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Abstract

Although spanning thousands of years and genres as diverse as liturgy, historiography, lyric and
other forms of prose and poetry, the body of Latin texts is still relatively sparse compared to
English. Data sparsity in Latin presents a number of challenges for traditional Named Entity
Recognition techniques. Solving such challenges and enabling reliable Named Entity Recog-
nition in Latin texts can facilitate many down-stream applications, from machine translation to
digital historiography, enabling Classicists, historians, and archaeologists for instance, to track
the relationships of historical persons, places, and groups on a large scale. This paper presents
the first annotated corpus for evaluating Named Entity Recognition in Latin, as well as a fully su-
pervised model that achieves over 90% F-score on a held-out test set, significantly outperforming
a competitive baseline. We also present a novel active learning strategy that predicts how many
and which sentences need to be annotated for named entities in order to attain a specified degree
of accuracy when recognizing named entities automatically in a given text. This maximizes the
productivity of annotators while simultaneously controlling quality.

1 Introduction: An Overview

We present here the first evaluated Named Entity Recognition (NER) system for Latin along with the
annotated data on which it was trained and tested. Our practical NER solution both caters to the unique
challenges of Latin and facilitates large scale digital historiography, enabling scholars to mine the re-
lationships of historical persons, places, and groups from a variety of primary sources. The study of
historical groups specifically is a desideratum of the Herodotos project, which aims to produce a defini-
tive catalogue of group designations in historical works (u.osu.edu/herodotos) and provided the
funding for the work reported here. Using a data set drawn from the Perseus corpus (Smith et al.,
2000), we develop annotation guidelines and demonstrate high inter-annotator agreement (99.3% Fleiss’
Kappa). Next, we build a fully supervised NER model and evaluate it across test sets from different
domains, demonstrating that it consistently outperforms baseline models regardless of how the style or
register of the test set compares to the training set. Then we further address the issue of domain adap-
tation with an active learning solution that selects sentences to be annotated which cover gaps in the
model’s knowledge due to linguistic idiosyncrasies of the target domain. In addition to rapidly increas-
ing accuracy by minimizing the amount of annotation required, a detailed error analysis demonstrates
that we can reliably predict how many (and which) sentences must be annotated in a given target domain
to ensure that named entities (NE) can be recognized in the remaining text with a pre-determined degree
of accuracy. This provides an element of quality control for Classicists who might otherwise be wary of
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relying on large-scale data mining to address nuanced topics in the humanities. Finally, we discuss how
the challenging qualities of Latin, being a low resource, morphologically complex language with free
word order, affect our ongoing work in incorporating elements of self-training into an active learning
pipeline.

2 Latin Data

The Latin language presents many challenges for NER. Being a non-standard language in terms of Nat-
ural Language Processing research, it is limited in the pre-existing training resources we can utilize.
There is no annotated corpus available that makes fine-grained distinctions among NE’s, and Perseus’
digital gazetteers, mark-ups of Smith (1854; 1870; 1890), cover just individual persons (PRS) and
geographical place names (GEO), not group names (GRP), which we want also to be able to recog-
nize.1 Additionally, the reliability of part-of-speech taggers (e.g. Schmid (1999) trained by Gabriele
Brandolini (http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/data/
latin-par-linux-3.2.bin.gz) and Johnson et al. (2014)), dependency parsers (Bamman and
Crane, 2009), and semantic models (Johnson et al., 2014) is very low due to data-sparsity. Ponti and Pas-
sarotti (2016) actually demonstrate reliable syntactic dependency parsing on Medieval Latin using the
Index Thomisticus Treebank (McGillivray et al., 2009), but find that more work is needed to successfully
adapt their model to handle other varieties of Latin. In broad terms, generalizing from linguistic patterns
recognized in one Latin text when processing another is difficult because “a series of particular histori-
cal, geographical and cultural circumstances [led] to an inhomogeneous linguistic system where elements
from different areas and registers met and were only partially transmitted by the sources” (McGillivray,
2014). In this section, we discuss the impact of the nature of the Latin language on our selection of the
Perseus corpus and our annotation of portions of it.

2.1 Digital Latin Corpora
While future work will involve incorporating diverse sources, e.g. archaeological data, liturgical Latin
from Index Thomisticus (Busa, 1974–1980), and other historical corpora like PROIEL (Haug and
Jøhndal, 2008), focusing on a single large corpus to start allows us to rely on consistent digitization.
Perseus contains over 6,000,000 (mostly) consistently digitized Latin words with proper nouns (mostly)
capitalized (Smith et al., 2000). This capitalization scheme did not exist in the original manuscripts but
is nonetheless crucial for identifying NE’s. That being said, within Perseus, the subject matter is quite
diverse, certainly containing a broad spectrum of NE’s of interest to Classicists. Not only does the cor-
pus include several domains as identified by the creators – epic, elegiac, iambic and lyric poetry, tragedy,
comedy, historiography, oration, mythology, philosophy, inscriptions/papyri, in addition to letters and
other works (Marchionini, 2000) – but it also includes a wide breadth of diachronic variation ranging
from the entire canon of Classical Latin to many early Christian authors.

2.2 Annotation
We annotated Caesar’s De Bello Gallico (BG) for all the GRP’s, PRS’s, and GEO’s appearing therein.
BG is a fitting source text to train an NER model because it both contains many NE’s and is “a model
of Latin style” (Cicero, Brutus 262), meaning that we should be able to adapt to target texts with greater
ease than if we had annotated a more peripheral, less influential source text, e.g. a work of poetry or
liturgical Latin. However, because we intend to use our NER model to tag many texts which may differ
considerably from BG in terms of content, style, and density and distribution of NE’s, we chose two
other texts representative of target domains widely represented in Perseus (letters and elegiac poetry)
and additionally annotated portions of them as well. In total, we annotated all 58,891 words of BG,
18,676 of Pliny the Younger’s Epistulae (Ep) and 17,562 of Ovid’s Ars Amatoria (AA). Ep shares many
more qualities with BG than AA does. Proportionally, the former share more word forms and both are

1Busa’s (1974–1980) Index Thomisticus is annotated for proper nouns, but does not distinguish groups from places from
persons as we do. Furthermore, this corpus of liturgical Latin represents a vastly different variety of the language as compared
to the Classical texts we have annotated in terms of era, style, and content, so we are indeed building a novel resource. Future
work will leverage Index Thomisticus among other resources to facilitate adapting our NER model to cover liturgical Latin.
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prose and relatively concrete, whereas AA is poetic, allusive, and abstract as evidenced by the fact that a
given form is far more likely to have multiple meanings in AA as determined by the NE labels it receives.
This suggests that our target texts will allow us to define a gradient scale to measure how well we adapt
to target domains based on their similarity to our source.

To insure cohesive annotation among our three annotators (an undergraduate, a graduate, and a profes-
sor of Classics, each with at least 4 years of experience studying Latin), each individually annotated the
same 5,000 words for NE’s, over which an agreement score of 95.9% Fleiss’ Kappa was achieved. Af-
terward, all 3 collaborated in correcting each error and the annotation guidelines were updated. Finally,
another 5,000 words were individually annotated and the new agreement score of 99.3% demonstrated
the consistency with which the new guidelines could be followed.

3 Fully Supervised NER Models

We built a fully supervised NER model equipped with a minimalistic, language-specific feature set and
compared it to two baseline models: the only other NER technology for Latin, an unevaluated tagger from
Johnson et al.’s (2014) Classical Languages Toolkit (CLTK), and a quality off-the-shelf NER model, the
Stanford NER system (Finkel et al., 2005), trained on our data without language-specific features.

3.1 The Baseline Models

The CLTK NER baseline is rule based, performing a dictionary look-up and making a binary classifica-
tion of entity/non-entity for each token using a gazetteer of NE’s constructed by harvesting all capitalized,
non-sentence-initial tokens from the Packard Humanities Institute Latin Libraries corpus (Packard Hu-
manities Institute, 1992). Because no gold data was annotated to train or evaluate this system, our small
annotated corpus presents the first opportunity to gauge its performance. Stanford’s NER system is a
more sophisticated conditional random field (CRF) model, although, being fully supervised in its off-the-
shelf implementation, it lacks the extensive vocabulary that the CLTK system has access to. CRF’s are
undirected graphical models trained to maximize the conditional probability of a sequence of labels given
the corresponding input sequence (Liao and Veeramachaneni, 2009), and are especially effective in NER
due to their ability to rapidly learn from potentially large vectors of features belonging to each sequential
token. Stanford NER leverages the widely used types of features discussed by McCallum and Li (2003),
lexical, orthographic, semantic, conjoined sequences of features, and features of neighbors (we use the
default feature set and parameters specified at nlp.stanford.edu/nlp/javadoc/javanlp-3.
6.0/edu/stanford/nlp/ie/NERFeatureFactory.html), but additionally employs a Gibbs
Sampling-based penalty system motivating consistency in labels for multiple occurrences of the same
word type (Finkel et al., 2005).

3.2 Our Model

Our model, like Stanford’s, is a CRF using similar features, though we alter ours to suit our language
and corpus. We employ a POS tagger (Schmid, 1999) to leverage the highly informative morphological
complexity of Latin. Finkel et al. (2005) claim only a negligible boost from using POS features in English
NER and thus do not include them in the off-the-shelf version, yet we find that when implemented with
creativity, the output of even a low accuracy POS tagger can be beneficial for Latin NER. For each token,
we deconstruct the fine-grained POS tag into component parts ranging from case and mood distinctions to
coarser distinctions between syntactic categories like nouns and verbs. We then run each token through
a rule-based morphological analyzer (Whitaker, 1993), filtering out any components that the analyzer
considers impossible. Furthermore, we combine the output of the tagger and analyzer with our own set
of rules, thereby deducing a lemma (if one failed to be identified by the tagger or analyzer), component
morphemes, and number (singular/plural), all to be used as features. Like Farber et al. (2008), which
uses a similar process to leverage morpho-syntactic information in morphologically rich, low-resource
Arabic, we too find that filtering POS tag output cuts down on noise, boosting accuracy. By additionally
leveraging the newly enhanced LEMLAT (Budassi and Passarotti, 2016) morphological analyzer, or
even substituting it for Whitaker’s (1993), which has a smaller lexical base and struggles with graphical
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Table 1: Fold 1 tests on Ep, trains on the remaining annotated data. 2 tests on AA, and 3 on books 2 and
7 of BG which, when concatenated, resemble the lengths of the other 2 test sets. 3 tests “in-domain” as
the training set is mostly from the same domain, i.e. the other 6 books of BG, the historiography domain.

Table 2: UNK’s are words unseen in training, F, F-score, Prec, precision, Rec, recall, and GAZ, gazetteer.

variants, we expect even further gains in coverage and accuracy with this POS tagging strategy in the
future.

Further tailoring of our feature set involved tweaking parameters meant to optimize NER in data-rich
environments to suit our small corpus, like limiting the size of N-grams. Lastly, we implement one fea-
ture leveraging unlabeled data which identifies any sentence-initial token which appears elsewhere in the
corpus without its first letter capitalized, suggesting that it is not an NE. We find higher order semantic
features like those used in Rani et al. (2014) unhelpful. We attempted to generate such features using the
unevaluated Word2Vec model released with CLTK, but it could not cluster words well enough to be use-
ful given the huge disparity between the amount of training data available in Latin and English (Mikolov
et al., 2013; Michel et al., 2010).

3.3 Results

Because of the stylistic, synchronic and diachronic breadth of the Perseus corpus relative to the limited
coverage of annotated data, we present both in-domain and out-of-domain results by performing 3-fold,
cross-domain evaluation as described in Table 1 to assess how accuracy declines as the test domain
diverges from the source. Additionally, when calculating results, we do not consider non-NE’s correctly
labelled in our F-score metric. This avoids artificially inflating results in low NE-dense domains (BG
is more NE-dense than AA and Ep). Table 2 compares both the performance of CLTK NER with our
model in a binary NE/non-NE classification task, and Stanford NER’s performance with our model’s in
classifying GRP’s, PRS’s, and GEO’s. Additionally, it displays how our model’s performance is affected
when aided by 3 pre-existing Latin gazetteers (Perseus’ markup of Smith (1854; 1870; 1890)).

Table 2 demonstrates that the CLTK detects too many named entitites, often detecting NEs for words
which can occur as both names and regular nouns or adjectives, like Clarus, “famous” or Maximus,
“greatest”, leading to low precision. Additionally, it cannot recognize NE’s not previously stored in
its dictionary, thus leading to recall errors. Both versions of our model, with and without gazetteers,
outperform the Stanford baseline, proving that our language-specific POS features are helpful in coping
with data sparsity. The benefit of using gazetteers, interestingly, wanes as baseline accuracy increases
from Fold 2 to 1 to 3, providing no benefit in the latter. This stems from a mismatch between the
gazetteers and the classification task: no gazetteer exists for GRP’s and many GRP’s share forms with
members of the GEO gazetteer (the distinction determined by context), increasing the likelihood that
these will be incorrectly tagged as GEO’s. Yet as the style, topicality, and genre of the test set diverge
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Table 3: Decrease in accuracy as proportion of NE’s in the test set not seen in training increases.

Table 4: The UNK’s in row 2 are a subset of those in 1, as the UNK’s in 3a and 3b are mutually exclusive,
completely exhaustive subsets of those in 2. An UNK is “capitalized” if its first letter is capitalized. An
UNK appears “elsewhere uncapped” if it exists somewhere in the Perseus corpus, differing only in that
the first letter is not capitalized. Accuracy is reported over all 3 test sets combined.

from the training set, this problem becomes increasingly outweighed by the usefulness of having at least
some gazetteer to refer to when confronted with an increased density of UNK’s.

Despite our model’s success in obtaining significant improvements over both baselines in all three
folds, the ability to adapt to new domains is a weakness of fully supervised models. Performance drops
from 91% within domain to 71% testing on a relatively similar domain (Fold 1), to 54% testing on a
relatively obscure domain (Fold 2). The decline in accuracy in Table 3 suggests that the model frequently
fails to leverage non-lexical features to correctly identify a label in the absence of lexical ones.

Table 4 demonstrates that forms like Marius (a PRS), which do not appear in the training set or possess
a minimally different uncapitalized variant appearing elsewhere in Perseus, are very difficult to tag. We
refer to such words as Priority 1 words. Forms like Video, “I see”, which also do not appear in training
but do show uncapitalized variants, are still challenging but much less so as most are non-NE’s, only
capitalized when sentence initial. We refer to these as Priority 2 words; however, these tend to be more
frequent than priority 1’s. We consider this tradeoff between difficulty and frequency as we tailor our
pipeline to better handle capitalized UNK’s.

4 Semi-Supervised Model

Semi-supervised learning involves supplementing with unannotated data during training. Liao and Veera-
machaneni (2009), Rani et al. (2014), and Collins and Singer (1999) show that self-training, where unan-
notated data is used for training without querying the user, can overcome data sparsity or gaps between
training and testing domains. However, the first two identify high precision unannotated sentences by
relying on seed rules which are difficult to develop for Latin. While Liao and Veeramachaneni (2009)
can rely on any capitalized word following a PRS to be part of the same NE, Latin’s free word order
frequently allows NE’s from entirely different syntactic constituents to appear adjacent to one another,
as in Caesar [PRS] Haeduos [GRP] frumentum ... flagitare “Caesar demands grain from the Aedui”
(BG 1.16.1). Collins and Singer’s (1999) implementation of Blum and Mitchell’s (1998) co-training (the
output of one tagger is used to train another) could be implemented without seed rules, yet, Pierce and
Cardie’s (2001) assessment of the limitations of co-training shows that when “all the classes are [not]
represented according to their prior probabilities in every region in the feature space”, as when we adapt
to new domains in Perseus, we get Charniak’s (1997) result where mistakes are magnified, not smoothed.

Active-learning, as opposed to self-training, allows the learner to query the user for additional annota-
tion. Lynn et al. (2012) and Ambati et al. (2011) suggest that this is an effective solution for low-resource
languages when self-training fails. Following Cohn et al. (1994), we modify the Query by Uncertainty
tactic, where the tagger selects informative sentences based on how uncertain it is of the correct tag
sequence and sends these to be annotated. Our modifications ensure that the most useful sentences are
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Figure 1: Learning Curves for our 3 folds demonstrate a strong negative relationship between Remaining
UNK’s and Accuracy. Remaining UNK’s is the number of unknown words in what is left of the test set
normalized by the total number of NE’s therein. The increase in UNK accuracy as sentences are selected,
though noisy when only few remain, demonstrates that the model learns to leverage non-lexical features
as data is added to the training set.

annotated first by leveraging the data-mining discussed earlier (3.3) and Sokolovska’s (2011) insight that
a distribution over degrees of uncertainty is more beneficial.

The sentence selection algorithm begins by identifying all Priority 1 and 2 unknown words from the
test set and lists all the unannotated sentences containing at least one. Primarily, the list is ranked by
frequency of the relevant UNK weighted by priority level, reflecting that we are more likely to mis-
tag Priority 1’s than Priority 2’s and that fixing high frequency mistakes is more important than low-
frequency ones (sentences with multiple unknown words can be entered into the list multiple times
but only extracted once). Secondarily, we rank sentences in the list by the sum of (a) the marginal
probability with which the fully supervised tagger predicts the relevant UNK’s tag, and (b) the median of
these marginal probabilities over every occurence of that word form in the test set. A low sum of these
two outranks higher sums, ceteris paribus, as this implies that the given sentence is highly informative
and that the UNK it features is not likely to be tagged correctly a priori. The selection algorithm then
progresses through this ranked list taking sentences out for annotation only if the relevant UNK therein
has not already been added to the training set by a higher-ranking sentence. In order to ensure that,
during training, the tagger optimally learns from sentences which were selected by the algorithm, we
weight these sentences in the training data according to the fraction of all Priority 1 and 2 types from the
test set which are represented therein. Intuitively, the algorithm addresses the sources of errors discussed
previously, though one flaw (4.2) is still being addressed.

4.1 Experiment

We set out to determine if (a) our sentence selection algorithm is efficient and (b) we can reliably predict
tagging accuracy based on how many sentences we have already selected and annotated. Such are the
practical concerns of e.g. Classicists studying the portrayal of GRP’s in the liturgical Index Thomisti-
cus (Busa, 1974–1980). Accuracy on a held-out set does not concern them, only how many and which
sentences must be annotated within Index Thomisticus to ensure that the remainder can be tagged with
sufficient accuracy to meet their projects’ needs. Thus, we return to our 3 domain-disjoint folds over
which we tested the fully supervised model, pretending that the test sets represent never-before-seen
documents of varying tagging difficulties. For each fold, we run our sentence selection algorithm on the
test set, incrementally updating the training set with selected sentences and testing on those remaining.
Figure 1 depicts the results from running the tagger on each fold until the learning curve levels off.

The accuracy on BG levels off at the top of the probability space once all capitalized UNK’s have been
seen. AA leveling off in the low 90’s is an effect of the inherent challenge of tagging a text in which
the same NE is frequently used to refer to different classes, merely reflecting the lower inter-annotator
agreement in this test set. The flaw with the sentence selection algorithm is that Remaining UNK’s never
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Figure 2: Leveraging distributional statistics of UNK’s distinguishes the alternative model.

approach 0 in Ep. The algorithm fails to select sentences for some unknown PRS’s because several
(Maximus, Clarus, etc.) are homonymous with non-NE’s, representing a third priority to be incorporated
in the updated algorithm. However, for now, we can ignore the effect of homonymy by only considering
results in Ep from 0 to 0.5 additional normalized sentences, the other texts being free of such effects.

4.2 Predicting Accuracy Ex Ante
We can use linear regression2 to predict how accurately a text can be tagged based on how many sentences
have been selected, enabling our Classicists to deduce how many sentences they must annotate to ensure
sufficient tagging accuracy to support their work. We compare two potential regression models:

Yb = β0 + β1X1 + ε (1)

Ya = β′
0 + β′

1X1 + ε′ (2)

The baseline Equation 1 predicts accuracy such that β0, the accuracy before sentences are selected, is
a function of the number of capitalized UNK’s normalized by the expected number of NE’s in the test
set.3 The rate at which accuracy changes, β1, as sentences (normalized by the number of expected
NE’s) are added, X1, is assumed to be constant across all train/test splits. The alternative Equation 2
predicts β′

0 to be a function of the density of capitalized UNK’s weighted by the proportions of priority
levels represented therein, just as the sentence selection algorithm weights priority 1 words over priority
2’s. β′

1 is uniquely determined for every test set based on the type-to-token ratio of capitalized UNK’s
(also weighted by priorities), such that a higher type-to-token ratio predicts greater accuracy gains per
sentence annotated. Figure 2 demonstrates that priority levels and type-to-token frequency ratios enhance
our ability to predict accuracy gains via active learning and that accuracy can be well modeled through
the upper-middle regions of the probability space. Ongoing work is addressing the effect of homonymy
as well as the effect of similarity in distributions over NE labels between training and test sets – this is
contributing to the greater-than-predicted accuracy in BG.

5 Conclusion

We present an active-learning NER pipeline for low-resource Latin that expedites accuracy gains at low
annotation cost. Our pipeline enables researchers to gauge the reliability of NER output and upgrade that

2As we are in probability space, logistic regression would seem more fitting, but there are many complex non-linear effects
due to e.g. the improvement of UNK accuracy as the density of UNK’s decreases, such that we are still working on developing
an adequately complex regression model; however, linear regression provides very suitable predictions of accuracy as texts
improve through the upper-middle ranges of the probability space with which we are chiefly concerned.

3The number of NE’s expected in the test set is the number of non-sentence-initial capitalized words plus the number of
sentences which should start with an NE given equal distributions of NE’s within sentences; however, this assumption is not
entirely valid and we slightly over-predict NE’s, though the minor effect should not bias our results.
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reliability until it meets their standards for a given application. While still in development, our product
makes novel contributions to the field including the first annotated corpus for evaluating NER in Latin
and a formula for predicting tagging accuracy throughout the active learning process. This will all be
made publicly available in the future: our annotated corpus and the supervised NER model trained on
it as well as an interface for guiding users through the active learning process described here, enabling
them to tailor our product to their own needs.
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