Unsupervised Stemmer for Arabic Tweets

Fahad Albogamy Allan Ramsay
School of Computer Science, School of Computer Science,
University of Manchester, University of Manchester,
Manchester, M13 9PL, UK Manchester, M13 9PL, UK
albogamf@cs.man.ac.uk allan.ramsay@cs.man.ac.uk
Abstract

Stemming is an essential processing step in a wide range of high level text processing appli-
cations such as information extraction, machine translation and sentiment analysis. It is used
to reduce words to their stems. Many stemming algorithms have been developed for Modern
Standard Arabic (MSA). Although Arabic tweets and MSA are closely related and share many
characteristics, there are substantial differences between them in lexicon and syntax. In this pa-
per, we introduce a light Arabic stemmer for Arabic tweets. Our results show improvements over
the performance of a number of well-known stemmers for Arabic.

1 Introduction

The last few years have seen an enormous growth in the use of social networking platforms such as
Twitter in the Arab World. A study prepared and published by Semiocast in 2012 has revealed that
Arabic was the fastest growing language on Twitter in 2011. People post about their lives, share opinions
on a variety of topics and discuss current issues. There are millions of tweets daily, yielding a corpus
which is noisy and informal, but which is sometimes informative. As a result, Twitter has become one
of the most important social information mutual platforms. The nature of the text content of microblogs
differs from traditional blogs. In Twitter, for example, a tweet is short and contains a maximum of 140
characters. Tweets also are not always written maintaining formal grammar and proper spelling. Slang
and abbreviations are often used to overcome their restricted lengths (Java et al., 2007).

Stemming is an essential processing step in a wide range of high level text processing applications such as
information extraction, machine translation and sentiment analysis. It is a non trivial problem especially
with languages that have rich and complex morphology such as Arabic. The function of a stemmer is to
reduce words to their stems by stripping off all affixes (Frakes, 1992). Affixes are syntactic units that do
not have free forms, but are instead attached to other words. They use the same alphabet as that of words
and are concatenated one after the other with no demarcating marking such as the English apostrophe.
Therefore, they are not easily recognisable. Although there have been several studies on developing
morphological and stemming tools for Modern Standard Arabic (MSA), a stemmer that can work on
Arabic tweets or similar text styles is yet to be developed.

In this study, an unsupervised stemmer for Arabic tweets is proposed, implemented and tested. It applies
a light stemming technique on Arabic words to extract their stems. Our Arabic stemming approach is not
dictionary based, which is crucial for stemming Arabic tweets, since they have a very open lexicon, and
we are able to reach around 78% stemming accuracy. The results are compared with an Arabic stemmer
which uses similar approach described in the literature.

The rest of this paper is organised as follows: In Section 2, we give an overview of the related work,
followed by the representation of Arabic words in 3. Our approach is presented in Section 4. In Section
5, we discuss the evaluation, results and their analysis. In Section 6, we talk about conclusion and future
work.

78

Proceedings of the 2nd Workshop on Noisy User-generated Text,
pages 78-84, Osaka, Japan, December 11 2016.

2 Related Work

There have been several studies on developing morphological and stemming tools for MSA. These tools
can be classified into three categories: manually constructed dictionaries (heavy stemming), light stem-
ming and statistical stemming.

Heavy stemming approaches try to find the stems and roots by using dictionaries. There are many exam-
ples of recent research work under this category such as (Buckwalter, 2004), (Khoja and Garside., 1999)
and (Algarni et al., 2014). The Buckwalter Arabic Morphological Analyzer (BAMA) is the best known
example of such an approach. It is an open-source software package morphological analyser developed
by Tim Buckwalter. He developed a set of lexicons of Arabic stems, prefixes, suffixes and a table con-
taining valid morphological combinations in order to produce all possible stems for each word. Khoja
stemmer is another example of this class. It based on one dictionary for Arabic roots. It removes the
longest suffix and the longest prefix. Then, it matches the remaining word with roots in the dictionary
and a list of patterns. This category produces well-formed stems and roots which are potentially correct,
but it generates multiple analyses, therefore it has to have some downstream mechanisms for choosing
between them and the dictionaries are extremely difficult to maintain.

Light stemming approach is a process of stripping off a set of affixes from a word without trying to
recognise patterns and find roots. It is fast, does not need roots or stems dictionaries and plays safe in
order to avoid over-stemming errors, but it may produce the stem that may not even be a real Arabic
word (Paice, 1994). (Al-Kabi et al., 2015) uses a light stemmer approach but does not cover all affixes
in Arabic.

Statistical approach is a process of inducing a list of affixes automatically and using clustering techniques
to group word variants. Most statistical approaches require annotated training data such as (Darwish and
Oard, 2007) and (De Roeck and Al-Fares, 2000). This data is expensive and is not always available.
Although there have been some positive results with un annotated training data for many different lan-
guages such as (Goldsmith, 2001) and (Dasgupta and Ng, 2007), it seems likely the complexity of Arabic
language makes that kind of approach is infeasible.

On the other hand, there has been relatively little work on building stemmers for Arabic dialect. Most
of these works targeted one specific dialect such as (Alamlahi and Ahmed, 2007) and (Al-Gaphari and
Al-Yadoumi, 2010).

Our work is, to the best of our knowledge, the first step towards developing a stemmer for Arabic tweets
or similar text styles which can benefit a wide range of downstream NLP applications such as information
extraction and machine translation. Our approach does not rely on any root dictionary or list of patterns.
We use a light stemming approach and shortest stem strategy to extract the stems of the words.

Word O laiiwg "wsyfElwn”
Arabic | Translit.
Prefixes | 2 W
o S
S y
Stem J...s fEl
Suffixes | (g wn

Table 1: Example of Arabic Affixes

3 Arabic Word Form

Arabic is a morphologically rich language where the letters are attached together to form a word. A
word often conveys complex meanings that can be decomposed into several morphemes (i.e. prefix,
stem, suffix). Consequently, it presents significant challenges to many NLP applications such as tagging.

79

Noun
I Verb
I I
3 |'
g = L -
] S £ g =]
5 = < £ £ 2 g g
2 2 2 A g g 5 2 £ g z
g 3] £ - & & g g g z g
@) -9 8 < g—- = n a“_’ E
&)
Figure 1: Possible sub-tokens in Arabic Figure 2: Possible sub-tokens in Arabic
nouns verbs

For example, the Arabic word! ‘slaaowg “wsyfElwn” which means “and they will do”, consists of five

elements as shown in Table 1. We notice that Arabic affixes (prefixes and suffixes) attach to the base
word in a strict order. These affixes are differ based on the word type, but in general we can represent
the word as follows:

Word = Prefixes + Stem + Suffixes

Arabic morphotactics allow words to have affixes. Affixes themselves can be concatenated one
after the other. A noun can comprise up to six sub-tokens as illustrated by Figurel. Similarly a verb
can comprise up to five sub-tokens as illustrated by Figure 2. The combination of words with affixes
is governed by various rules. These rules are called grammar-lexis specifications (Dichy and Farghaly,
2003). An example of these specifications is a rule that states that the prefix ’s”, which denotes the
future of verbs, is only combined with imperfective verb stems.

4 Our Approach

Although Arabic tweets and MSA are closely related and share many characteristics, there are substantial
differences between them in lexicon and syntax (Albogamy and Ramsay, 2015). The lexicon is always
evolving and many words in Arabic tweets are not present in MSA. Therefore, dictionary-based stem-
ming approaches will not work for Arabic tweets. The statistical approaches that are used to induce a list
of affixes automatically are also not applicable because we predefined a limited set of prefixes and suf-
fixes for Arabic tweets and there is no annotated training data available. In Arabic tweets domain, there
are millions of words that need to be stemmed, so stemming approaches that use a set of rules to identify
words patterns are not suitable because they consume lots of computational resources (Al-Serhan and
Ayesh, 2006).

Based on that, we decided to use a light stemming approach similar to the one that has been used in
(Al-Kabi et al., 2015), but we cover all Arabic affixes. We define all possible affixes and write a set of
rules of valid prefixes, suffixes and word forms and select the shortest stem of a word as the correct stem.
We built our light stemmer by using Python and a basic grammar that we wrote to describe the morpho-
logical rules of Arabic noun and verb (see Figure 3). We are interested in two major word types; noun
and verb. We defined them as a combination of allowable prefixes, and a word stem which is all letters
between the prefix and the end of the string. In case that the word types have suffixes, the stem is defined
as all letters between the prefix and the suffix. Our approach has two phases and deals with one word
at a time. The first-phase is dedicated to taking the input word and trying it against the definition of its
word type in the grammar. Then the stemmer will produce a list of all possible stems. The second-phase
is to select the shortest stem as the correct stem. We use the word AJl § "wbalyd” which means ”and by

the hand” to demonstrate our approach (see Figure 4). The stemmer tried this word gainst the noun type
grammar. It produced three possible stems. Then, the shortest stem (analysis 1) was selected yd’ as the
stem for this word. In this particular example, the stem chosen is the correct stem.

"The word is delimited by a white space

80

patterns = {

"ART": "Al|",

"CONJ": "W‘b",

"NSTEM": ".{3,}?2",

"VSTEM": ".{2,}2",

"PRON": "y|h|ha|hmA|hm|hn|k|kn|km|kmA]|nA",

"VPRON": "PRON|NY",

"NY": "ny",

"PREP": "b‘kll",

"FUT": "s",

"INS1": "O|nl|Alylt]",

"TENSE": " (FUT)? (INS1)",

"PERSON": " (? (ON)AGR-ON| (? (AY) AGR-AY |
(? (£)AGR-T| (? (past)AGR-PAST)))) ",

"AGR?ON mw . nn ,

"AGR-AY": "(A|An|wA|wn|n|)",

"AGR-T": "(yn|An|wn|n|)",

"AGR-PAST": " (tmA|tm|tn|t|A|wA|nl)",

"AGREE": "wn|yn|pl|An|At]|",

"NOUN": " (CONJ) ? (PREP) ? (ART) (?P<stem>NSTEM)
(AGREE) (PRON) 2",

"VERB": " (CONJ) ? (TENSE) (?P<stem>VSTEM)

(PERSON) ? (VPRON) 2"}

Figure 3: Combination rules of Arabic noun and verb”
Analysis 1:['w', 'b’, "al’, ’'yd’]
- prefix: ['w’, "b’, "al’]
- stem: yd
Analysis 2:['w', ’'b’, "alyd’]
- prefix: ['w', "b’]
- stem: alyd
Analysis 3:['w’, ’"balyd’]
- prefix: w
- stem: balyd
Analysis 4:[’wbalyd’]
- stem: wbalyd

Figure 4: Possible stems for the word 4Jl, § "wbalyd”

5 Evaluation

As mentioned earlier, we have implemented our proposed stemming approach using Python program-
ming language. The system accepts a text file that includes the Arabic nouns and verbs. Then, it produces
the stems of those words. Example of the system’s output results are shown in Table 1. Data used to test
our stemmer for Arabic tweets, the results and error analysis are shown in the following subsections.

5.1 Experimental Setup

The corpus from which we extract our dataset contains 10 millions tokens taken from Twitter (Albogamy
and Ramsay, 2015). They used Twitter Stream API to retrieve tweets from the Arabian Peninsula by using
latitude and longitude coordinates of these regions since Arabic dialects in these regions share similar
characteristics and they are the closest Arabic dialects to MSA.

To create our test set, we sampled 390 tweets from the above corpus to be used in our experiments. A set
of correctly annotated nouns and verbs for this sample (gold standard) is required in order to be able to
appraise the outputs of the stemmer. Once we have this, we can compare the outputs of the stemmer with
this gold standard. Since there is no publicly available annotated corpus for Arabic tweets, we manually
annotated our dataset. The dataset contains 1250 nouns and 692 verbs.

5.2 Results

In our experiments, we used two different settings of stem length: 3-character stem and 2-character stem.
In the first experiment, we restricted the length of stems to be at least three characters for nouns and verbs

81

Table 2: Stemming accuracy if stem length is 3 characters and more

Word Type | Stem Length Accuraccy
Nouns >=3 characters | 78.16 %
Verbs >=3 characters | 67.19 %

Word Type | Stem Length Accuraccy
Nouns >=2 characters | 76.8 %
Verbs >=2 characters | 77.45 %

Table 3: Stemming accuracy if stem length is 2 characters and more

since most of words in MSA have a 3-letter stem. We got 78.16% and 67.19% stemming accuracy for
nouns and verbs respectively as shown in Table 2. However, we noticed that for some nouns and verbs
their stems were written in two letters. Therefore, they were ignored by the stemmer. In the second
experiment, we restricted the length of stems to be at least two characters or more for nouns and verbs to
cover all missed cases in the first experiment. The stemming accuracy for verbs was improved by about
ten percent whereas the stemming accuracy for noun was decreased by around two percent as shown in
Table 3.

Based on the experiments results, we decided to use two different constrains; one for nouns and the other
for verbs. the length of stems has to be at least three characters or more for nouns and to be at least
two characters or more for verbs. As we can see in Table 4, the best overall stemming performance
is achieved when the minimum stem length is three characters for nouns whereas two characters for
verbs. The results of the tests on our stemmer yield an accuracy of 77.91% of the whole collection.
We have compared our stemming accuracy with (Al-Kabi et al., 2015), (Khoja and Garside., 1999)
and (Ghwanmeh et al., 2009). Those three stemmers yield accuracies 75.03%, 74.03% and 67.40%
respectively (Al-Kabi et al., 2015). Our results show improvements over the performance of those three
well-known stemmers for Arabic. Moreover, we used a light stemming approach whereas they used
heavy stemming approaches. We also experimented on Arabic tweets domain which is noisier than
MSA. In addition, we are able to extract two and three characters stems length which are most stemmers
for Arabic cannot do so.

Stem length Overall accuracy (nouns and verbs)
>=2 characters 77.03 %
>=3 characters 74.25 %
Verb stem >=2 and noun stem>=3 77.91 %

Table 4: Overall stemming accuracy (nouns and verbs)

5.3 Error Analysis

We examined the words that were incorrectly segmented by our system. The errors can be broadly
divided into three categories: under-stemming, over-stemming and orthography errors. Under-stemming
errors happen when the stemmer does not remove all affixes in the words. For example, the word (e 5ol
“For the believers” the algorithm removes the first letter of the prefix J but not the second one since it

is considered as part of the stem in this case (see Table 5, the first row). Over-stemming errors happen
when the stemmer considers part of the words is an affix and removes it. Consider the Arabic word
.»\p\j ”One”, the stemmer removes the original letter g because it looks like a conjunction (see Table 5,

the second row). Orthography errors occur when the stemmer removes all affixes and finds the correct
stems, but the last letter of the stems have a wrong shape. For example, the word M ”Their word”

the stemmer removes the suffix o and it considers . as the stem which is correct except that the last

82

letter should be replaced by & instead of » (see Table 5, the third row)

Arabic word Our stemmer | Gold Standard | Error Type
- ‘04 “04 under-stemmin,
For the believers” w}i o ¢
s Ay over-stemming
”One’7
|) Caal i orthography
”Their word”

Table 5: Examples of Stemming errors

6 Conclusion

We have proposed, implemented and evaluated a new stemmer for Arabic tweets. It does not rely on any
root dictionary, which is crucial for stemming Arabic tweets, since they have a very open lexicon. It is
a light stemming approach that uses shortest stem strategy to extract the stems of the words. It has two
phases: phase 1 is dedicated to producing a list of all possible stems by using the grammar, and phase 2
is to select the shortest stem as the correct stem. We compared our stemmer with three Arabic stemmers
where one of them uses a similar approach to ours. Results showed that our stemmer is better in terms
of accuracy in comparison with other three Arabic stemmers.

Acknowledgments

The authors would like to thank the anonymous reviewers for their encouraging feedback and insights.
Fahad would also like to thank King Saud University for their financial support. Allan Ramsay’s con-
tribution to this work was partially supported by Qatar National Research Foundation (grant NPRP-7-
1334-6 -039).

References

GH Al-Gaphari and M Al-Yadoumi. 2010. A method to convert sana’ani accent to modern standard Arabic.
International Journal of Information Science & Management, 8(1).

Mohammed N Al-Kabi, Saif A Kazakzeh, Belal M Abu Ata, Saif A Al-Rababah, and Izzat M Alsmadi. 2015.
A novel root based Arabic stemmer. Journal of King Saud University-Computer and Information Sciences,
27(2):94-103.

Hasan Al-Serhan and Aladdin Ayesh. 2006. A triliteral word roots extraction using neural network for Arabic. In
2006 International Conference on Computer Engineering and Systems, pages 436—-440. IEEE.

Yahya Alamlahi and Fateh Ahmed. 2007. Sanaani dialect to modern standard Arabic: rule-based direct machine
translation. Computer Science Dep., Sanaa University, Sanaa, Yemen.

Fahad Albogamy and Allan Ramsay. 2015. POS tagging for Arabic tweets. RECENT ADVANCES IN Natural
Language Processing, page 1.

Mohammed Algarni, Brent Martin, Tim Bell, and Kourosh Neshatian. 2014. Simple Arabic stemmer. In Proceed-
ings of the 23rd ACM International Conference on Conference on Information and Knowledge Management,
CIKM ’14, pages 1803-1806, New York, NY, USA. ACM.

Tim Buckwalter. 2004. Buckwalter Arabic morphological analyzer version 2.0. Idc catalog number 1dc2004102.
Technical report, ISBN 1-58563-324-0.

Kareem Darwish and Douglas W Oard. 2007. Adapting morphology for Arabic information retrieval. In Arabic
Computational Morphology, pages 245-262. Springer.

83

Sajib Dasgupta and Vincent Ng. 2007. High-performance, language-independent morphological segmentation. In
NAACL HLT 2007: Proceedings of the Main Conference, pages 155-163.

Anne N De Roeck and Waleed Al-Fares. 2000. A morphologically sensitive clustering algorithm for identifying
Arabic roots. In Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, pages
199-206. Association for Computational Linguistics.

Joseph Dichy and Ali Farghaly. 2003. Roots & patterns vs. stems plus grammar-lexis specifications: on what basis
should a multilingual lexical database centred on Arabic be built. In The MT-Summit IX workshop on Machine
Translation for Semitic Languages, New Orleans.

W. B. Frakes. 1992. Information retrieval. chapter Stemming Algorithms, pages 131-160. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

Sameh Ghwanmeh, Ghassan Kanaan, Riyad Al-Shalabi, and Saif Rabab’ah. 2009. Enhanced algorithm for ex-
tracting the root of Arabic words. In Computer Graphics, Imaging and Visualization, 2009. CGIV’09. Sixth
International Conference on, pages 388-391. IEEE.

John Goldsmith. 2001. Unsupervised learning of the morphology of a natural language. Computational linguis-
tics, 27(2):153-198.

Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. 2007. Why we Twitter: Understanding microblogging
usage and communities. In Proceedings of the 9th WebKDD, pages 56-65, New York, NY, USA. ACM.

S. Khoja and R. Garside. 1999. Stemming Arabic text. Computing Department, Lancaster University, Lancaster,
UK.

Chris D. Paice. 1994. An evaluation method for stemming algorithms. In Proceedings of the 17th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 94, pages
42-50, New York, NY, USA. Springer-Verlag New York, Inc.

84

