among unambiguous words are unsatisfactory and a simple solution would be to force the labels to
follow the markup from the training data. In our final tagging experiments we therefore study the impact
of these entries on the overall results. Table 5 summarizes the outcome of those tests.

(scores in %) precision recall accuracy
unambiguous only 21.32(9.69) 21.30(13.35) 19.81 (12.49)
tag all with "xx’ 73.26 (n/a) 51.66 (n/a) 36.32 (n/a)

most frequent tag

tagger

69.63 (55.34)
82.68 (71.43)
83.65 (73.15)

70.01 (60.34)
81.51 (67.76)
82.38 (69.38)

61.80 (53.25)
65.50 (54.72)
67.29 (56.99)

tagger + unambiguous
tagger + most frequent | 84.07 (73.07)

83.39 (71.74) 68.77 (59.60)

Table 5: Tagging unambiguous words and known words (in brackets without considering xx).

First of all, we can see that only tagging words for which we have unambiguous tags from training does
not work well, which is to be expected with the large number of ambiguous items in the data. Using
a baseline of attaching the most frequent interlinear (including xx) to each known word performs much
better but is still not very satisfactory (especially when looking at precision and recall). Surprisingly, even
precision drops quite significantly compared to the sequence labeling approach of the statistical tagger.
However, enforcing tags of known words according to the training data on top of the statistical tagger
leads to visible improvements. Not only fixing unambiguous words to the analyses from the training
data but also the baseline approach of using the most frequent interlinears to replace the predictions of
the tagger improve the overall results (especially in recall and accuracy). The final precision and recall
values of above 84% and 83% are quite satisfactory.

5 Alignment and Annotation Transfer

The next step we would like to explore is annotation transfer through the English glosses to bootstrap a
syntactic dependency parser. Cross-lingual parsing has become increasingly popular (Hwa et al., 2005;
Tiedemann, 2014; Xiao and Guo, 2014) and has been suggested for handling low-resource languages for
which no explicit training data is available. Annotation projection typically requires parallel data sets and
word alignment to transfer information from one language to another. As discussed earlier, the glossed
data sets nicely form a parallel corpus with English translations of the collected and transcribed Ingush
utterances. Furthermore, we also have the interlinears that give additional information that will be useful
in the alignment of running texts. Below, we outline our approach of combining links between interlinear
glosses and English with statistical word alignment between Ingush and running English, which will be
the basis of our initial annotation projection experiments.

5.1 Alignment Through Interlinear Glosses

Interlinear glosses provide rich information about the recorded data sets. First of all, they are nicely
aligned with the tokens in the original input. Furthermore, they include lexical information in English
that can be used to find corresponding parts in the smooth English translations that we will use to transfer
syntactic annotation from.

The first step in our process consist of parsing the English translations to obtain lemmatized and
syntactically analyzed sentences with annotation that we would like to project in the end. Here, we apply
UDPipe (Straka et al., 2016) with its pre-trained model for processing English trained on the universal
dependency treebanks version 1.2.3 UDPipe includes all necessary steps from part-of-speech tagging to
morphological analyses and dependency parsing, which makes it a convenient tool to apply in our pilot
study.

3http://universaldependencies.org

153

In our preprocessing steps, we already separated lexical information from morphosyntactic informa-
tion in the interlinears. We now use the lexical information to match lemmas in the parsed English
translations. We use several heuristics to increase the number of words that can be matched:

e We split multi-word units (for which we joined components using underscores) to match individual
parts with existing lemmas and wordforms in the parsed data. We also check alternatives that are
given in some of the interlinears.

e We expand placeholder tokens (1sg, 2sg, etc) with English pronouns they usually refer to.

e We implement a prefix match to test whether the lexical information from the interlinear is com-
pletely contained in a lemma or wordform of the parsed English glosses or vice versa.

e We always use the link closest to the relative token position in the sentence in cases where there are
alternative matches.

Via the position of the interlinears, we can now align English words with corresponding Ingush words.
All non-matching words remain unaligned and we will treat them using automatic word alignment as
explained below. In total, we obtain 38,665 links in the way described above out of the 110,167 tokens
in the parallel training data (which is around 35.1% of the data).

5.2 Adding Statistical Word Alignment

A large portion of the data cannot be aligned using the string matching techniques described above.
Therefore, we also run automatic word alignment using techniques that have been proposed in the field
of statistical machine translation (SMT). In particular, we apply fast_align, an efficient implementation
and reformulation of the IBM model 2 (Dyer et al., 2013). We run the alignment in both directions
and apply symmetrisation heuristics (grow-diag-final-and) as commonly used in the SMT community.
Finally, we merge automatic word alignments with the links obtained by matching interlinear glosses.

The symmetrized word alignment provides 83,863 links and, therefore, a much larger coverage of
the data set. However, we expect that statistical alignment is of lower quality than matching manually
created interlinears especially with the small data sets we have available. Therefore, we give preference
to the interlinear links and only add alignments for words that have not been aligned otherwise. Using
this strategy, we obtain a total of 80,974 linked words, about 73.5% of the complete data. Note that
the statistical word alignment emphasizes coverage and, therefore, includes a lot of many-to-many links
whereas the merged alignment focuses more on precision and, hence, contains a slightly smaller number
of links.

5.3 Dependency Parsing of Aligned Translations

Finally, we can now use the aligned training data to transfer annotations from the parsed English glosses
to the tokenized Ingush input. We use simple heuristics mapping universal part-of-speech labels and
dependency relations based on a direct correspondence assumption. Figure 3 shows two examples of
projected dependency structure using the annotation projection approach. We ignore all unaligned words
and create a synthetic treebank that we can use to train a statistical parser. Several options are possible
for training such a parser model and we opt for the mate-tools (Bohnet and Kuhn, 2012) that have been
shown to produce highly accurate parsing models for a variety of languages.

Unfortunately, at this point we cannot say much about the quality of this initial parser as we do not
have any gold standard available. In future work, we will manually check transfered annotation and
parsing results and iteratively bootstrap a usable parser based on some kind of active learning schema.

6 Conclusions

This paper presents on-going work on creating NLP tools for a low-resource language, Ingush, using
data from extensive linguistic fieldwork. We discuss the challenges of converting data sets to useful
training resources in data-driven language technology and outline the benefits of the rich annotation

154

PRON VERB DET NOUN PUNCT

whose is this knife ?
je urs hwana dy
this knife who be

2. NOM 22.NOM zx.GEN D.xx.PRS
DET NOUN PRON VERB

@ \Em

cop

punct

NOUN VERB PRON NOUN ADP ADJ NOUN PUNCT

aisha keeps her household in good order
Waaishaaz shii c’enna doal-du

Aisha 3sg house keep_in_order

z2.ERG sgRFL.GEN xz.DAT xz-D.AUX.PRES

PROPN PRON NOUN VERB

Figure 3: Aligned and projected dependency trees.

given by typological work. Interlinear glosses are very informative and capture important linguistic
knowledge that can be facilitated in training automatic analyzers and syntactic parsers based on cross-
lingual transfer models. We present an efficient tagger that can produce delexicalized interlinear glosses
from raw transcriptions and we hope that these methods can develop into tools for linguistic field work
and other applications for our selected target language or similar cases.

References

Bernd Bohnet and Jonas Kuhn. 2012. The Best of Both Worlds — A Graph-based Completion Model for Transition-
based Parsers. In Proceedings of EACL, pages 77-87.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. 2013. A simple, fast, and effective reparameterization of IBM
Model 2. In Proceedings of NAACL, pages 644—648.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak. 2005. Bootstrapping Parsers via
Syntactic Projection across Parallel Texts. Natural Language Engineering, 11(3):311-325.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic mod- els
for segmenting and labeling sequence data. In Proceedings of ICML.

Thomas Mueller, Helmut Schmid, and Hinrich Schiitze. 2013. Efficient higher-order CRFs for morphological
tagging. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
322-332, Seattle, Washington, USA, October. Association for Computational Linguistics.

Johanna Nichols. 2011. Ingush Grammar, volume 143 of UC Publications in Linguistics. Berkeley-Los Angeles:
University of California Press.

Milan Straka, Jan Haji¢, and Strakova. 2016. UDPipe: trainable pipeline for processing CoNLL-U files perform-
ing tokenization, morphological analysis, POS tagging and parsing. In Proceedings of LREC.

Jorg Tiedemann. 2014. Rediscovering Annotation Projection for Cross-Lingual Parser Induction. In Proceedings
of COLING, pages 1854-1864.

Min Xiao and Yuhong Guo. 2014. Distributed Word Representation Learning for Cross-Lingual Dependency
Parsing. In Proceedings of CoNLL, pages 119-129.

155

