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Processing non-canonical or noisy text: fortuitous data to the rescue

Barbara Plank
CLCG, University of Groningen

Netherlands
b.plank@rug.nl

Abstract

Real world data differs radically from the benchmark corpora we use in NLP, resulting in large
performance drops. The reason for this problem is obvious: NLP models are trained on limited
samples from canonical varieties considered standard. However, there are many dimensions,
e.g., sociodemographic, language, genre, sentence type, etc. on which texts can differ from the
standard. The solution is not obvious: we cannot control for all factors, and it is not clear how to
best go beyond the current practice of training on homogeneous data from a single domain and
language.

In this talk, I review the notion of canonicity, and how it shapes our community’s approach to
language. I argue for the use of fortuitous data. Fortuitous data is data out there that just waits
to be harvested. It includes data which is in plain sight, but is often neglected, and more distant
sources like behavioral data, which first need to be refined. They provide additional contexts
and a myriad of opportunities to build more adaptive language technology, some of which I will
explore in this talk.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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From Entity Linking to Question Answering Recent Progress on
Semantic Grounding Tasks

Ming-Wei Chang
Microsoft Research

Redmond, USA
minchang@microsoft.com

Abstract

Entity linking and semantic parsing have been shown to be crucial to important applications
such as question answering and document understanding. These tasks often require structured
learning models, which make predictions on multiple interdependent variables. In this talk, I
argue that carefully designed structured learning algorithms play a central role in entity linking
and semantic parsing tasks. In particular, I will present several new structured learning models
for entity linking, which jointly detect mentions and disambiguate entities as well as capture
non-textual information. I will then show how to use a staged search procedure to building
a state-of-the-art knowledge base question answering system. Finally, if time permits, I will
discuss different supervision protocols for training semantic parsers and the value of labeling
semantic parses.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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DISAANA and D-SUMM: Large-scale Real Time NLP Systems for
Analyzing Disaster Related Reports in Tweets

Kentaro Torisawa
National Institute of Information and Communications Technology, Tokyo

Japan
torisawa@nict.go.jp

Abstract

This talk presents two NLP systems that were developed for helping disaster victims and res-
cue workers in the aftermath of large-scale disasters. DISAANA provides answers to questions
such as “What is in short supply in Tokyo?” and displays locations related to each answer on a
map. D-SUMM automatically summarizes a large number of disaster related reports concern-
ing a specified area and helps rescue workers to understand disaster situations from a macro
perspective. Both systems are publicly available as Web services. In the aftermath of the 2016
Kumamoto Earthquake (M7.0), the Japanese government actually used DISAANA to analyze the
situation.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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Private or Corporate? Predicting User Types on Twitter

Nikola Ljubešić
Dept. of Knowledge Technologies

Jožef Stefan Institute
nikola.ljubesic@ijs.si

Darja Fišer
Department of Translation

Faculty of Arts, University of Ljubljana
darja.fiser@ff.uni-lj.si

Abstract

In this paper we present a series of experiments on discriminating between private and corporate
accounts on Twitter. We define features based on Twitter metadata, morphosyntactic tags and
surface forms, showing that the simple bag-of-words model achieves single best results that can,
however, be improved by building a weighted soft ensemble of classifiers based on each feature
type. Investigating the time and language dependence of each feature type delivers quite unex-
pecting results showing that features based on metadata are neither time- nor language-insensitive
as the way the two user groups use the social network varies heavily through time and space.

1 Introduction

Due to popularity of Twitter and its proactive content harvesting policy, automatic identification of latent
user attributes has become a hot research topic in the past couple of years. Tasks range from discriminat-
ing between different types of users (Mislove et al., 2011), behaviour (Pennacchiotti and Popescu, 2011;
Rao et al., 2010), location (Hecht et al., 2011), gender (Burger et al., 2011), age (Nguyen et al., 2013),
occupation (Hu et al., 2016), social class (Borges et al., 2014) and personality type (Quercia et al., 2011).

In this paper we present a series of experiments on discriminating between corporate and private
accounts on Twitter. We investigate language-independent features, features extracted from morphosyn-
tactic annotations and simple bag-of-words features. We additionally investigate the time and space
dependence of specific feature sets by measuring how well specific features handle training on one time
span or closely-related language and testing on another time span or other closely-related language.

2 Related work

Automatic classification of different types of users is an active area of research and has been attempted at
various degrees of granularity and for diferent communicative goals. Naaman et al. (2010), for example,
distinguish two types of users: those who disseminate information (informers) and those who share what
they are doing and how they are feeling (meformers). De Choudhury et al. (2012), on the other hand,
distinguish between the accounts of individual persons, organizations, news media and other miscella-
neous categories. Kim et al. (2010) use the same set, only adding the celebrities category, while (Wu
et al., 2011), suggest a two-stage approach where they first classify users into two broad categories of
elite and ordinary users, and then further classify the elite users into more fine-grained groups of media,
celebrities, organizations and bloggers.

Similarly different both in terms of number and complexity are the features used for classification.
Rao et al. (2010) use 2 categories of over 20 features that are easy to obtain from the Twitter timeline:
the network structure (follower-following ratio, follower frequency, following frequency) and the com-
munication behavior of individuals (response frequency, retweet frequency, tweet frequency), showing
that tweeting behavior information is not useful for most classification tasks. Therefore, in addition to
profile features, tweeting behaviour and social network, (Pennacchiotti and Popescu, 2011), show that,

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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rich linguistic features (prototypical words and hashtags, generic and domain-specific LDA, sentiment
words) yields consistently better results. Kucukyilmaz et al. (2008) employ a more traditional apparoach
to author characterization by relying on a set of term-based features in users’ messages and a set of
stylistic features (character usage, message length, word length, punctuation usage, punctuation marks,
stopword usage, stopwords, smiley usage, smileys, vocabulary richness).

While our work has noticeable overlap with existing research that was carried out on English, it extends
that research, beyond the language shift, by (1) performing a more detailed analysis of a broader list of
features, and inspecting (2) the stability of those features in different time periods and (3) their portability
to a closely-related language.

3 Dataset

The dataset used in this paper consists of 7.5 million Slovene tweets collected from June 2013 to January
2016 with the TweetCaT tool (Ljubešić et al., 2014). Each of the 7778 users in the collection was
manually annotated as private or corporate. We performed our experiments on 5842 users for whom we
had at least 100 tweets at our disposal. Out of these 5842 users, 4382 were annotated as private and 1460
as corporate.

4 Features

We discriminate between two basic types of features: language-independent (LI) and language-
dependent (LD) ones. We calculate our language-independent features both from the text of a tweet
and its additional metadata. We use two types of language-dependent features: focused (FLD) and bag-
of-words (BoW) features. While the bag-of-words features are simply types found in the text of all the
training tweets, the focused ones are mostly based on morphosyntactic annotation of the text. It should be
stressed here that we do not pressupose the language-independent features to work well across languages
for our task, but just that these features can be found in different languages.

All the features are calculated on user level as we perform our predictions on each Twitter user.

4.1 Language independent features

Among the language-independent features we discriminate between the following feature types:

• avg – average number of tweets satisfying a condition

• mean – mean of a continuous tweet-level variable

• med – median of a continuous tweet-level variable

• var – variance of a continuous tweet-level variable

• user – user-level metadata

In Table 1 we give an overview of all language-independent features, sorted in descending order by
the p-value obtained with the two-sided Mann-Whitney U test (Mann and Whitney, 1947) on the variable
in question regarding the distribution in private and corporate accounts. The null hypothesis of this test
is that the two samples (variable measurements on private and corporate accounts) come from the same
distribution. Beside the feature description and its univariate p-value, we report the effect size as the
difference in the median between private and corporate accounts. The variables reporting a positive
effect size, like the average_inreply variable, therefore have a higher median in private tweets
while the variables with a negative effect size, like the average_http variable, have a higher median
among corporate tweets.

Our univariate feature analysis shows, among many other things, that private accounts are most specific
for replying to tweets, mentioning other users, favoring other user’s tweets, tweeting in various hours of
the day, producing tweets of variable length and posting more frequently during weekends. On the other

5



Variable Description p-value Effect size
avg_http average number of tweets containing URLs 0.0 -0.61704
avg_inreply average number of tweets that are replies 0.0 0.38549
avg_mention average number of tweets containing mentions 10−306 0.45676
avg_work_hrs average number of tweets published in working hours 10−235 -0.15252
user_favor number of tweets the user has favorited 10−209 302
var_hour variance of the posting hour 10−208 5.96132
var_len_text variance of the tweet length 10−203 279.092
mean_hour mean of the posting hour 10−188 1.71806
median_hour median of the posting hour 10−185 2
mean_len_text mean of the tweet length 10−113 -12.8003
med_len_text median of the tweet length 10−99 -17.25
avg_weekend average number of tweets posted on weekends 10−97 0.03847
mean_day mean of the posting weekday 10−95 0.25134
var_day variance of the posting weekday 10−78 0.36336
user_ff_ratio followers / friends ratio of a user 10−63 -0.61667
var_favor variance of number of favorites 10−61 0.28596
avg_favor average number of favorited tweets 10−55 0.10024
mean_favor mean of number of favorites 10−55 0.15367
med_day median of the posting day 10−53 0
avg_comma average number of tweets containing a comma 10−49 0.08569
avg_quest average number of tweets containing a questionmark 10−49 0.04413
avg_emoji average number of tweets containing an emoji 10−40 0.0
avg_is_quote average number of tweets that are quotes 10−37 0.00196
avg_excl average number of tweets with an exclamation mark 10−31 -0.05624
user_status number of statuses the user produced 10−26 518
avg_client average number of tweets sent through the web client 10−16 0.12875
user_friend number of friends the user has 10−16 69
avg_retweet average number of retweeted tweets 10−14 -0.03827
user_per_day number of statuses a users sends per day 10−11 0.18937
avg_ellipsis average number of tweets containing an ellipsis 10−8 0.01381
avg_hash average number of tweets containing a hashtag 10−5 0.03624
user_follow number of followers the user has 10−5 -40.5
mean_retweet mean of number of retweets 10−5 -0.03772
med_retweet median of number of retweets 0.002 0.0
var_retweet variance of number of retweets 0.011 0.01123
user_listed number of lists the user is on 0.041 0.0
med_favor median of number of favorites 0.287 0.0
avg_trunc average number of tweets that are truncated 0.999 0.0

Table 1: An overview of the language-independent features, sorted by their p-value,

6



Variable Description p-value Effect size
adjpos adjective in positive degree 0.0 -0.02052
prondemsgdl demonstrative pronoun in singular / dual 0.0 0.0059
verb12sgdl verb in first / second person singular / dual 0.0 0.01406
pronneg negative pronoun 10−257 0.00088
supine supine 10−251 0.00146
verbmainpl main verb in plural 10−245 -0.00963
verbimppl verb in imperative plural 10−238 -0.00198
private_words list of auxiliary verb and personal pronoun forms 10−212 0.00641
num number 10−204 -0.00942
pronind indefinitive pronoun 10−203 0.00097
lower lowercased word 10−181 0.0721
adjpart adjectival participle 10−153 -0.00219
pronperspl personal pronoun plural 10−151 -0.00235
normalised word automatically normalised 10−137 -0.05837
interjection interjection 10−130 0.00105
adjsup adjective in superlative degree 10−119 -0.00054
content content word 10−108 -0.04989
nounprop proper noun 10−105 -0.01867
title titlecase word 10−92 -0.02505
pronpers personal pronoun 10−79 0.00453
double token repetition 10−62 0.00014
foreign foreign word 10−48 0.04383
upper uppercase word 10−44 -0.00862
pronposs1sgdl possesive pronoun in singular / dual 10−44 -0.00022
adjposs possesive adjective 10−42 -0.00049
pronposspl possesive pronoun in plural 10−37 -0.00016
emoticon emoticon 10−13 0.00595

Table 2: An overview of the language-dependent focused features, sorted by their p-value

hand, corporate accounts use more URLs, post more during working hours, produce longer tweets and
have a higher followers / friends ratio.

All the engineered features, except for the median of number of favorites (because it is most frequently
0) and the average number of truncated tweets (most frequently 0 as well) have shown to be statistically
significant with p < .05.

4.2 Language-dependent features

In Table 2 we give an overview of the focused language-dependent features, with a statistical analysis
identical to the one of the language-independent features. All the variables are user-level probabilities of
specific linguistic phenomena. Again, the effect size is the difference in the median between private and
corporate accounts, i.e. a positive effect size points at higher values among private users.

This univariate analysis shows, among other things, for private accounts to use more singular / dual
demonstrative pronouns, singular / dual verbs, negative pronouns and supines (short verb infinitive
forms). On the other hand, corporate accounts use more adjectives, verbs in plural, numbers, superlatives
and content words.

In Table 3 we give an overview of the 20 strongest word features identified through the coefficent
value of the linear discriminative classifier that will be described in the Experiments section. As the table
shows, private users prefer pronouns and verbs in 1st person singular (I, me, my, I did, I wish, I hope),
nouns and verbs depicting thoughts and activities carried out in their spare time (wish, grill, slim), while
3rd and 2nd person plural forms (we, our, we did, we can, you check, we congratulate), nouns describing
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sem(did-1st prs sg) i moj(my) cerar http://t.co/h7jwauc0rv me my bravo želim(wish-1st prs
sg) zalogi(stock) mesto(city) upam(hope-1st prs sg) zoya #delajvitko(#workslim) ko(when)
http://t.co/qcfz6ii342 pod(under) salesforce žaru(grill) @delo tv
zaradi(because) smo(did-3rd prs pl) teden(week) klik(click) čestitamo(congratulations)
evrov(euro) tf2 piše(writes) festival preveri(check-2nd prs sg) we people ste(did-2nd prs pl)
naš(our) kamala #volitve14(#election14) lahko(can) novo(new) akcija(sale) facebook

Table 3: List of the strongest language-dependent bag-of-word features, for private and for corporate
users

Feature type Corporate Private All FLD BoW ENS
Most frequent class (MFC) 0.0000 0.8572 0.6430
Language independent (LI) 0.7944 0.9335 0.8987 < 0.001 < 0.001 < 0.001
Focused lang. dependent (FLD) 0.8520 0.9510 0.9263 < 0.001 < 0.001
Bag of words (BoW) 0.8742 0.9577 0.9368 < 0.01
Ensemble (ENS) 0.8864 0.9620 0.9431

Table 4: Evaluation results via weighted F1 on the per-feature-type classifiers and the ensemble classifier.
Statistical significance of the differences is calculated via approximate randomisation.

public events (festival, sales, election, Euro) and named entities (Kamala, Facebook), as well as verbs
lexicalizing professional activities (he writes, you check) are characteristic of the corporate users.

5 Experiments

We run three batches of experiments. In the first batch we experiment with the three types of features
presented in the previous section. Additionally, we build an ensemble classifier which uses the output of
the three feature-type classifiers. In the second batch we investigate the time sensitivity of the presented
feature types by training on data from one time span and testing on a later one. Finally, in the third batch
we investigate the portability of two feature types, namely language-independent features and bag-of-
words features, to a closely-related language.

As our weak baseline we use the most-frequent-class (MFC) baseline. Our classifier of choice on all
feature types are support vector machines (SVM). In case where the number of features is smaller than
the number of instances we use the RBF kernel while in the opposite case we use a linear kernel.

In all the experiments we 5-fold with stratification over all our data, optimising in each iteration the
classifier via grid search on the development data and evaluating it on the test data via weighted F1.

In case of the RBF kernel we optimise the C (2n, n ∈ {−5,−3,−1, ...15}) and γ (2n, n ∈
{−15,−13,−11, ...3}) hyperparameters while for the linear kernel we optimise the C parameter in the
same range as with the RBF kernel.

5.1 Feature type comparison

We present the results of training a classifier on each type of features, the language independent (LI),
focused language dependent (FLD) and bag-of-words (BoW), in Table 4. We additionally compare
these classifiers to our weak most-frequent-class (MFC) baseline and an weighted soft ensemble of all
three classifier outputs. The weighted soft ensemble classifier uses the per-class probability output of
each classifier, weights each class distribution with the weighted F1 of that classifier estimated on the
development data, averages over all the distributions and picks the class with maximum probability.

We report F1 on each class and an overall weighted F1. We additionally report a p-value obtained
through the approximate randomisation test (Yeh, 2000) with R = 1000 for each classifier combination.
Approximate randomisation estimates the p-value as p = r

R where r is the number of iterations where
randomly switching responses of system 1 and system 2 has produced a greater or equal difference in the
evaluation metric than the original difference between system 1 and system 2, while R is the number of
iterations over the responses.

8



Time dependence Close language
Feature type All ≥ 2015 Loss (%) Croatian Loss (%)
Most frequent class (MFC) 0.6430 0.6430 - 0.3388 -
Language independent (LI) 0.8987 0.8370 7% 0.6270 30%
Focused language dependent (FLD) 0.9263 0.9149 1% - -
Bag of words (BoW) 0.9368 0.9280 1% 0.7304 22%

Table 5: Results on the time and language sensitivity of specific feature types

The results show that each of the feature types improves over the weak MFC baseline by a large
margin. While all the three feature types come quite close to each other, the weakest one are the language-
independent features, mostly relying on tweet and user metadata. We find it quite surprising that the bag-
of-words model improves over the focused language-dependent model which uses a language abstraction
in form of morphosyntactic descriptions. 1 Finally, the weighted soft ensemble improves over each of the
classifiers.2 The difference between each classifier combination has proven to be statistically significant.

The performance of each classifier on specific classes did not yield any surprises. The private class,
which is more represented, performs regularly better. The best-performing ensemble classifier yields
weighted F1 of 0.89 on the corporate and 0.96 on the private class.

Regarding the number of features, the single best performing classifier is also the heaviest one with
3,978,030 features. On the other hand the LI classifier works with 38 features, while the FLD classifier
works with 27 features.

5.2 Time sensitivity
In this set of experiments we investigate the impact of training on one time span and evaluating on
another one. We again experiment with our three types of features. In each iteration of cross-validation,
the development set consists only of tweets published before 2015, removing all users for which after
filtering we do not have 100 tweets available. We repeat the same process on the test set by keeping only
tweets published 2015 onward.

Along with our new time dependence evaluation results, we repeat the results from the previous batch
of experiments which presents the performance of the feature type in the same time span.

The results of this experimental batch are presented in the left hand side of Table 5.
The results are somewhat surprising showing that the LI features are actually the least time insensitive.

Probably due to the way the Twitter social network was used before and after 2015 the loss reaches 7%
of weighted F1. On the other hand, the FLD and BoW classifiers measure a minor loss of 1%.

5.3 Portability to a similar language
We perform a final set of experiments investigating the portability of the language independent (LI) and
the bag-of-words (BoW) features to a closely related language. As our closely related language we chose
Croatian as the two countries are strongly interconnected, expecting therefore that Twitter is used in a
comparable manner and that a usable overlap in surface forms among the two closely-related languages
should occur. This lexical overlap has already been used in previous work on bilingual lexicon extraction
(Fišer and Ljubešić, 2011) and identification of false friends (Ljubešić and Fišer, 2013).

We discard the focused language dependent (LFD) features from these experiments as they require
the texts of the tweets to be morphosyntactically annotated with the same tagset which would require a
tagset mapping.

In these experiments we use the full Slovene data for development and evaluate on a set of 101 Croatian
users that were annotated by hand, using the same criteria applied while annotating Slovene data. In the
Croatian dataset 50 users were annotated as private and 51 as corporate.

1We have investigated expanding the BoW model with character and word n-grams, but it did not improve over the simple
word unigram model.

2Beside the weighted soft ensemble we also experimented with a stacked classifier, but this classifier, being more complex
than our ensemble, did not yield any significant improvement.
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The results are presented in the right hand side of Table 5. While both classifiers outperform the weak
baseline by a wide margin, interestingly, the language independent features prove to be the less stable
feature type when a shift in the target domain / language occurs. While, naturally, the BoW feature set
experiences a heavy loss of 22% when evaluating on Croatian data, the loss of 30% on the LI features is
even greater, in addition to the initial lower results.

5.4 Error analysis

We conclude the experiments with an error analysis of the instances misclassified by the enseble clas-
sifier. Among those instances we specifically analyse the cases where the classifier based on language-
independent features (LI) and the bag-of-words classifier (BoW) disagree.

We performed a detailed qualitative analysis of the tweeting behaviour and language of 10 random
accounts per class misclassified by each system in order to gain more insight into why the misclassifica-
tion might have occured. In total, 4 scenarios were analysed: (1a) corporate and (1b) private accounts
misclassified by LI but correctly classified by BoW, and (2a) corporate and (2b) private accounts mis-
classified by BoW but correctly classified by LI.

As far as the corporate accounts misclassified by the LI approach but correctly classified by the BoW
approach (1a) are concerned, they were smaller / early-stage societies / NGOs / civil initiatives, pop-
ular radio stations, records companies, event agencies and bloggers who (probably deliberately) share
many tweeting characteristics of private accounts in terms of tweeting amount, time, retweets, mentions,
favourites and hashtags. Among the private accounts misclassified by the LI approach (1b), 9 out of
10 examined accounts belong to journalists, politicians and professionals who do not explicitly disclose
their professional status or affiliation in their account profiles but nevertheless tweet for professional
purposes and demonstrate all the behaviour of the corporate accounts. This suggests that in addition
to straightforward binary categories, there is a grey zone of borderline, difficult to define account types
which call for more detailed annotation guidelines.

Interestingly, there was only one corporate account that was misclassified by the BoW approach but
correctly classified by the LI one (2a), which is a fair-trade store that raises awareness for fair-trade home
products, clothes and food in a communicative, conversational, friendly way. The topics covered and vo-
cabulary used is therefore closely related to our every-day lives, not unlike the topics and vocabulary
present in the tweets published by private accounts. Similar results were obtain with the qualitative anal-
ysis of 10 private accounts erroneously classified by BoW but correctly by LI (2b). They show that 9 of
them are borderline because they are accounts of journalists, managers and small business owners whose
tweets, published with the typical corporate dynamics, cover topics conveyed by the linguistic features
that are tipically associated with people’s private lives, such as health and lifestyle, food, cosmetics,
hairstyle, sports and charity.

The error analysis clearly shows that the erroneously classified accounts are indeed outliers, either by
tweeting behaviour, or by tweeting content and / or language style. This suggests that manual annotation
guidelines should be refined to include advice how to treat such potentially difficult cases and / or extend
the classification beyond a binary approach.

6 Conclusion

In this paper we have presented a series of experiments on discriminating between private and corporate
Twitter accounts among Slovene Twitter users.

In the first part of the paper we have analysed a series of features, casting some light on the way the
two groups use our medium of interest.

In our classification experiments we have shown that the simple bag-of-words model outperforms the
language-independent and focused language-dependent features. Building a classifier ensemble yielded a
statistically significant improvement, showing that these feature sets are at least partially complementary.

We have shown that language-independent features based mostly on Twitter metadata are actually very
unreliable, showing bad performance both when different time spans or different languages are used for
training and evaluation. A big surprise was that the bag-of-words model was more portable to a closely
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related language than the feature set based on metadata. These results point at significant differences in
the way the social network is used across time and space.

Overall we have achieved very good results when combining all classifiers in a weighted soft ensemble.
Given that most researchers are interested in removing corporate accounts from their Twitter collections,
we can expect that our classifier will be very useful for Slovene as F1 on the private class is more than
96%.
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Abstract

User-generated content presents many challenges for its automatic processing. While many of
them do come from out-of-vocabulary effects, others spawn from different linguistic phenomena
such as unusual syntax. In this work we present a French three-domain data set made up of ques-
tion headlines from a cooking forum, game chat logs and associated forums from two popular
online games (MINECRAFT & LEAGUE OF LEGENDS). We chose these domains because they
encompass different degrees of lexical and syntactic compliance with canonical language. We
conduct an automatic and manual evaluation of the difficulties of processing these domains for
part-of-speech prediction, and introduce a pilot study to determine whether dependency analysis
lends itself well to annotate these data. We also discuss the development cost of our data set.

1 Introduction

The continuous growth of the volume of user-generated content (UGC) published on the web stresses
the need for efficient way to automatically process this type of data. Yet not only the volume of UGC
increases; it also becomes increasingly varied, resulting in the need for domain- and register-adaptation
methods and resources for processing UGC in all its diversity.

In this work, we present a feasibility study on dependency syntax annotation for three UGC domains
in French, namely a cooking forum, in-game chat logs, and associated gaming forums. While these
data sources are very different, they share the characteristic that their content was produced within time
or space constraints. Such constraints force the users to resort to a variety of linguistic strategies to
efficiently convey their message.

The work described here shows that, on top of the well-known problem of out-of-vocabulary words,
automatic annotation and processing of UGC presents a double challenge. First, in order to interpret
most of the data , it is crucial to take into account the interplay between context and domain knowledge
on the one hand and their linguistic impact. This is because most messages can only be fully analysed
with a good knowledge of the domain and context at hand. For instance, in-game chat logs can only be
understood with a knowledge of the video game being played and of many game-specific terms, a repre-
sentation of the game situation when a chat message is written and of, as well as a model of the ongoing
dialogue, as such data is conversational by nature. Also, time- or space-constrained writing favors frag-
mentary writing that is more prone to ellipses, which makes linguistic analysis, especially parsing, more
difficult. In addition to this highly contextual nature, the many idiosyncrasies plaguing UGC and make
its analysis more challenging than regular out-of-domain text force most morpho-syntactic processing to
be extremely robust at all levels of analysis.

In Section 3 we describe the data collection process, and give a first quantiative description of how
our datasets are different from standard datasets. Two of our datasets were already annotated, and we
manually annotated the third one. In Section 4 we provide a threefold categorisation of lexical variation
in UGC. Finally, Section 5 is dedicated to our feasibility study regarding dependency annotation of our
data using the Universal Dependencies annotation scheme. It also includes a brief discussion about
annotation costs, an issue rarely explicitely discussed.

Our contribution is threefold: (i) an empirical account of the phenomena behind domain-shift per-
formance drops in French UGC data processing, (ii) a syntactic study on the applicability of Universal
Dependencies to French UGC, and (iii) the first corpus obtained from MINECRAFT and LEAGUE OF

LEGENDS gaming logs. All corpora and annotations are freely available.

This work is licenced under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/
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2 Related Work

Before the global availability of social-media feeds, studies on the difficulties of out-of-domain statistical
parsing have been focusing mainly on slightly different newspaper texts (Gildea, 2001; McClosky et al.,
2006b; McClosky et al., 2006a), biomedical data (Lease and Charniak, 2005; McClosky and Charniak,
2008) or balanced corpora mixing different genres (Foster et al., 2007).

For such data, which is as edited as standard data sources, the problem is “simply” a matter of domain
adaptation. It is far from being the case for UGC data, as shown by Foster (2010). Indeed, in her
seminal work on parsing web data, different issues preventing reasonably good parsing performance
were highlighted; most of them were tied to lexical differences (coming from either genuine unknown
words, typographical divergences, bad segmentation, etc.) or syntactic structures absent from training
data (imperative usage, direct discourse, slang, etc.). This suboptimal parsing behavior on web data
was in turn confirmed in follow-up works on Twitter and IRC chat (Foster et al., 2011a; Gimpel et al.,
2010; Elsner and Charniak, 2011). They were again confirmed during the SANCL shared task, organised
by Google, aimed at assessing the performances of parsers on various genres of Web texts (Petrov and
McDonald, 2012). Foster (2010) and Foster et al. (2011b) noted that simple lexical and tokenisation
convention adaptation to the Wall-Street Journal text genre could increase the parsing performance by a
large margin. In addition, Seddah et al. (2012) showed that a certain amount of normalisation brought a
large improvement in POS tagger performance of French social media texts. These normalisation steps
mostly apply at the lexical level, at the very definition of what constitutes a minimal unit. Plank et al.
(2014) attempt to quantify how much of the domain-specific variation of POS labeling is a result of
different interpretations, and how much is arguably just noise.

Regarding the study of French UGC, our starting point is the part-of-speech and phrase-structure
annotation guidelines by Seddah et al. (2012). However, we conduct our syntactic analysis in terms of
dependency structures.

3 Data Collection and Part-of-Speech Annotation

Our dataset contains three different sources of user-generated content. Two of them are logs of multi-
player video-game chat sessions, MINECRAFT and LEAGUE OF LEGENDS1, the last one is made of
instant cooking-related web questions from MARMITON2, a widely popular French recipe website. This
set of questions was collected during the building of the French QuestionBank (Seddah and Candito,
2016) but was not described nor analysed because of its syntactic peculiarity and was thus considered
by the authors as a clear outlier. We chose to include this sample in our study because it offers a sharp
contrast with video games chat logs in term of domain variation while retaining a live nature: users asks
questions related to their immediate needs and expect a quick answer.
The LEAGUE OF LEGENDS data set was collected by Lamy (2015) in early 2015 and consists of two
types of recorded user interactions: a first part is the record of discussions occurring during an on-going
game session while the second part consists of different players post-game discussion that took place
both on official game forums and on unofficial boards.

Table 1 presents the corpus properties. The figures highlight its unbalanced nature and confirm the
weight of the medium of appearance, be it a “crude” chat system, tweets or a classic web forum. Both
live in-game chat sessions (MINECRAFT and LEAGUE OF LEGENDS in-game) display similar properties
in term of small average length, while the MARMITON and LEAGUE OF LEGENDS outside data exhibit
rather different properties: sentences are either smaller with a small standard deviation for the former or
on average longer with a strong variation for the latter.

3.1 Measuring the “Non-Canonical-ness” of our Data
In order to quantitatively corroborate our intuitions concerning the level of noise in our corpora, and for
measuring their various levels of divergence compared to the French Treebank (Abeillé et al., 2003),
we used an ad hoc noisiness metric. It is simply defined as a variant of the Kullback–Leibler (KL)

1Resp. http://www.minecraft.com and http://leagueoflegends.com
2http://www.marmitton.org
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# OF SENTENCES # OF TOKENS AV. LENGHT STD DEVIATION noisiness LEVEL (KL)

MARMITON 285 2080 7.30 2.57 3.43
LEAGUE OF LEGENDS 453 5106 11.27 12.55 3.48

in-game 254 961 3.78 2.95 2.98
outside 199 4145 20.82 13.57 3.46

MINECRAFT 236 913 3.87 3.94 3.10

ALL 974 8099 8.32 9.38 3.58

Table 1: Corpus properties.

divergence3 between the distribution of trigrams of characters in a given corpus compared to a reference.
Unlike the raw text properties, the KL divergences we computed (Table 1) range around the same figures
(between 2.98 and 3.50). These levels of noisiness appear much higher than the ones reported by Seddah
et al. (2012) for more classical source of user-generated content. This discrepancy can be caused by two
factors: either the texts themselves contain a lot of noise and depart strongly from the writing norm, or
their lexical domain is so different from the French Treebank’s one that the variation it carries can be
considered as noise. If we compare the KL divergence between our 3 data sources (Table 2), we can see
that the trigrams distributions are somehow “closer” to each other than they are to edited text.

A / B A vs B B vs A

MARMITON / LEAGUE OF LEGENDS 1.36 0.81
MARMITON / MINECRAFT 1.88 1.38

LEAGUE OF LEGENDS / MINECRAFT 1.30 1.40

Table 2: noisiness levels for each of our sub-corpora.

3.2 PoS Annotation of Additional Data

As we mentioned in the introduction, our work takes its source in a will to build robust parsing models
regardless of the domain variation. The challenge here is that variation may cover anything from histori-
cal to biomedical texts, Twitter’s feeds subtitles, chat logs and so on. For some machine learning purists,
anything not present in the training data is purely an out-of-domain instance and coping with this varia-
tion should be left only to the model. In this point of view, the loss of performance can be circumvented
by adding more data, annotated or not, thus enlarging the training set. However, in the case of UGC,
the very notion of adding more data can be problematic: UGC covers basically everything that can be
produced by someone with an internet access and at least some notion of a writing system. The need for
more insights in terms of what to expect is becoming a striking issue.

This is why in order to allow further exploration of the language divergence at stake in our UGC sample
data set and because the MARMITON and LEAGUE OF LEGENDS sub corpora were already annotated
using the extended FTB tagset used for the French Social Media Bank, we annotated the MINECRAFT

data set with the same type of annotations. This was done by one expert annotator. We also checked
the consistency of the LEAGUE OF LEGENDS subset and corrected a few obvious errors. Let us add that
this work is part of a pilot study investigating the development of a much larger data set, made of video
games interaction, the annotations are then likely to evolve.

3.3 Exploring our Data: Automatic PoS Annotation Results

To provide a first glance on the difference between our three domains and the training data from FTB, we
provide in Table 3 the PoS tagging accuracy results obtained with the PoS tagger MElt (Denis and Sagot,
2012) trained on edited journalistic data. Results are on-par with previously reported results on French

3It differs from a standard Kullback–Leibler distance because we apply a preliminary pre-processing to the corpora involved:
(i) URLs, e-mail addresses and such, are removed, (ii) all characters that do not belong to an extensive list of characters that
might be used in French sentences are replaced by a unique “non-standard character,”
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BASELINE (FTB TRAINED) FTB TRAINED+ NORMALISATION

OOV(%) All Unseen All Unseen
MARMITON 27.29 81.84 70.82 83.15 75.44

LEAGUE OF LEGENDS 29.21 80.02 52.92 80.35 45.77
in-game chat 61.81 58.79 47.46 55.25 40.40

off-game session 21.64 84.95 56.41 86.13 60.42
MINECRAFT 52.57 53.12 28.13 58.27 36.04

all 31.36 77.44 52.19 78.62 45.42

FRENCH SOCIAL MEDIA BANK (DEV) 23.40 80.64 - 84.72 -
FTB (DEV) 5.20 97.42 - 97.42 -

Table 3: POS tagging results using MElt trained on the French Treebank with and without normalisation.
The tagger (Denis and Sagot, 2012) was trained on the canonical training section of the French Treebank (Abeillé et al., 2003)

instance, FTB-UC, from (Candito and Crabbé, 2009). We used an extended version of the rewriting rules used to pre-annotate

the French Social Media Bank (Seddah et al., 2012). They work jointly with the tagger to provide internal cleaned versions

of a token, or a sequence of, which are tagged separately. Resulting POS tags are finally merged to the original token(s).

(e.g.wanna→ want/VB to/TO→ wanna/VB+TO).

UGC tagging (Seddah et al., 2012; Nooralahzadeh et al., 2014): normalisation helps to cover some of
the most frequent lexical variations and hence improves substantially the tagging accuracy. However in
the case of in-game LEAGUE OF LEGENDS chat session, the normalisation is detrimental to the overall
tagging performance as well as for unseen words. One obvious hypothesis is simply that the rules are
applied deterministically and assign wrong PoSs while letting the pure tagging model work alone provide
reasonable assumption on what would be the correct label for an out-of-domain word. Let us add that the
MElt tagger makes a heavy use of features extracted from wide coverage lexicon, this lexicon itself adds
a domain bias in case of known words used in a totally different syntactic context (which, according to
the FTB guidelines, implies a different category). While MARMITON and LEAGUE OF LEGENDS off-
games tagging results are in the same range than the FTB ones, MARMITON results exhibit vastly inferior
performance but seem to benefit from a normalisation step.4 To summarise, in-game live session logs are
harder to process than “regular” user-generated content.

However, a difference in a single metric such as POS accuracy or Kullback-Lubler divergence offers
little information on the causes of such difference. In other words, each domain has its idiosyncrasies,
and a domain shift is the result of the Cartesian product of the idiosyncrasies of source and target data.

The particularities of UGC are unbound, each new data source—defined by user demographics, user
scenario, technical constraints and communication purpose—can spawn a myriad of idiosyncrasies that
are beyond most domain-adaptation techniques that depend on selective sampling, self-training or other
semi-supervised learning techniques. Therefore, the purpose of the present work is not only to potentially
provide a new dataset to be used as additional training data for domain adaptation. Rather, we provide a
close inspection of the main causes behind the expectable performance drops in tagging and parsing.

We therefore conduct a series of automatic and manual inspections to better understand the linguistic
phenomena behind UGC linguistic variability. We explore the relation between predicting performance
and annotation difficulty, which is seldom explicitly addressed (Plank et al., 2015).

4 A Threefold Categorisation for UGC Idiosyncrasies

Even though user-generated content does not constitute a uniform genre, many works have characterised
its idiosyncrasies (Foster, 2010; Gimpel et al., 2011; Seddah et al., 2012; Eisenstein, 2013), which can be
characterised on three axes, defined by the intentionality or communication needs of the word variants:

1. Encoding simplification: This axis covers ergographic phenomena, i.e.,phenomena aiming at re-
ducing the writing effort, perceived as first glance as genuine misspell errors, and transverse phe-

4In fact, in the case of LEAGUE OF LEGENDS in-game data, the normalisation step adds a significant amount of noise. A
solution to this problem and more generally to the limitations of deterministic rule-based normalisation lies in the development
of non-supervised or semi-supervised adaptative approaches.
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nomena that include token contraction, “iwuz” for “I was” and over-splitting, “c t” instead of
“c’était” (it was). Word types resulting form these categories pose challenges for their appropi-
ate tokenisation, because they can either be split away by conventional tokenisers or retain conflated
tokens, cf. Section 5.1.

2. Sentiment expression: This axis corresponds to marks of expressiveness, e.g., graphical stretch-
ing, replication of punctuation marks such as ???, emoticons, sometimes used as a verb such as
Je t’<3 standing for Je t’aime (I love you). These phenomena aim at emulating sentiments
expressed through prosody and gesture in direct interaction. Many of these symbols contain punc-
tuation, that can lead to spurious tokenisation. Game logs have also a lot of platform-dependent
particularities in the way they encode emoticons, e.g. the :smile: symbol, which is a place-
holder to show a smile icon, is split as three different tokens (: smile :) by the tokeniser.

3. Context dependency This axis corresponds to the amount of context needed to understand a post.
The nature of different user platforms will influence the domain knowledge necessary to under-
stand the specific terms, from ingredients in MARMITON to weapon characteristics in LEAGUE OF

LEGENDS. As in dialogue-based interaction, speech turns are marked by the thread structure and
provide a context rich enough to allow varying level of ellipsis and anaphora. This structure can be
superseded by hashtags (which example to add a meta data susceptible to attract attention ( “likes”),
providing a parallel source of information. Maybe more importantly, additional multimedia content
can provides a rich source of context that we no dot have full access to when annotating, such as
game state, sounds and images being displayed, etc.

5 Annotating Syntactic Dependencies

Before engaging in an annotation task, we conduct a feasibility study for the three domains at hand.
While part-of-speech and syntactic annotation are not mutually independent, in this section we focus
on how different typographic, lexical and syntactic phenomena can increase the difficulty of syntactic
analysis. The previous work of (Kaljahi et al., 2015) has focused on phrase-structure parsing of forum
text, which was made more difficult by the presence of grammatical errors. They report the benefits
of correcting grammatical errors before conducting constituency parsing. Nevertheless, our corpora
of choice are even more removed from the expectable newswire training data than theirs, and error
correction as such is largely impossible.

Analysing noisy data using phrase structure might require postulating empty elements to be able to
name non-terminals, or even provide a complete tree altogether. In contrast, dependency analysis reduces
this problem by ensuring every token has a head, and that all edges form a tree. This alleged relative ease
of annotation of dependency syntax over phrase structure led us to conduct our feasibility study using
dependency.

As a dependency formalism, we use UD or Universal Dependencies (Nivre et al., 2016). In this
formalism, there are no empty elements, and there is a preference for assigning headnedness to content
words. For instance, for ‘under the table’, ‘table’ is the head of both the article and the preposition. We
choose this formalism because we consider it more reliable to annotate our utterances when they are
missing function words.

5.1 Tokenisation

UD defines dependency relations between syntactic words, and not between orthograpic words. To give
account for this principe, orthographic words can be internally broken down in their forming syntactic
words. In the general case of French, preposition-article contractions such as ‘du’ (of the, singular
masculine) must be treated as two token for syntactic purposes, namely ‘de’ and ’le’. Beyond these
few—but highly frequent—cases, French words do not need internal syntactic token analysis in the
general case.

However, user-generated data has plenty of ergographic phenomena that blur the practical equivalence
between tokens and syntactic words. For instance, the standard French expression“j’aime” (I like) gets
split by the apostrophe into two tokens by any regular tokeniser, but dropping apostrophes that would
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otherwise be obligatory is a common practice in user-generated data. Thus, ‘jaime’ would not be auto-
maticaly analysable without using strategies for apostrophe recovery. While the UD formalism does not
oblige us to correct every single typographical or grammatical error, we are obliged to do so when an or-
tographic word corresponds to more than one syntactic words. Table 4 provides some detailed examples
of these conflated tokens and the syntactic tokens they contain in their UD represention.

Form Standardised POS Translation

ta tu as PRON VERB or PRON AUX you have
ya il y a PRON PRON VERB there is
jaime j’aime PRON VERB I like
o au (à le) ADP DET in the

Table 4: Usual non-standard conflated tokens in UGC, along with their standardised form and UD
part-of-speech for their syntactic tokens once analysed.

5.2 Effects on Syntax of Time and Space Limits
Many user-generated data sources share the common characteristic that they are written under time and
space limits. Twitter and SMS messages present well-known case of spatial contraints, namely 140 and
160 characters respectively. The MARMITON data presents a more lenient spatial restriction, because the
sentences we use are discussion forum header questions. In our game log data, we find that text has been
written under time constraints. In particular on Minecraft, we observe shorter messages and a higher
prevalence of contractions, ergographism and typos.

Besides the obvious effect on spelling, time and space limitations also influence syntactic choices, be-
cause they also foster dropping less-relevant elements like articles or punctuations, but more importantly
also whole lexical items or spans. Indeed, user-generated data presents plenty of candidates can we can
interpret as ellipsis. While the pragmatics of an internet cooking forum can be very idiosyncratic, even
newswire has a frequent source of syntactic anomalies, namely headlines (Perfetti et al., 1987). Head-
linese is also a result of writing under space constraints, and is a particular use of language that is very
prone to ellipses, e.g the ’U.S. Futures Higher Ahead of GDP Data’5 has no main verb and only one
function word. We expect the headline-esque, conversation-starting MARMITON questions to present
ellipsis and disfluences resulting from its spatial limitations and its almost oral nature.

Finally, in the scenario of syntax under space and time contraints, we also observe that many relations
between clauses are not explicitly marked. We also give account for the cases of parataxis in our data.

5.3 Code-Switching and Direct Speech
The two game-log domains contain plenty of English game terms, and we observe quite a lot of code-
switching. When only a token is code-switched, it’s potential difficulties of analysis can be resolved
during part-of-speech annotation. In this aspect, an atomic code-switch does not differ from using a
loanword (Example 1). When the code-switching spans more than one token, difficulties arise, as a
certain span can have its own internal syntactic structure in English (Example 2), while being embedded
in a French clause. Similarly, we also observe examples of direct speech with an embedded full clause
in English (Example 3).

1. LoL: J’ adore jouer Elise mais faut la up merci .
I love playing Elise but must up her thanks .

2. Minecraft: qui a stuff ? for me
who has stuff ? for me

3. LoL: J’ ai donc dit d’ un ton désperé en all "GG guys, you were better , can’ t carry this: "
I have thus said in a desperate tone in all "GG guys, you were better, can’ t carry this: "

For Examples 2 and 3, it is necessary devise strategies that allow a full analysis of the main language,
and potentially provide an analysis for the code-switched language in an alternative layer.

5The Wall Street Journal, online edition, October 28, 2016.
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5.4 Quantitative Analysis
We have taken a sample of 100 unique sentences with at least 4 tokens from each of the three domains.
One of the authors of this article, experienced in dependency annotation, evaluated the difficulties in
annotating them using UD dependencies. Sentences are shorter in Minecraft, and only retrieved 87.
Notice that we do not conduct any sentence splitting, and we treat each of the statements entered by the
users as complete utterances. While some of these utterances could be split in clauses, other sequences
of utterances could be joined to form a single sentence. However, we believe that treating each statement
as a complete utterance is the most realistic scenario for later automatic processing.

Table 5 presents the percentage of sentences in each sample that present annotation difficulties in our
UD pilot. From the phenomena described in this section, we have determined a series of categories, such
as missing main verb (NoVerb), conflicting candidates to main predicate (Pred), parataxis (Parat), code-
switching (CoSwi), missing punctuation that harms understanding (Punct), tokenisation problems such
as fragments or overzealous tokenisation (Tok), and cases of conflated tokens such as the ones presented
in Section 5.1.

Domain NoVerb Pred Parat CoSwi Punct Tok Conf

LEAGUE OF LEGENDS 3 3 17 39 10 8 0
MARMITON 42 7 2 0 0 2 11
MINECRAFT 16 1 14 17 15 8 31

Table 5: Corpus-wise percentages of annotation difficulties.

As expected, the two gaming corpora are more similar between themselves than to MARMITON, which
presents a defining particularity in that 42% of the examples do not have a main verb. In this domain,
users rely heavily on domain knownledge, using a language that is often very close to spoken French,
such as “Steak , pâtes et ???” (“Steak, pasta and ???”), where the last conjunct is ommited in order to
formulate a question. While we only find two examples of parataxis in MARMITON, we observe 17 and
14 in LoL and Minecraft. These two domains respond to more real-time data, and the relation between
clauses is less often made explicit. In addition, most statements in MARMITON are monoclausal.

Code-switching and heavy loanword and in-game vocabulary are defining traits for the gaming cor-
pora, which LoL being the corpus with more code-switching and more instances of direct speech. The
sentences with these phenomena present the difficulty of how to represent both the contribution to the
main French sentence, and the internal structure of the cited or code-switched span.

5.5 Annotated Examples
We have conducted some preliminary full dependency annotations for examples we considered illustra-
tive of the different domains and their characteristic syntactic phenomena. Figures 1 and 2 shows three
examples of non-trivial analyses, one for each domain. We provide glosses for the examples in the figure,
and their translations are: A: “Which wine with a pig roast?", B: "But we have to think: assault tank"
and C: “Every time 3VS1 and suddenly -2 P4".

Example A is a MARMITON example, which has no main verb. However, the main term of the question
is “wine”(wine), and we treat is as the main predicate. Example B presents an ambiguity in main predi-
cate choice. While “penser”(think) is the only verb of the sentence and makes a good candidate for main
predicate, we can also see the whole span before the colon it as an extrapredicative, with “char”(tank)
being the head of the predication.

Example C presents a series of idiosyncrasies. First of all, we had to treat the contractions “du" (of
the, singular) and “des" (of the, plural) as two separate tokens, marked in parentheses following UD
tokenisation principles, as well as an unusual typo,i.e. "couˆ" should be “coup”, literally hit, a formant
of the expression “du coup”, which means literally. This last multiword, treated with a flat structure with
the mwe label, is very common in spoken French, but not present in the French UD treebank.

More importantly, C shows an attachment ambiguity caused by part-of-speech ambiguity and verb
ellipsis. A natural ellipsis recovery of example C would read as "Every time there are 3VS1, and
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A) root quel vin avec un cochon grillé ?
which wine with a pork roasted ?

root

det

case

det

amod

nmod

B) root Mais il faut penser : char d’ assaut
But one must think : car of assault

root

root

cc

expl

aux punct case

nmod

Figure 1: Example A, lacking a main verb, and B, with two contesting candidates for main predicated
marked with dashed edges.

C) root à chaque fois (de les) 3VS1 et (de le) couˆ -2 P4
at every time of the 3VS1 and suddently minus two P4

less of

root

case

det

nmod

case

det cc

advmod

mwe

mwe

conj

det/nmod

conj

det

Figure 2: Example C, with two contesting structures from two different readings of the token “‘-2”.

suddenly I have -2 P4". The word "3VS1" stands for “3 versus 1”, namely an uneven combat setting,
and ‘P4” refers to the character’s protection armor. The token "-2" admits more than one analysis. The
first analysis is the simple reading as number, complementing the noun "P4". A second analysis treats
"-2" as a trascription of "moins de" (less than, less of), which would be the preferred analysis in case the
verb recovery held. This example shows the interplay between frequent ellipses, ergographic phenomena
(Seddah et al., 2012) and the need for domain knowledge in user-generated data.

5.6 Feasibility of Dependency Annotation

SENT

VN-SUJ

-NONE-

ε

NP-OBJi

ADV

Trop
Too

P

de
much

NC

bananes
bananas

PONCT

,

Sint

VN

-NONE-

ε

VPinf-OBJ

VN

-NONE-OBJ

εi

VINF

congeler
freezing

PONCT

?

Figure 3: Prototype phrase-based analysis of an ex-
treme elliptic case: Too much bananas, freezing?

As said above, elliptical structures are frequent
in our corpora and are a direct consequence of
the live nature of the medias we choose to study.
This is why at the beginning of this work, we
decided to annotate these ellipsis, breaking thus
the French Treebank guidelines, because we pre-
tentiously thought we could always remain neu-
tral in our interpretation of the missing syntactic
context while agreeing on it and that it would
be actually useful. Figure 3 shows an example
of such annotation, here prototyped in a phrase-
based manner, following the FTB guidelines. In
this example, the two VNs (Verbal Nucleus in
the FTB terminology) were supposed to respectively stand for “J’ai”/I have and “dois-je”/should I but
they could have stand for anything else (preposition, adverbial phrase) while the strictly transitive verb
“congeler”/to freeze is expecting a direct-object (showed by a trace in the clitics position pointing to
the preceding NP). In short, trying to annotate such missing constructions was akin to numerous, if not
pointless, inferences and led us to consider a UD analysis where we only had to make bananas the main
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predicate, and treat freeze as a subordinate clause.
Regardless of the difficulty of the domain, it appears that a UD dependency analysis lends itself to

dependency annotation in an easier way: Since non-leaf relations appear between lexical words, this
representation is more robust to missing determiners, prepositions and punctuations, even phrases. Also,
if we used other dependency formalisms that for instance place prepositions as heads of nouns, it would
be more difficult to annotate as it is the case using the current French Treebank dependency scheme
(Candito et al., 2010). Nevertheless, dependency analyses conflate functional and structural information
(Silveira and Manning, 2015), and some of the structural information can be lost in cases such as the
Example C, discussed above.

Annotating dependencies lends itself well to noisy user-generated data. In a strict lexicalist analysis
such as UD, where there are no tokens for unobserved words (e.g. dropped subjects, missing main verbs),
we must build a structure from the existing words, and not from idealised sentence representations. We
finally observe that for UGC, shorter sentences are harder to annotate. Indeed, sentences closer to the
lower threshold of 4 tokens we have determined, seem to present more ellipsis, while longer sentences
in our data have structures closer to more canonical syntax.

5.7 The Unspoken Costs of Treebank Annotation

As we all know, creating annotated data is a rewarding task, extremely useful for evaluation as well as
for building feature-rich supervised models. Yet, it is time consuming and as generally said, relatively
costly (Schneider, 2015) even though crowd-sourcing solutions through games with a purpose start to
emerge (Guillaume et al., 2016). The dataset we presented in that paper are part of process that was
initiated 5 years ago when we were confronted to the lack of syntactically-annotated out-of-domain
dataset for French. The purely syntactic annotation phase for the LoL and Minecraft data is still ongoing
and we expect it to be finished in the first few months of 2017. It is important to consider that such
a task was made possible because of the experience we gained along the years and because we relied
on a highly trained team of annotators. This training was the most important point in term of costs
and had to be extended each time we added a new major annotation layer (from surface syntax to deep
syntax for example, see (Candito et al., 2014) for details). Table 6 presents the costs of the treebanking
effort (mainly led by Marie Candito and the second author) that was carried out by the INRIA’s Alpage
team since 2011 and led to the release of many out-of-domain and user-generated content treebanks.
The figures do not include the costs of the permanent-position researchers involved in the design of the
annotation scheme, in preliminary annotation, in the development of pre-annotation pipelines, post-
annotation error detection and correction tools and in the training and supervision of the annotators.
Considering that we annotated 4 different layers for about 7k out-of-domain sentences and 2 layers for
3.7k of UGC data, the average cost per sentence is about 3 euros, on par with what is known about
the English Web Treebank (Bies et al., 2012) development costs (Mc Donald, PC). Unlike less costly
initiatives that focused on gold standard or training data creation, our goal was also to provide a linguistic
snapshot of a specific domain at a given time, useful as such for linguists.

Start Size Morph. Const. Dep. Deep Synt.4 Cost
sent. man/month euros

Sequoia1 2011 3200 2 9 1 6 59k
FSMB 12 2012 1700 1 2 - - 13k
FSMB 22 2014 2000 2 4 - - 20k

FQB3 2014 2600 2 4 1 4 36k
LoL 2015 450 3 - - - 3k

Minecraft 2016 230 0.5 - - - 2k
10180 41.5 133k

Table 6: Treebanking Cost at the Alpage team. Morph.: morpho-syntactic annotation, Const: Phrase-based annota-

tion, Dep: dependency conversion, Deep Synt: Deep syntax annotation.
1:(Candito and Seddah, 2012),2:(Seddah et al., 2012),3:(Seddah and Candito, 2016),4:(Candito et al., 2014)

21



6 Conclusion

We have presented a three-corpus dataset of user-generated French data. We have shown how the devi-
ation from conventional newswire data manifests in different ways, and not only lexical elements. For
lexical elements, we have presented a threefold categorisation of UGC idiosyncracies.

We have subsequently conducted a pilot study to evaluate the a priori difficulties of applying a UD
analysis on our data. We have determined that for our data set, after POS analysis, the difficulty of
annotating depends on the amount of elided material and on the ability of the representation scheme to
cope with the discrepancies between raw and syntactic tokens. While dependency syntax is more robust
towards missing elements that phrase-structure representations, many the examples of the forum text
presented cases of i.a. main-verb ellipsis, which are still difficult to tackle using dependency analysis.
While the main problem for analysis of term-rich texts like those of gaming logs lies (LEAGUE OF

LEGENDS and MINECRAFT) at the POS level, the hidden problem arises with perfectly standard text
lacking most of the usual syntactic glue, including verbal predicates, which we find in MARMITON.
For games, however, the other main problem lies in the strong contextualization of such production,
making them barely understandable by a domain-outsider. Lastly, we believe our data can be used as
a very interesting crash-test or a valuable reference material, so we make all data freely available at
http://alpage.inria.fr/Treebanks/ExtremeUGC/ :smile:
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Abstract

Information extraction from user-generated text has gained much attention with the growth of the Web.
Disaster analysis using information from social media provides valuable, real-time, geolocated informa-
tion for helping people caught up these in disasters. However, it is challenging to analyze texts posted on
social media because disaster keywords match any texts that contain words. For collecting posts about a
disaster from social media, we need to develop a classifier to filter posts irrelevant to disasters. Moreover,
because of the nature of social media, we can take advantage of posts that come with GPS information.
However, a post does not always refer to an event occurring at the place where it has been posted.

Therefore, we propose a new task of classifying whether a flood disaster occurred, in addition to predicting
the geolocation of events from user-generated text. We report the annotation of the flood disaster corpus
and develop a classifier to demonstrate the use of this corpus for disaster analysis.

1 Introduction
With the recent spread of the Web, disaster information is now being posted to the social media in real time. In
the case of the 2011 Great East Japan Earthquake, Twitter was used to share information regarding damage states,
tsunami warnings, and safety confirmations. As increasing amounts of information have been produced by users,
information extraction from social media has attracted attention in the field of natural language processing. Flood
disaster analysis using information from social media is heavily awaited because precise information such as time
and location of a flood is crucial for supporting (potential) victims of the disaster. However, information extraction
from social media faces several problems. Here, we address two important problems.

First, collecting posts including keywords about a disaster is not sufficient to judge whether the disaster actually
occurred. The following posts concerning disasters illustrate this problem.

(1) The street in front of my house is flooded.

(2) There are several flood disasters around here.

(3) Last year’s flood was terrible.

(4) Please be aware of flood hazards.

We desire to extract posts such as post (1) refer to a disaster but there are posts that do not refer to any specific
disaster, (2) refer to a generic event rather than a specific event, (3) refer to a past accident instead of a current
situation, and (4) does not refer to any disaster but alerts a reader regarding the possibility of future catastrophe.

Second, another important problem in disaster analysis is temporal and/or geographical uncertainty. Although
0.77% posts on Twitter1 contain GPS information (Hecht et al., 2011), not all posts include exact geolocation. In
addition, a post that contains GPS information need not refer to the location of a disaster event described in the
post. The following post concerning a disaster illustrates this problem.

(5) I heard that it was flooded in Okinawa.

In the case of (5), the disaster occurs not in the place that GPS information indicates but in Okinawa prefecture.
Therefore, we propose new tasks (1) that classify whether a disaster occurred and (2) that predict the geolocation

of events from social media. The task of geolocation prediction from Twitter has also been recently addressed (Han

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1https://twitter.com/
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Figure 1: Visualization system of flood disaster for the Typhoon Lionrock crossed northern Japan on August 29,
2016. It caused heavy flood in Iwate prefecture, and its damage is clearly found in this visualization (red circles in
the upper right coastline). The flood did not cause severe damage in other parts of northern Japan (shown in blue
circles).

et al., 2014). However, in the present study, we attempt to predict the location of an event that a post refers to rather
than the location of the post.

Figure 1 is a demonstration of our visualization system2 of flood disaster. This visualization system uses the
disaster classifier we built in this study. We aim to make a visualization system that can capture the exact location
of the disaster in real time.

The main contributions of this study are as follows:

• We proposed a new task of flood disaster analysis and created a flood event dataset.

• We developed a supervised classifier to classify whether a disaster occurs to predict time when a disaster
occurs and to predict distance between a reporter and disaster.

2 Related Work
With the development of the information society, studies of disaster information analysis from social media have
attracted attention in the NLP literature.

In the case of the Great East Japan Earthquake, Neubig et al. (2011) constructed an information extraction
system that visualized the security of the people in the disaster-stricken area using Twitter. They made a corpus
by annotating safety information to tweets and trained a classifier to categorize the security of the population.
We also perform disaster information analysis; however, we focus on event classification rather than classification
of personal information. In addition, Varga et al. (2013) extracted distress and support information concerning
disaster from tweets. Their distress recognizer used geographical information as a feature; however, they did not
estimate the location of the disaster event. Our work differs in that we try to estimate how far the disaster event is
from the person posting in terms of time and location.

Similar to our study, Sakaki et al. (2010) constructed a reporting system that classifies whether an earthquake
or typhoon occurs when the text was posted. They predicted the location of disaster events using GPS data from
the tweets; however, they did not address the problem of tempo-spatial distance between the person posting and
the event. They were not able to tackle this problem because there were very few tweets posted with GPS data
(Hecht et al., 2011). In this study, we created a flood event corpus from a blog in which almost all users posted
their reports with the geolocation. Moreover, we separated the task of location prediction of posts and location
prediction of events.

Regarding information extraction concerning a flood, Herfort et al. (2014) used specific geographical features
like hydrological data and digital elevation models to prioritize crisis-relevant Twitter messages. In this study,

2https://wni.carto.com/u/wx/viz/6ac4d3b0-da61-48a1-a7bb-68177f1194db/public_map
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label value description

disaster positive From the post, we can judge that a flood disaster is occurring when the text is posted.
negative From the post, we can judge that a flood disaster is not occurring when the text is

posted.
high probability From the post, we can judge that a reporter alerts a future flood in advance.

future low probability From the post, we can judge that a reporter is anxious about a future flood.
unmentioned From the post, we can judge that a reporter does not mention about a future flood.
occurring From the post, we can judge that the flood is occurring.

time present probably occurring From the post, we can presume that the flood is occurring.
not occurring From the post, we can judge that a flood is not occurring.
occurred From the post, we can judge that a flood occurred recently.

past occurred long before From the post, we can judge that a flood occurred long before.
unmentioned From the post, we can judge that a reporter does not mention a post flood in the past.
close We can judge from the post that a reporter reports flood in front of him/her.

distance far We can judge from the post that a reporter reports flood but he/she is not at the place
where he/she experienced flood.

misc Except close and far.

Table 1: Labels for the flood disaster events.

we focus on the prediction of an event using linguistic features to discuss potential issues in text-based event
classification. Vieweg et al. (2010) analyzed tweets generated during a flood event. They found that 6% of the
tweets contained location information. In this study, we focus on annotating the locational relation of a reporter
and disaster. Bruns et al. (2012) compiled a dataset of tweets that relates to the crisis event by using hashtags.
We made a flood disaster dataset by collecting report containing keywords related to floods because the social
media used in this paper does not support hashtags. However, almost all of our data already has the exact GPS
information.

3 Annotation of Flood Event

3.1 Data

We collected 567 posts including Japanese keywords for a flood event such as “inundation” and “flood” from a
weather report sharing site known as “weathernews3.” Approximately, 500,000 reports on weather are posted on
this site every month by users, and these reports contain posting time and GPS information. Each reports comprises
picture and text about weather, and some exclusive label of weather (e.g., onomatopoeia such asポツポツ, ザー
ザー etc.) and temperature (e.g., hot or cold) by users’ subjective judgment. In this study, we used only the text of
weather reports.

We used posts of 17 days that included July, which is during the typhoon season, and February, which is the
snowy season in Japan, and 4 days during the 2011 Great East Japan Earthquake. The average number of sentences
in one post is 5, while the average number of phrases and words in one sentence are 5 and 17, respectively.

We labeled the posts according to whether a disaster occurred when the text was posted. We call this binary
label disaster label. In addition, we annotated the time and distance of the disaster event from the post because
flood disaster analysis should predict the time and place where a disaster occurred or is still occurring from a post.
We call these labels time label and disaster label. In disaster labels, we annotated only one label for each post
including at least one keyword. If there were more than one disaster event, we annotated the event that was closer
to the keyword. In time and distance labels, we annotated each keyword in a post.

3.2 Labels

Table 1 summarizes the labels of this task. With regard to the time label, it is necessary to recognize not only
whether a flood occurs but also whether a disaster persists. Therefore we divided the time label into following
labels: future, present, and past instead of using generic time specification such as TimeML (Pustejovsky et al.,
2003). Unlike TimeML, we assigned the time label to only the disaster keyword based on a relationship between
the posting time and time of the reported disaster by considering the tense expression in the report. In addition, we
assigned values of all three tenses (future, present, past) to the disaster keyword because we supposed to construct
applications that estimate the ordering of flood disaster at the posting time, future and past. We prepared three
values for each time label. We will describe details of the labels below.

Disaster label. We prepared positive and negative to estimate the presence of flood disaster at the time of posting.

3http://weathernews.jp
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Future label. We prepared high probability, low probability and unmentioned because there are three patterns
of reports that mentioned alerts, anxiety, and nothing about a flood event. We labeled the report such as an alert
future catastrophe like “It seems to be flood!,” to high probability and labeled the report that mentioned only an
anxiety about the occurrence of a flood, e.g., “I am anxious about a disaster,” to low probability.

Present label. We prepared occurring, probably occurring and not occurring. The value of probably occurring
is created to reflect the temporal uncertainty of a flood. There is ambiguity in terms of tense in the representation
such as “浸水していました (had flooded),” which refers to a disaster that occurred or is occurring. For such a
representation, we labeled the posts as “probably occurring.” We did not prepare unmentioned because we label
the post as not occurring if a disaster is not mentioned in the case of present.

Past label. We prepared occurred, occurred long before and unmentioned. The value of occurred long before is
necessary to distinguish a report that refers to a recent accident and an accident that occurred long time before.

Distance label. We just annotated whether a reporter is in front of the place (close) or has already left the place
(far) because we use the flood event corpus constructed from a social media where almost all users post their
reports with location information. We assigned a misc label in case where it is difficult to estimate the distance
only from the post. For example, we labeled the report that did not mention about disaster that reporter experienced
but disaster that reporter heard in the news to misc.

Examples of annotated posts are as follows.

(6) Tokyo Station was flooded, but this street is safe.

[disaster]: positive

[time]: future = unmentioned, present = probably occurring, past = occurred

[distance]: far

(7) My balcony is flooded.

[disaster]: negative

[time]: future = unmentioned, present = occurring, past = unmentioned

[distance]: close

(8) Although there are several past flood hazards around here, at present, there has not been any such hazard.

[disaster]: negative

[time]: future = unmentioned, present = not occurring, past = occurred long before

[distance]: misc

In the case of (6), a flood has not occurred near the reporter; however, the flood likely occurred somewhere
nearby. In the case of (7), a flood occurs in the balcony of the poster; however, it is not considered to be a disaster.
In the case of (8), a flood does not occur when the text is posted.

3.3 Analysis

The annotation was conducted using two annotators. The κ coefficient is 0.870 for the disaster label, 0.796 for the
future label, 0.691 for the present label, 0.672 for the past label and 0.637 for the distance label.

Table 2 shows the number of labels. There are some labels in which the number is small like occurred long
before. However, for disaster reports, it is necessary to distinguish between a past report that mentions an ancient
disaster and an up-to-date report that mentions a recent disaster. Moreover, we would like to distinguish between
reports that alert future catastrophe and reports that mention only anxiety to help evacuation. Therefore, we define
and annotate those labels although their numbers are small. If we focus on developing a practical system, infrequent
labels can be merged to alleviate data sparseness. In addition, these fine labels can be used not only in this task that
estimates the presence of flood disaster at the time of posting but also in other tasks (e.g., the task of predicting
that a disaster occurs in the future).

4 Classification of Flood Event

In this study, we conducted three experiments using disaster corpus that we developed. We formulated the flood
information analysis as a classification problem and proposed a supervised approach to classify flood event. Table
3 shows the description of features used in these experiments.
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label number
disaster positive:329 / negative:238

future high probability:83 / low probability:48 / unmentioned:498
time present occurring:272 / probably occurring:100 / not occurring:257

past occurred:121 / occurred long before:13 / unmentioned:495
distance close:322 / far:59 /misc:248

Table 2: Number of labels.

example 今日は大雨が降るので 浸水 する予定。(Today there is going to be flooding because of
heavy rain.)

BoN Bag of n-grams of word from the sentences including the keywords of flooding. (n = 1, 2, 3,
4) We use either the entire sentence or a window around the keywords (window size = 5).
example：今日 [uni]は [uni]大雨 [uni]が [uni]降る [uni]ので [uni]浸水 [uni]する [uni]
予定 [uni]。 [uni]（n = 1）

Dep Bag of n-grams of words from the chunks of words including a keyword and chunks that
depend on or are dependent on chunks that include a keyword.
example：大雨 [dep] が [dep] 降る [dep] ので [dep] 浸水 [dep] する [dep] 予定 [dep] 。
[dep] 大雨 が [dep] が 降る [dep] 降る ので [dep] ので 浸水 [dep] 浸水 する [dep] す
る 予定 [dep]予定 。 [dep]（n=1,2）

Table 3: Features used for the experiments.

First, we built a supervised classifier to estimate the presence of a flood disaster at the time of posting using
disaster labels of disaster corpus (single model). We used the BoN (bag-of-ngram) and Dep (dependency) features
extracted from the sentence including in the keywords.

Second, we built a time analyzer that predicts the occurrence time of a disaster using time labels of disaster
corpus and a distance analyzer that predicts the positional relationship between a reporter and the disaster that has
occurred using distance labels from the disaster corpus. In the time analyzer and distance analyzer, we used the
BoN around keywords and the Dep features.

Finally, we proposed an improved disaster analysis model based on time analysis. In time analysis, the present
labels are almost equivalent to the disaster label. A big difference between the present label and the disaster
labels is that the present labels are labeled for each disaster keyword whereas the disaster labels are labeled for
each report. Therefore, we compared two classifiers. Baseline classifier is a single model. The other classifier
aggregates time labels for all the keywords in the report to judge whether a disaster occurred or not (aggregate
model). In order to identify a disaster label from present labels, we considered that the disaster label of a report is
positive if at least one occurring label or one probably occurring label is included in the report.

5 Experiment
5.1 Setting
In this task, we used MeCab4 (ver.0.996) with IPADic (ver.2.7.0) for word segmentation and CaboCha5 (ver.0.68)
for dependency parsing.

We conducted a 5-fold cross-validation and evaluated the performance of the analysis by its accuracy, precision,
recall and F1 score.

In this study, we used linear and polynomial kernels for the SVM as the linear and non-linear classifiers in the
disaster label classification and linear kernel SVM in the time and distance label classification, respectively. We
used libSVM (ver.1.04) to train the model. We tuned the cost parameter C and coefficient of the kernel function
during preliminary experiments. We set the degree of the polynomial kernel to 3. When comparing the single
model and the aggregate model, both models are trained on linear kernel SVM, while the single model uses the
Dep feature and the aggregated model uses the BoN feature.

5.2 Result
Table 4 shows the results of the flood disaster classification using the linear and polynomial kernel SVMs. In this
experiment, there are no notable differences between the linear and polynomial kernel SVMs. Therefore, I will
discuss only the result of linear SVM in the next section.

4http://taku910.github.io/mecab/
5http://taku910.github.io/cabocha/
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Feature Linear Polynomial
Precision Recall F1 Precision Recall F1

BoN 75.9 85.9 80.4 75.6 85.0 79.8
Dep 79.2 84.7 81.6 79.2 83.7 81.1
BoN+Dep 76.7 85.9 80.8 78.0 85.6 81.3

Table 4: Accuracy of the disaster label classification of SVMs.

Feature Accuracy
Past Present Future Distance

BoN 85.9 74.7 85.1 71.4
Dep 87.9 73.3 84.6 70.0

BoN+Dep 86.0 73.8 85.7 70.0

Table 5: Accuracy of time and distance label classification.

label value Precision Recall F1
high probability 71.4 42.2 53.0

future low probability 80.0 16.7 27.6
unmentioned 86.5 98.8 92.2

occurring 75.0 82.7 78.7
present probably occurring 66.1 41.0 50.6

not occurring 76.4 79.4 77.9
occurred 78.7 48.8 60.2

past occurred long before 100.0 13.3 23.5
unmentioned 86.8 97.2 91.7

close 70.7 83.2 76.4
distance far 77.8 11.9 20.6

misc 72.2 70.2 71.2

Table 6: Precision, Recall and F1-score of time and distance label classification.

classifier Precision Recall F1
aggregated model 84.3 88.4 86.4

single model 79.2 84.7 81.6

Table 7: Accuracy of disaster label classification.

Table 5 shows the accuracy of the time and distance label classification and Table 6 shows the precision, recall
and F1-score of time and distance label classification using linear kernel SVM with the BoN feature.

Table 7 shows the result of model comparison of the classifier using the document level disaster label (single
model) and the classifier using the keyword level time labels (aggregated model). Aggregated model achieved
better performance over single model in all the evaluation measures.

6 Discussion

Table 4 shows that we can obtain the highest precision using the Dep feature. Comparing the Dep feature and the
BoN feature, it appears that the Dep feature is strongly related to the flood keywords because it considers only the
chunks near a keyword. On the other hand, the BoN feature gave a strong positive bias to the classifier. Therefore,
the BoN results in low precision compared with the result of the Dep feature. It is thought that the Dep feature
enhances the precision because it filters the noise of the BoN feature by removing phrases that are not related to the
keyword. We examined the Dep features from the linear kernel SVM. Table 8 shows features and corresponding
weights. There are many negative features related to an advance alert, such as “注意 (attention)” , “心配 (worry).”

Table 9 shows examples of the primary classification errors. There are multiple classification errors, such as the
first example, that are caused by complex modality. In this study, we used the polynomial kernel SVM in addition
to the linear kernel SVM; however, the polynomial kernel SVM was ineffective because the amount of data used
in this study was so small that it made the combinatorial features sparse. The second example demonstrates that
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Positive feature weight Negative feature weight
津波 (tsunami) 0.32826 冠水 する (to be flood) -0.43767

冠水 と (flooding and) 0.31268 dative case marker -0.37203
、 冠水 (, flood) 0.25815 accusative case marker -0.34530

冠水 し て (is flooded) 0.25528 注意 (attention) -0.34294
の 冠水 (flooding of) 0.23073 心配 (worry) -0.34058
冠水 状態 (flood state) 0.22084 道路 の (of road) -0.31980

道 (road) 0.20543 冠水 や (flood or) -0.30046
し て いる (ing) 0.20365 し そう (be about to) -0.29838

あちこち (here and there) 0.20088 そう (likely) -0.28952
bias term 0.41139

Table 8: Feature and weight of the linear classifier using Dep features.

Error example 1 浸水しているそうなので注意です。 False negative
(Please be attention because it seems to be flooded.)

Error example 2 昔ね。我が家も床下浸水した。 False positive
(It is all history. My house was flooded.)

Table 9: Examples of classification errors.

Figure 2: The learning curve of the flood disaster classification.

the classifier cannot classify a post that requires the consideration of inter-sentential context. Features used in this
study considered only the words in a sentence, including the flood keyword. We need to employ discourse-level
information to appropriately classify these examples.

Figure 2 shows the learning curve for disaster label classification. The classifier converges after the amount of
data exceeds 350. It was thought that most surface keywords in posts concerning flood disasters could be learned
with a small amount of data because we used only two keywords that directly indicated a flood disaster. However,
it will be necessary to learn generic words that do not necessarily refer to flood disasters to boost the recall in flood
disaster analysis.

Regarding time and distance classification, Table 6 shows that recall of low probability, occurred long before
and far is very low. It is inferred that the number of the label is small. We examined the number of errors of the
time analyzer and distance analyzer that use the BoN feature. Table 10 shows the number of errors. In time and
distance analysis, there are errors that predict rare labels. As shown in Table 10, minor labels tend to be predicted
as major labels. Therefore, it is necessary to search an effective feature for rare labels, especially for present labels
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future
high probability low probability unmentioned

high probability 35 2 46
low probability 8 8 32
unmentioned 6 0 498

present
occurring probably occurring not occurring

occurring 225 7 40
probably occurring 36 41 23

not occurring 39 14 204
past

occurred occurred long before unmentioned
occurred 59 0 62

occurred long before 2 2 11
unmentioned 14 0 481

distance
close far misc

close 268 1 53
far 38 7 14

misc 73 1 174

Table 10: The confusion matrice of time and distance label classification error. Row shows gold label and column
shows predicted label.

that contribute to disaster analysis.
Table 7 shows that the classifier using the time label (aggregated model) has better precision, recall, and F1-score

than the classifier using the disaster label (single model). It is inferred that fine-grained annotation for each disaster
keyword is more effective than coarse-grained annotation for each report in the disaster classification, because there
are reports that mention two events in one report such as “It is flooded in Tokyo, but this place is not flooded.”
The single model did not perform well in complex tasks such as disaster analysis. Moreover, the aggregated model
successfully decomposed a disaster analysis into simpler problems and achieved better performance. Modality
analysis is shown to improve the accuracy of factuality analysis (Saurı́ and Pustejovsky, 2012), and can be applied
to this task as well.

7 Conclusion
In this study, we collected posts concerning flood disasters from social media about weather and created a flood
disaster corpus. We annotated whether a flood disaster occurred. Furthermore, we annotated the time of disaster
and distance between the poster and disaster. In addition, we developed a classifier using linear and polynomial
kernel SVMs. In the classification of disaster label, the experimental results show that the use of bag of n-grams
from the subtree of a dependency parse is effective for classification of disaster label in terms of F1-score. In addi-
tion, we proposed an aggregated model using predicted time labels for disaster label classification. Experimental
result showed that the aggregated model is better than the single model. Moreover, it is suggested that modality
analysis is necessary for enhancing the performance of a disaster analysis.

In this study, we focus on flood disaster, but this data label creation and the classification can be extended to
other natural disasters if the keyword of the disaster is found and has a similar nature to the flood disaster, such as
landslides and heavy snowfalls.

In the future, we plan to expand our flood disaster corpus by adding new keywords. It is not straightforward to
find appropriate keywords that increase recall without losing too much precision. In addition, we would like to
improve the visualization system of flood disaster information using user-generated text to assist relief efforts in
future large-scale disasters.
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Abstract
We present a data-driven method for determining the veracity of a set of rumorous claims on
social media data. Tweets from different sources pertaining to a rumor are processed on three
levels: first, factuality values are assigned to each tweet based on four textual cue categories
relevant for our journalism use case; these amalgamate speaker support in terms of polarity and
commitment in terms of certainty and speculation. Next, the proportions of these lexical cues
are utilized as predictors for tweet certainty in a generalized linear regression model. Subse-
quently, lexical cue proportions, predicted certainty, as well as their time course characteristics
are used to compute veracity for each rumor in terms of the identity of the rumor-resolving tweet
and its binary resolution value judgment. The system operates without access to extralinguis-
tic resources. Evaluated on the data portion for which hand-labeled examples were available, it
achieves .74 F1-score on identifying rumor resolving tweets and .76 F1-score on predicting if a
rumor is resolved as true or false.

1 Background and Task Definition

A growing amount of studies investigate how rumors and memes spread and change on social media
platforms (Leskovec et al., 2009; Qazvinian et al., 2011; Procter et al., 2013); given the amount of user-
generated content, the need for automatic fact checking and claim verification procedures is obvious. To
compute veracity, systems have been created recently for assessing the credibility of sources and claims
(Berti-Équille and Borge-Holthoefer, 2015). Upcoming initiatives endorsed veracity detection in social
media content as a shared task, calling for targeted applications and releasing benchmark data1.

To tackle this challenge, we implemented a system that seeks to achieve three goals: (i) to compute a
judgment indicating how factual a claim is, based on textual cues and predicted speaker certainty, (ii) to
identify which tweet is resolving a rumor, in a set of tweets that discuss this rumor, and (iii) to predict the
resolution value for the rumor, i.e., whether the rumor is verified as true or false. Veracity computation is
based on information from three information layers related to rumorousness: (1) lexical-level factuality
cues, (2) temporal patterns, and (3) speaker certainty. The system is purely data-driven and operates
without building claim source profiles for the analyzed content. Below we introduce our motivation in
the context of previous and related work.

The means by which factuality is conveyed are largely but not exclusively encoded on linguistic lev-
els and are tightly related to the notion of certainty. Certainty and other extra-propositional aspects of
meaning have prominently been investigated in terms of modality, negation and speculative language
phenomena (Morante and Blanco, 2012; Morante and Sporleder, 2012). Benchmark corpora with anno-
tations emerged (Saurı́ and Pustejovsky, 2009; Farkas et al., 2010), and systems have been built (Saurı́
and Pustejovsky, 2012; de Marneffe et al., 2012; Velldal and Read, 2012) to process texts from the
genres of literature, newswire, biomedicine and online encyclopedia, typically drawing on lexical and
syntactic cues. (Szarvas et al., 2012) propose a method for porting uncertainty detection across gen-
res and domains. (Kilicoglu et al., 2015) present a full-fledged, compositional approach to factuality

∗∗UDR is supported by an Alexander von Humboldt Society grant.
††PL is supported by the PHEME FP7 project (Grant No. 611233).

1http://alt.qcri.org/semeval2017/task8/
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modeling and detection on texts from the domain of biomedicine based on fine-grained typology and
dictionary-based classification of extra-propositional phenomena. Several components of the model are
motivated by the nature of scientific communication that serves to track hypothesis building processes
with tentative results, analogously to journalistic reports about breaking news. (Soni et al., 2014) focus
on factuality framing in social media data in quoted claims with a small set of cues, whereas (Finn et al.,
2014) implement keyword-based negation detection without providing quantitative evaluation.

Next to linguistically expressed uncertainty, extralinguistic information such as the temporal distri-
bution of claims is shown to be an important aspect of veracity computation. Previous studies that
investigated temporal patterns of linguistic cues tied to claims emerging in real-world events focus
on keywords related to sentiment, named entities and domain terms (Temnikova et al., 2014), but not
factuality-conveying cues. (Wei et al., 2013) report on the first uncertainty corpus based on tweets, as
well as on classification results for uncertain tweets. Next to platform-specific metadata, they utilized
cue phrases in annotated uncertain tweets and an algorithm to detect peaks in the data. (Kwon and Cha,
2014) and (Ma et al., 2015) show for rumor detection that accuracy can be improved by not only look-
ing at message-related properties but also at how these properties change over time. (Ma et al., 2015)
propose a time series structure for features and their deltas as the input for classification.

On the full PHEME dataset, (Lukasik et al., 2016) report on stance detection in the context of temporal
dynamics. They utilize textual information via language modeling but do not evaluate the contribution
of textual as opposed to other features. On the same dataset, (Zubiaga et al., 2016) analyzed labeled cer-
tainty values in dependence of claim resolution, and found that tweeters post messages with statistically
similar certainty before and after a claim is resolved, moreover, irrespective of the resolution value.

In (Lendvai et al., 2016) we analyzed and validated a subset of the PHEME data on English and
German data that temporal distribution and polarity of lexical markers can be used to represent and
quantify changes in factuality framing in a rumor’s lifecycle. Our current study furthers this research
by incorporating, evaluating, and visualizing temporally anchored features for claim resolution point
as well as claim resolution value prediction in English language rumors discussed in potentially noisy,
user-generated content.

The paper is structured as follows. In Section 2 we introduce the underlying data and certainty annota-
tions, and describe the automatic extension of lexical cues assigned to four levels of factuality. In Section
3 the relation between certainty and each of the factuality levels is assessed, and regression analysis is
used for predicting certainty values by cue-type ratios. In Section 4 we quantify trend discontinuities in
time series data of lexical cue ratios and predicted certainty scores to describe rumor resolution points.
Cue ratios, certainty, as well as their time course characteristics are exploited in Section 5, where we
train classifiers to identify claim-resolving tweets within series of tweets spanning a claim’s lifetime, and
additionally predict the claim’s resolution value. The findings are discussed in Section 6.

2 Data

2.1 Corpus
We worked on a subset of a freely available, annotated social media corpus2 collected from the Twitter
platform3, containing tweets in English related to three crisis events: the Ottawa shooting4, the Sydney
Siege5, and the Germanwings crash6. Each event is annotated in terms of several rumorous claims7 –
plausible but at the time of emergence unconfirmed statements, e.g. in the Sydney Siege collection two
example claims are ”There is a hostage situation at a cafe in Sydney” and ”Police (authorities) have been in
contact with the hostage-taker”. For each claim, there are a set of tweets that discuss or mention that claim,
and a single one of these tweet has been manually identified and judged to be authoritatively resolving
the claim either as true or false. A resolving tweet for the claim ”The Germanwings plane experienced

2https://figshare.com/articles/PHEME rumour scheme dataset journalism use case/2068650
3twitter.com
4https://en.wikipedia.org/wiki/2014 shootings at Parliament Hill, Ottawa
5https://en.wikipedia.org/wiki/2014 Sydney hostage crisis
6https://en.wikipedia.org/wiki/Germanwings Flight 9525
7We use rumor, rumorous claim, and claim interchangeably to refer to the same concept.
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a rapid descent before crashing” is: #4U9525 took eight minutes to descend from 38,000 feet to impact,
says Germanwings CEO Winkelmann; this rumor is annotated by a journalist as resolved True. The
verification value is inherited by all the tweets that relate to this claim, also in retrospect. To ensure
that there is always exactly a single resolving tweet per claim we discarded the unresolved claims in the
given corpus so that the data underlying this study amounts 45 claims containing in sum 11,420 tweets.
Tweets are organized into threaded conversations and are marked up with respect to seven categories of
evidence, among others stance and certainty; for full details on the corpus we refer to (Zubiaga et al.,
2015).

2.2 Certainty annotations

Certainty annotations were pre-assigned in the corpus in relation to stance value annotations by (Zubiaga
et al., 2015). Stance represents speaker attitude toward a target: in this corpus, the target is a rumorous
claim, and each tweet was manually marked as either supporting, denying, questioning, or commenting a
claim. Tweets that received either of the stance labels supporting or denying were additionally assigned a
certainty value. This value served to express tweeter confidence with respect to their stance, as perceived
by independent, crowdsourced annotators. Each tweet was annotated by 5-7 crowdsourced annotators,
in terms of the four labels uncertain, somewhat certain, certain, and underspecified.

We further processed these annotations as follows. To cope with frequent annotation mismatches, we
did not simply pick the majority-voted certainty label for our subsequent analyses, but aggregated the
annotated values for each tweet as follows. The original certainty labels were mapped to the numerical
values 0, 1, 2, and NaN, respectively. We then calculated the mean of all non-NaN values and normalized
this to the interval between 0 and 1 by dividing it by the maximum score 2. For example, the tweet
”Now hearing 148 passengers + crew on board the #A320 that has crashed in southern French Alps.
#GermanWings flight. @BBCWorld” was labeled as ’certain’ by 4 annotators and labeled as ’somewhat-
certain’ by 1 annotator, so this tweet was assigned by us the certainty score of 0.9.

The intersection of tweets that relate to claims that were not only annotated as relating to a resolved
claim, but also annotated with the three utilizable certainty labels uncertain, somewhat certain, certain
left us with a relatively small amount of tweets (266), while we also had at our disposal a larger set of
tweets (946) with claim resolution annotation but no certainty values assigned. We made use of both
collections as described below.

2.3 Factuality cues: from seeds to extended lists

The material underlying our study is user-generated content. The data collection method, cf. (Zubiaga
et al., 2015) retained only microposts that passed a retweet count threshold, often by media outlets using
well-formed language. Since replying tweets are also included in the corpus, a large portion of the data
involves noisy texts. Based on the factuality literature, most prominently (Saurı́ and Pustejovsky, 2009)
and (Soni et al., 2014), we devised four factuality groups, each holding up to 40 single-token lexical
cues. There is no restriction on which part of speech category a cue may belong to.

• Knowledge cues, e.g. clarify, confirm, definitely, discover, evidence, explain, official . . .
• Report cues, e.g. according, capture, claim, footage, observe, report, say, show, source . . .
• Belief cues, e.g. apparent, assume, believe, consider, perhaps, potential, presume, suspect . . .
• Doubt cues, e.g. ?, accuse, allege, contrary, deny, incorrect, misstate, not, unsure, why, wrong . . .

Each group represents one complex aspect of factuality that can be intuitively understood by non-
linguists, i.e. end users in the journalistic verification scenario. Knowledge and belief cues express
affirmative factuality polarity on graded levels of certainty. Report cues express affirmative factuality
polarity as well, and additionally delegate speaker commitment, as they typically occur in externally-
attributed statements and evidence, indicating a stronger level of speculation than knowledge cues. Doubt
cues express negative factuality polarity and were selected to be indicative of contradictory or opposing-
stance statements which can be extremely strong signals for rumorous claims. Involving categories
that have been suggested in previous work in fully-fledged factuality taxonomies (see Section 1) would
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Figure 1: Color-coded factuality cue ratio (FCR) derived from matched cues in the two affirmative-
polarity and high-commitment featuring factuality cue groups (’knowledge cue ratio’ + ’report cue ra-
tio’), using seed cues (left) vs extended cues (right). Factuality ratios are plotted on perceived certainty
patterns (cf. Section 2.2) in 163 argumentative Twitter microposts related to 5 rumorous claims resolved
as True during Sydney Siege. x axis: 10-minute intervals normalized to claim resolution point at 0 (re-
solving tweets marked by triangles), y axis: certainty score averaged over perceived certainty judgments.
Partial time window, size-coded amount of evidence.

require extracting higher-level linguistic information such as dependency parses, which are difficult to
obtain from noisy data, and are reserved for the extended version of our system.

Starting from the seed cues, each of the four lists were automatically further populated from available
semantic resources: via extracting the top-3 most similar items from the pretrained Google News word
embeddings vector8, as well as lemmas from the top-3 synsets from the English WordNet (Fellbaum,
1998) via NLTK9 (Bird et al., 2009). Only single-token items were harvested; each cue token was
subsequently extended by its derivationally related forms via the corresponding NLTK function. Using
the extended trigger lists, we obtained counts for each tweet via matching each cue list to a tweet’s
content, applying the NLTK Snowball Stemmer10 prior to lookup. We have also experimented with
syntax-based cue disambiguation, but opted to abandon it for no proven impact on our current task setup.
To exemplify cue matching, in the tweet ”#BREAKING: @nswpolice say a photo circulating of arrest of
man near #MartinPlace is NOT related to the police operation #sydneysiege” our lookup matches two
’report’ cues (say and photo) and one ’doubt’ cue (not). The cue extension procedure boosted the seed
lists with a few hundred new tokens per cue group, leading to more cue matches in tweets.

Arguably, there are cues that might belong to more than one factuality group, most prominently nega-
tion words that, depending on their scope, may express certainty as well. We hypothesized however
that utilizing the contextual distribution of a cue will represent its certainty-encoding function in rumor
resolution timelines in a robust way. We exemplify such a timeline in Figure 1, differentiated by cer-
tainty values plotted to the y axis. The increase in cue recall based on extended lists aimed to benefit the
certainty and rumor resolution modeling steps that we introduce in the next sections.

Features derived from matched cues Based on the extended cue matching counts, for each tweet
we calculated the proportion of cues for each factuality group over all cues: each proportion ranges
from 0 (no cue of the respective type) to 1 (cues exclusively of the respective type). Each tweet is thus
represented by the four ratios KCR (’knowledge’ cue ratio), RCR (’report’ cue ratio), BCR (’belief’ cue
ratio), DCR (’doubt’ cue ratio). The RCR for the above example tweet is 2/3, the DCR 1/3, while KCR
and BCR are 0.

3 Certainty prediction

Next, we examined the relation of cue ratios to certainty values assigned to tweets via regression analysis.

8http://code.google.com/p/word2vec/
9http://www.nltk.org/ modules/nltk/corpus/reader/wordnet.html

10http://www.nltk.org/api/nltk.stem.html
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Method To predict the degree of certainty for each tweet, we fitted generalized linear models (GLM)
to the tweets manually annotated for perceived certainty. The four lexical cue ratios were defined as
predictors and the certainty score (see Section 2.2) as target. To restrict the output to interval [0 1], the
distribution of the response was set to binomial, and a logit link function was chosen. A zero inflation
problem is given due to the frequent absence of cue words, which we addressed by adding observation
weights to the data points as follows: for each of a predictor’s values the variance of the associated
target values was measured, normalized by the variance sum, and its inverse taken. Zero values of a
predictor co-occurring with a high variance of certainty values thus received a low weight when fed into
the regression. The weight of each feature vector was then derived by taking the mean of the predictor-
related weights.

Results Spearman’s Rho correlations between the single lexical cue ratios and the normalized certainty
score are small. Only for KCR (.14) and DCR (−.39) the correlations are significant (Wilcoxon two sided
signed rank tests for paired samples, p < 0.05). These two correlations point in the expected direction.
The 10-fold cross validation of the GLMs on held out data yielded an average root mean square error of
0.22 (maximum: 0.28), which is significantly lower than the error of the baseline model always predicting
the observed mean certainty value (two-sided Wilcoxon signed rank test for paired samples, p < 0.01).
Finally, we fitted a GLM to all available training data for certainty prediction of all tweets used for the
subsequent claim resolution prediction and resolving tweet localization tasks.

4 Certainty trend quantification

Method In our approach we address time course characteristics more explicitly than previous studies
(Kwon and Cha, 2014; Ma et al., 2015). That is, instead of bundling feature vectors at different time
stamps to a joint vector, we capture time course characteristics by parameters of regression lines fitted
through the feature values over time. These regression lines will be used for trend discontinuity analyses
as described in detail below. By means of this analysis we augmented the set of variables the following
way: for all four cue ratios and the derived certainty score we calculated four discontinuity features
yielding five features for each cue ratio and certainty. These variables will be introduced in the following
paragraphs and represent:

• tweet-intrinsic properties (lexical cue ratios KCR, RCR, BCR, DCR, predicted certainty CRT)
• local discontinuities across pairs of subsequent tweets (* Delta)
• global discontinuities in linear cue and certainty trends (* Reset, * RMSD p, * RMSD f), where the

asterisk stands for the tweet-intrinsic variables, i.e. the cue ratios and certainty.

For measuring discontinuities, tweets were indexed in the order of their time stamps. Local discon-
tinuities are measured in terms of the delta deviations of each tweet i from the preceding tweet, i.e. by
subtracting each intrinsic variable’s value of tweet i−1 from the corresponding value of tweet i (* Delta).
To quantify the amount of discontinuity a tweet induces in the overall trend of a variable, we fitted three
regression lines: line lp through the intrinsic values of the preceding tweet sequence 1 . . . i − 1, line lf
through the values of the following tweet sequence i + 1 . . . n (n be the number of tweets in a claim),
and line la through the entire tweet sequence 1 . . . n. The method is illustrated in Figure 2.

In order to measure the amount of discontinuity for each intrinsic variable at each tweet, we calculated
the reset, i.e. the difference between the offset of lp and the onset of lf (Reset), and the deviation of
each of these lines lp and lf from la in terms of root mean squared deviation (RMSD p, and RMSD f,
respectively). The method was adopted from intonation research (Reichel and Mády, 2014), where it is
used to quantify pitch discontinuities for prosodic boundary strength prediction.

Applying the reasoning of (Reichel and Mády, 2014), Reset quantifies the disruption at each tweet, and
RMSD p,f quantify the deviation of the tweet preceding and following regression lines from a common
trend. Figure 2 gives an example how the regression lines preceding and following a tweet deviate
less from a common trend for non-resolving tweets (left half) than for resolving tweets, expressed by
lower values for Reset, RMSD p, and RMSD f. This example therefore illustrates a higher impact of the
resolving tweet on the claim-level trends.
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Figure 2: KCR trend analysis. For each tweet (green vertical line) three regression lines are fitted to
the KCR sequence (black): to the preceding and the following sequence (lp, lf ; blue), and to the entire
rumor (la; red), the latter representing the general trend. For resolving tweets (right) lp and lf deviate
more from a common trend, which is expressed by a larger reset as well as by larger root mean squared
deviation values from the overall trend line la.

Results For all five tweet-intrinsic measures as well for the related sets of four derived local and global
discontinuity measures we tested the difference between resolving and non-resolving tweets by linear
mixed-effect models with each of the measures as dependent variable, +/− resolving tweet (RES) and
Rumor is Resolved as True vs False (VAL) as the fixed effects, and event as random effect. Due to the
large number of tests p-values were corrected for false discovery rate (Benjamini and Yekutieli, 2001).
All significant feature differences (after p-value correction, p < 0.05) for RES are shown in Figure 3.

The claim resolution value VAL turned out to affect the variables related to doubt cue ratio and to
predicted certainty which is shown in Figure 4 (p < 0.01). Significant interactions between RES and
VAL solely affect the doubt cue and certainty variables and are presented in Figure 5. All reported
findings are discussed in Section 6.

5 Predicting the resolving tweet and its resolution value

As illustrated in Section 4 the distinction of tweets in rumor resolving and non-resolving as well as
their resolution values have an impact on several of the examined cue ratio, certainty and discontinuity
variables. Our next step thus was to use these variables to predict:
• for each tweet whether it resolves a rumor or not (RES),
• for each resolving tweet, whether its resolution value is True or False (VAL).

Figure 3: Significant differences between non-resolving (non-res) and resolving (res) tweets. Resolving
tweets show higher values for tweet intrinsic properties (RCR, FCR=KCR+RCR), their local discontinu-
ities (* Delta), and their global trend discontinuities (* Reset, * RMS f).
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Figure 4: Significant differences for resolving tweets in claims validated as True vs False. In verified
claims, resolving tweets show higher certainty cue (CRT) related values than non-resolving tweets. In
falsified claims, resolving tweets show higher doubt cue (DCR) related values than non-resolving tweets.

Method For both binary classification tasks we enlarged the feature vector for each tweet by tweet
density, i.e. the mean number of tweets per minute in a 10 minutes time window centered on the respec-
tive tweet. As for the features introduced above, also together with tweet density its four discontinuity
measures (cf. Section 4) were added. We then subdivided the features into two sets:
• CueSet: consisting of all lexical knowledge, report, belief, and doubt cue ratios, their derived dis-

continuities, as well as tweet density and its discontinuities.
• CertSet: consisting of the predicted certainty values (cf. section 3) and their discontinuities instead

of the raw cue ratios, and of the tweet density features.
This division serves to test whether raw cue ratio or derived certainty features are better suited for the

two classification tasks. Task RES is carried out on all tweets in our data, whereas task VAL only applies
to resolving tweets. Both tasks were carried out and evaluated in isolation to independently assess the
respective performance. That is, the training and testing items for VAL were not taken over from the
preceding RES classification output but from the original data set.

Since in both data sets the target value distributions are highly skewed, we applied resampling without
replacement to avoid overlaps of training and test items in subsequent 10-fold cross-validation. The
maximum sample size was determined as a weighted mean of the given sample sizes to ensure that for
VAL and for RES the more frequent class occurs maximally twice as often as the less frequent one. By
this resampling the amounts of claims and tweets (cf. section 2.1) were reduced to 39 (13 falsified, 26
verified claims) and 138 (46 resolving, 92 non-resolving tweets), respectively.

We then applied AdaBoostM1 classifiers (Freund and Schapire, 1999) (Matlab function fitensemble,
40 weak learners, minimum 2 items per leaf and 3 items per non-final node) to both data sets and com-
paratively evaluated the results in a ten-fold cross validation.

Results Table 1 summarizes the mean performance values on the held-out data after cross-validation.
BL Accuracy represents the baseline performance which is defined as predicting only the most frequent
class and is quite high due to the not entirely resolved skewedness. The results are discussed in the next
section.

Figure 5: Interactions of the effects Resolving and Resolution value. For resolving tweets in verified and
falsified claims, certainty (CRT) and doubt (DCR) cues behave in an opposite way; see Discussion.
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Task Feature set wgt F1 wgt Recall wgt Precision Accuracy BL Accuracy
RES CueSet 0.74 0.73 0.74 0.77 0.67
RES CertSet 0.69 0.71 0.75 0.70 0.67
VAL CueSet 0.68 0.63 0.71 0.70 0.67
VAL CertSet 0.76 0.79 0.96 0.74 0.67

Table 1: Average results after 10-fold cross validation on held-out data for the two tasks: tweet resolution
(RES) and resolution value (VAL) prediction and the two feature sets CueSet (lexical cue ratios) and
CertSet (predicted certainty values).

6 Discussion and conclusion

Relation between lexical cues and certainty As described in Section 3, we established a link between
lexical cue ratios of different certainty levels and the certainty associated to tweets by means of regression
analysis. The zero-inflation problem as well as the reported low correlations between each cue ratio and
the certainty values indicate that factuality values cannot fully be expressed by cue-type ratios in isolation
but require a more complex model. Applying GLMs to bundle and therefore strengthen these weak
relations was a first step in this direction. Certainty is a discourse-level phenomenon that lexical means
can represent to some extent but not entirely. In future work we are going to address the representation
of certainty phenomena related to higher linguistic levels.

Impact of rumor resolution on cue ratios and certainty As pointed out in Section 4, for several
examined cue ratio and certainty variables significant differences were observed with respect to claim
resolution and resolution value. Resolving tweets show higher knowledge (KCR) and report cue ratios
(RCR) as well as related discontinuities. Positive resets mark an abrupt increase in knowledge and
report cues at the time point of resolution. This is even more pronounced when combining both cue
ratio related features to a common one, the factuality cue ratio (FCR= KCR + RCR). Claim resolution
has a major impact on the distribution of lexical cues associated with a high certainty level, as after
resolution their amount increases. Belief cue ratios, on the contrary, have not proven to be of relevance
for distinguishing between resolving and non-resolving tweets. Doubt cue and certainty variables are
additionally highly dependent on the claim resolution value. Doubt cues occur more often in falsified
claims and show a higher increase after claim resolution when compared to verified claims (DCR Delta,
DCR Reset, DCR RMS f). Certainty cues behave exactly the opposite way: they are generally more
frequent in verified claims (CRT) and at the resolution point they show an upward shift in verified but
a downward shift in falsified claims (CRT Reset). These interpretations are further supported by the
RES-VAL interactions for the doubt cue and certainty variables, i.e. the amount and the direction of
discontinuity at the resolution point of doubt cues and certainty values depends on whether the claim is
verified or falsified.

Prediction of resolution and its value Table 1 shows that the prediction tasks benefit from the feature
sets in different ways. For task RES, the lexical cue set CueSet turned out to be more appropriate, while
for VAL the certainty values CertSet. The reason might be that for VAL only resolving tweets and thus
a lower amount of data is available suggesting the utility of shorter vectors containing derived instead
of raw features. Importantly for sparse data scenarios, the generation of such an intermediate level of
cue-integrating features, in our case the predicted certainty, turns out to be beneficial.
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Abstract

A major challenge for statistical machine translation (SMT) of Arabic-to-English user-generated
text is the prevalence of text written in Arabizi, or Romanized Arabic. When facing such texts,
a translation system trained on conventional Arabic-English data will suffer from extremely low
model coverage. In addition, Arabizi is not regulated by any official standardization and therefore
highly ambiguous, which prevents rule-based approaches from achieving good translation results.
In this paper, we improve Arabizi-to-English machine translation by presenting a simple but
effective Arabizi-to-Arabic transliteration pipeline that does not require knowledge by experts or
native Arabic speakers. We incorporate this pipeline into a phrase-based SMT system, and show
that translation quality after automatically transliterating Arabizi to Arabic yields results that are
comparable to those achieved after human transliteration.

1 Introduction

Almost all current state-of-the-art statistical machine translation (SMT) systems for Arabic-to-English
translation are trained on data comprising Modern Standard Arabic (MSA). MSA is widely used by pro-
fessional publishers, such as news agencies, government agencies, and non-governmental organisations
(NGOs). On the other hand, in user-generated content, such as weblogs, Internet forums, and short
text messages, MSA is substantially less prevalent. Here one can often encounter dialectal variations
resulting in a slightly different vocabulary and morphological constructions.

In addition to dialectal variations, user-generated content often also contains Arabic that is not written
in the Arabic script, but in Romanized form, typically referred to as Arabizi. This is not to be confused
with standardized research transliteration schemes such as the Buckwalter encoding for Arabic, or an
official phonetic system such as Pinyin for Chinese. Instead, Arabizi encountered in user-generated text
emerged from practical limitations such as the lack of an Arabic keyboard.

While Arabizi is not regulated by any standardization and many-to-many Arabizi-Arabic character
mappings are ubiquitous, certain conventions have emerged. These conventions mostly rely on reflecting
phonetic approximations by using a combination of numbers and Latin letters. Since Arabizi is mostly
guided by pronunciation, it is also very sensitive to dialectal variations, which are more noticeable in
spoken than in written Arabic. Note that some Arabizi representations are also based on orthographic
similarities, such as ‘3’ for the Arabic letter ¨. Table 1 shows an example sentence in Arabizi, along with
its MSA transliteration, Buckwalter transliteration and English translation, and illustrates the difference
between Arabizi and formal transliteration.

Since Arabizi is highly ambiguous and difficult to transliterate with rule-based approaches, there is
an extreme scarcity of gold standard transliterated Arabizi, making it a challenging task to develop data-
driven statistical approaches involving Arabizi, such as Arabizi-to-English machine translation. More-
over, the standard data sets used by the MT research community do not contain Arabizi, meaning that
any attempt to translate Arabic in Arabizi writing will suffer from extremely high (close to 100%) out-
of-vocabulary (OOV) rates.

In this paper, we use a handful of small resources to build a simple but effective Arabizi-to-Arabic
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Arabizi (lowercased) la2 laa m7adsh by7eb el ka7k ela pappi :( w howa mesh henaaa

Arabic (human) A 	Jë ��Ó ñë ð ) : AK. AK. B@ ½m» È@ I. j�
K. ��Ym× B B

Arabic (Buckwalter) lA lA mHd$ byHb Al kHk AlA bAbA :( w hw m$ hnA

English (human) No, no one likes cookies except my father :( and he’s not here

Table 1: Example sentence in Arabizi, along with its human Arabic transliteration, the corresponding
Buckwalter transliteration, and its human English translation.

transliteration pipeline, which we incorporate into a state-of-the-art phrase-based SMT system. Con-
cretely, our contributions are as follows:

(i) We present and release an Arabizi-to-Arabic transliteration pipeline that combines character-level
mapping with contextual disambiguation of Arabic candidate words. We improve transliteration can-
didate selection by incorporating common Arabizi-Arabic word pairs. We evaluate our end-to-end
Arabizi-English translation system using two test sets, and show that translation quality after automati-
cally transliterating Arabizi to Arabic yields results that are comparable to those achieved after human
transliteration.

(ii) We collect and release a web-crawled Arabizi-English parallel corpus of approximately 10,000
sentence pairs. Despite being too small to train a fully data-driven translation system, this corpus is
useful for words that cannot be transliterated successfully by our transliteration pipeline.

2 Data sets and resources

For our Arabizi-to-English translation approach we use a number of data sources: First, in order to
transliterate Arabizi to Arabic words, we start with an Arabizi to Arabic character mapping. Several
such mappings can be found online, but the most comprehensive one we could find was the one from
Wikipedia, see Table 2. We use this resource in Section 3.1 to generate transliteration candidates.

Arabic Arabizi Arabic Arabizi Arabic Arabizi

Z ,


@ , 
ð , @
 , 
ø ,

�
@ 2 	P z ¼ k , g

@ a , e � s È l

H. b , p �� sh , ch Ð m

�H t � s , 9 	à n

�H s , th 	� d , 9’ è h , a , e , ah , eh

h. g , j , dj   t , 6 �è a , e , ah , eh

h 7 	  z , dh , t’ , 6’ ð w , o , u , ou , oo

p kh , 7’ , 5 ¨ 3 ø
 , ø y , i , ee , ei , ai , a

X d
	̈

gh , 3’ H� p

	X z , dh , th
	¬ f , v h� j , tsh , ch , tch

P r �� 2 , g , q , 8 , 9

Table 2: Mapping of Arabic letters to Arabizi character sequences. Source: Wikipedia. (http://en.
wikipedia.org/wiki/Arabic_chat_alphabet).

Next, we use a large Arabic-English parallel corpus containing text in several genres. Since Arabizi is
characteristic to user-generated text, we have included as much informal, user-generated parallel data as
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available. The resulting bitext contains 1.75M sentence pairs and 52.9M Arabic tokens, and comprises
approximately 70% news data, mostly LDC-distributed, and 30% data in various other genres (weblogs,
comments, editorials, speech transcripts, and small amounts of chat data), mostly harvested from the web.
We use this corpus to (i) generate an Arabic vocabulary that guides transliteration candidate selection
(Section 3.2), and (ii) to build our main Arabic-English SMT system in Section 4.

Next, we use a small data set released for the most recent NIST OpenMT evaluation campaign1, con-
taining approximately 10,000 triplets of manually transliterated and translated Arabizi/Arabic/English
sentences belonging to the SMS and chat genres. Despite its small size, this ‘tritext’ contains informa-
tion of very high quality that we exploit to improve our Arabizi-to-Arabic transliteration approach in
Section 3.4. In addition, we extract from this corpus 1,788 Arabizi-Arabic triplets which we split into
two test sets to test our pipeline in Sections 3.3 and 3.4, and to evaluate downstream Arabizi-to-English
SMT performance in Section 4.

Finally, we use an Arabizi-English bitext crawled from a variety of web pages, containing user-
generated comments to news articles which where originally written in Arabizi and translated into En-
glish by professional translators. This corpus contains approximately 10K sentence pairs and 180K
Arabizi tokens. We use this bitext in Section 4 as part of our end-to-end SMT pipeline. While being too
small to train an end-to-end SMT system, we believe that this corpus is a useful resource for researchers
working with Arabizi, and we make the bitext available for download.2

3 Arabizi-to-Arabic Transliteration

In this section we describe our efforts to convert Arabizi words to Arabic words, which can then be trans-
lated into English using our MSA-to-English phrase-based SMT system. The complete transliteration
pipeline, which we make available for download2, is illustrated in Figure 1. The pipeline’s methodolog-
ical components (white boxes) are described in detail in Sections 3.1–3.4.

Character table 
(Wikipedia)

Arabic dictionary 
(Arabic training 

corpus)

Generate 
transliteration 

candidates

Filter non-
Arabic words

Extract Arabizi-
Arabic word pairs

Contextual 
disambiguation 
(srilm-disambig)

Arabizi-Arabic-
English tritext

Arabizi-to-Arabic 
transliteration 

lexicon

Arabic 3-gram LM 
(Arabic training 

corpus)

Input:
“Ana kaman hena ta2riban”

Output:
ابيرقت انه نامك انا

Input:
“ta2riban”

Output:
 ابيرقت   0.9 

 ابرط   0.1
 ابرقت   0.1
 ابرهت   0.1

Figure 1: Arabizi-to-Arabic transliteration pipeline. White boxes represent methodological components,
and grey boxes represent data components.

1LDC catalog number: LDC2013E125
2http://ilps.science.uva.nl/resources/arabizi/
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3.1 Generating transliteration candidates

Table 2 shows that Arabizi-to-Arabic character mappings are often ambiguous, and in many cases Arabic
script letters are represented by a sequence of two characters. This in turn introduces segmentation
ambiguity as two individual Arabizi characters can be mapped separately to a sequence of two Arabic
letters or the two Arabizi characters can be mapped together to a single Arabic script letter. This type
of mapping problem is very reminiscent of the phrase-based SMT task assuming that Arabizi characters
correspond to source words and sequences of Arabizi characters correspond to source word phrases.

Given this similarity we first cast the Arabizi to Arabic transliteration problem as a machine transla-
tion problem. The phrase table, i.e., translation model, consists of all possible character and character
sequence mappings. Standard statistical machine translation systems use a word-based language model
over target language sequences to estimate the fluency of translation hypotheses. Here, we use an Arabic-
character based language model instead. Decoding is carried out in the same manner as the normal
translation setting, except that the distortion limit is set to 0, enforcing monotone decoding. Note that
while we opt for using a publicly available character table, it would also be possible to learn a character
mapping and its corresponding probabilities from an Arabizi-Arabic bitext. This is done for example in
related work by May et al. (2014).

An important problem at this point is that vowel mappings result in Arabic words having too many
vowels orthographically present. This is particularly problematic for Arabizi words with repetitive vow-
els, a common phenomenon in user-generated text, such as observed in the word henaaa in Table 1. In
order to address this problem, we allow for more flexible character mappings of vowels in which Arabizi
vowels can be dropped. As a result, transliteration candidates for henaaa also include candidates for
hena, among which the correct Arabic word A 	Jë.

3.2 Filtering non-Arabic words

Using the described character mapping approach, we exhaustively consider all possible mappings, and
therefore deliberately over-generate the number of Arabic word candidates. This can result in dozens and
sometimes hundreds of Arabic character sequences, the vast majority of which are character sequences
that are possible in Arabic, at least according to the 5-gram Arabic character language model, but are
not actual words. To filter out these character sequences, all candidates are compared to a large Arabic
vocabulary, and all candidates not occurring in the vocabulary are eliminated from further processing.
The vocabulary contains 200K unique words, and is constructed from the Arabic side of all parallel
corpora that we use for our SMT experiments in Section 4. Note that using this vocabulary can cause
potentially correct Arabic words to be removed from the transliteration candidate list, as the vocabulary
only covers the bitext. However, for the task of Arabizi-to-English translation this does not affect the
final outcome as our SMT system can only predict English translations for Arabic words occurring in the
bitext. For other downstream applications, a different or larger Arabic vocabulary can be used.

Restricting Arabic candidates to words occurring in the vocabulary reduces the number of candidates
for a given Arabizi word considerably to approximately 5 to 10, and excludes transliteration candidates
for Arabizi words with character repetitions, such as henaaa in Table 1.

3.3 Contextual disambiguation

The character mapping and filtering process results in an ambiguous Arabizi-to-Arabic transliteration
lexicon. We feed this lexicon to srilm-disambig3, a publicly available tool that searches for the best
transliteration of each Arabizi sentence according to a 3-gram Arabic language model trained on the
source side of the available parallel Arabic-English corpora.

Evaluated on the two Arabizi-Arabic test sets described in Section 2, our pipeline up to this point
achieves a word-level transliteration error rate of about 50%, see top row in Table 3. Note that word-
level error rate is much harsher than character-level error rate, but it gives us a better estimate of how

3http://www.speech.sri.com/projects/srilm/manpages/disambig.1.html
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Transliteration method Test set 1 Test set 2

Char.map.+disambig 46.4% 50.8%
Char.map.+disambig+word pairs 25.7% 27.9%

Table 3: Word-level transliteration error rates for two variants of our transliteration pipeline measured on
two held-out test sets.

much noise will be propagated into the SMT system. With half of the words being wrongly transliterated,
we can expect a very poor SMT quality at the end of the pipeline.

3.4 Improving transliteration using Arabizi-Arabic word pairs

Next, to reduce the error rate we exploit transliterated word pairs extracted from the Arabizi and Arabic
sides of our tritext. These can be almost perfectly aligned at the word level (about 6% of the sentence
pairs had a mismatching number of words and were discarded), yielding high-precision transliteration
candidates. We add these word pairs to the transliteration lexicon used by srilm-disambig, giving them
a high score (0.9 versus 0.1 for the other transliteration candidates) so that they will be preferred most
of the time over the candidates generated by the character-level SMT system (see bottom of Figure 1).
Adding this step to our pipeline results in a decrease of the word-level transliteration error rate from 50%
to about 25% on the test sets, see bottom row in Table 3. From a manual inspection of a data sample,
we find that a large part of the remaining transliteration errors are due to different possible spellings of
English words in Arabic (e.g. baby / ú
G. AK. or ú
æ. J
K.) or different spellings of Arabic dialectal forms (e.g.

when / é�JÓ@ or ú �æÓ@), which reveals the difficulty of evaluating Arabizi transliteration.

4 Arabizi-to-English machine translation

We examine the success of the proposed transliteration approaches by running Arabic-to-English SMT
experiments, which we describe in Section 4.1 and discuss in Section 4.2.

4.1 Experimental setup

We perform our translation experiments using an in-house state-of-the-art phrase-based SMT system
similar to Moses (Koehn et al., 2007). The system is trained on the collection of Arabic-English paral-
lel corpora discussed in Section 2, comprising 1.75M lines (52.9M Arabic tokens) of parallel text. In
addition, we use a 5-gram English language model that linearly interpolates different English Gigaword
subcorpora with the English side of our bitext.

When no valid Arabic transliteration is found for an Arabizi word, our software component leaves it
unchanged. To increase the chances of handling such cases, we exploit our in-house Arabizi-English
corpus of web-crawled user comments (see Section 2), on which we train a separate Arabizi-English
system. Instead of using this system for the actual translation task, which would suffer from very low
coverage, we merge the Arabizi-English phrase translation and phrase reordering models to the main
Arabic-English models using a fillup technique (Bisazza et al., 2011). In this way, a non-transliterated
word that is not matched by the main Arabic-English models has still a chance of being translated directly
by the Arabizi-English models.

We tokenize all Arabic data—training data as well as transliterated Arabizi—using the MADA toolkit
(Habash and Rambow, 2005).

4.2 Results

Table 4 shows SMT quality measured with case-insensitive BLEU (Papineni et al., 2002) for a number of
transliteration scenarios. First, we see that Arabizi-to-English translation without any preprocessing (top
row) results in very poor translation quality. There is, however, a large difference in BLEU between the
two test sets, with test set 2 achieving a surprisingly high score given that almost the entire source text is
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Test set 1 Test set 2

Preprocessing scheme BLEU % of gold standard BLEU % of gold standard

Original Arabizi 1.30 (14.4%) 4.99 (50.5%)
Char.map.+disambig 7.46 (82.6%) 9.42 (95.2%)
Char.map.+disambig+word pairs 8.68 (96.1%) 10.32 (104.3%)
Human transliteration 9.03 (100%) 9.89 (100%)

Table 4: BLEU scores of Arabizi-to-English translation experiments using different preprocessing
schemes: no transliteration, two variants of our automatic transliteration pipeline, and human transliter-
ation, respectively. The latter can be considered as a gold standard, so we also present the results relative
to what is achieved by human transliteration.

unseen vocabulary. This result can be explained by the large portion of English words and emoticons in
test set 2 with respect to test set 1: 25.7% of the source tokens in test set 2 match a target word in their
corresponding reference sentence, as opposed to only 16.7% matching tokens in test set 1. English words
in the source text are in most cases unknown to the SMT system but will not harm output quality if copied
over to the output verbatim. See Table 5 for an example from test set 2 illustrating this observation.

Second, comparison of the two proposed transliteration variants (second and third row) shows that the
approach that makes use of Arabizi-Arabic word pairs (third row) achieves better performance than the
variant without word-pair information (second row). However, despite the large difference in word-level
transliteration error rate between both variants (Table 3), BLEU differences are fairly small.

Finally, we compare our automatic transliteration approaches to human Arabizi-to-Arabic transliter-
ation (bottom row) and notice that BLEU scores of our best automatic method are comparable to those
achieved with human transliteration. Interestingly, for test set 2 we achieve higher BLEU scores with the
new transliteration approach than with human transliterations. This observation can be explained by the
prevalence of English words in the Arabizi source text. We observe numerous sentences where English
words in the original Arabizi text were transliterated to Arabic in the human transliteration, leading to
phrases that are unknown by the SMT system. In contrast, our transliteration pipeline can in most cases
not find a valid Arabic word when transliterating an English word, and hence leaves the English word
unchanged, which in turn may lead to correct output in the final translation. See Table 5 for an example
that illustrates this scenario.

Preprocessing scheme SMT input SMT output

Original Arabizi mashyyyy okay did you have fun okay mashyyyy did you have fun

Char.map.+disambig did you have fun ú
» ú
æ

��AÓ in order to did you have fun

Char.map.+disambig+word pairs did you have fun ú
»ð@ ú
æ
��AÓ ok, ok, did you have fun

Human transliteration 	à@ 	¬ 	¬Aë AK
 Y 	� ú
»ð@ ú
æ
��AÓ ok, ok, against,,

Table 5: SMT input-output example pairs for a sentence containing English words in the original Arabizi
text. English reference translation: fine, okay, did you have fun?.

5 Related work

In the past years, a few approaches to transliterate Arabizi to Arabic (or other tasks of deromanizing text
in non-native Romanized script (Irvine et al., 2012)) have been presented, most of which rely to at least
some extent on knowledge of experts or native speakers. In contrast, the approach we have presented
does not rely on expert knowledge and is constructed using only publicly available data sources.

48



Chalabi and Gerges (2012) present a transliteration engine that, like our approach, follows the SMT
paradigm. However, they complement their method with handcrafted rules.

A similar approach by Darwish (2014) focuses on Arabizi detection as well as conversion to Arabic.
The former is important when Arabizi text is alternated with words from other languages, such as French
or English, which it regularly is. While our approach leaves unconvertible words unchanged and often
yields the right SMT output for English source words, addressing the problem of language detection
before transliteration will likely benefit our approach.

Bies et al. (2014) present their work on manually transliterating Arabizi SMS and chat messages
to Arabic. Their work is focused on releasing a new resource rather than presenting a transliteration
methodology, and naturally yields high-quality transliteration.

Al-Badrashiny et al. (2014) use a weighted finite-state transducer (wFST) approach to converting
Arabizi to Arabic in their system “3arrib”. They incorporate linguistic information by using CODA, a
conventional orthography for Dialectal Arabic (Habash et al., 2012) and morphological analysis, and
thus heavily rely on expert knowledge.

All of the above focus on Arabizi-to-Arabic conversion outside the context of SMT from Arabizi. The
work by May et al. (2014) is the only that presents an Arabizi-to-English SMT system, in which the
authors not only focus on transliterating Arabizi to Arabic, but also evaluate performance in end-to-end
Arabizi-to-English SMT experiments. Their transliteration approach uses wFSTs which are constructed
by (i) experts, (ii) machine translation, or (iii) semi-automatically. In downstream SMT experiments,
the semi-automatic construction performs best but depends partially on expert knowledge. The version
of their approach in which wFSTs are constructed fully automatically is very similar to our approach,
with a few main differences: While we start using a character mapping with uniform weights, they learn
weights from an Arabizi-Arabic bitext. Next, they select the most probable transliteration candidates
using Viterbi paths while we use srilm-disambig. Finally, we use Arabizi-Arabic parallel data to guide
candidate selection, and Arabizi-English parallel data to enhance our SMT system. Unfortunately, the
system of May et al. (2014) is not publicly available, making it impossible to compare performances.

Besides the described work, a few commercial systems for Arabizi conversion exist: Google Ta3reeb,
Microsoft Maren, and Yamli. These are, however, not suitable for batch translation as is common in
SMT research. Moreover, their approaches have not been published in the research community.

6 Conclusions

A major challenge for SMT of Arabic-to-English user-generated text is the prevalence of text written in
Arabizi, or Romanized Arabic, which is typically not covered in the SMT models. In this paper we have
presented our work on translating Arabizi into English by first transliterating Arabizi into Arabic using
an approach that does not require knowledge of experts or native Arabic speakers.

Our transliteration pipeline uses character mapping following the phrase-based SMT paradigm, sup-
plemented with vocabulary-based filtering and contextual disambiguation of candidate Arabic words.
In addition, the availability of a small Arabizi-Arabic-English tritext allows us to (i) further improve
the transliteration pipeline by prioritizing transliteration options that are supported by Arabizi-Arabic
word pairs in the tritext, and (ii) evaluate our method in terms of transliteration error rates and in SMT
experiments.

The transliteration pipeline exploiting Arabizi-Arabic word pairs yields considerably lower word-level
transliteration error rates, dropping from approximately 50% for the simpler variant without word-pair
information to 25% for the extended approach. When evaluating our approach in SMT experiments
with two held-out test sets, we see that BLEU scores of the two variants reflect this large difference in
error rate only to a limited extent. Furthermore, we have shown that translation quality after automati-
cally transliterating Arabizi to Arabic yields results that are comparable to those achieved after human
transliteration.

Finally, we make available for download both the transliteration pipeline software and a web-crawled
Arabizi-English bitext of approximately 10,000 sentences.
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Abstract

Community question answering systems are forums where users can ask and answer questions in

various categories. Examples are Yahoo! Answers, Quora, and Stack Overflow. A common chal-

lenge with such systems is that a significant percentage of asked questions are left unanswered.

In this paper, we propose an algorithm to reduce the number of unanswered questions in Yahoo!

Answers by reusing the answer to the most similar past resolved question to the unanswered ques-

tion, from the site. Semantically similar questions could be worded differently, thereby making

it difficult to find questions that have shared needs. For example, Who is the best player for

the Reds? and Who is currently the biggest star at Manchester United? have a shared need but

are worded differently; also, Reds and Manchester United are used to refer to the soccer team

Manchester United football club. In this research, we focus on question categories that contain

a large number of named entities and entity name variations. We show that in these categories,

entity linking can be used to identify relevant past resolved questions with shared needs as a

given question by disambiguating named entities and matching these questions based on the dis-

ambiguated entities, identified entities, and knowledge base information related to these entities.

We evaluated our algorithm on a new dataset constructed from Yahoo! Answers. The dataset

contains annotated question pairs, (Qgiven, [Qpast, Answer]). We carried out experiments on sev-

eral question categories and show that an entity-based approach gives good performance when

searching for similar questions in entity rich categories.

1 Introduction
In community question answering (CQA) systems, users prefer asking other users questions because (I)

their questions are personal and require a direct answer from users with similar experiences or users

familiar with the question (II) no single web page can answer their question, and (III) users want to

communicate and exchange ideas with other users. One of the challenges with such systems is that some

questions are left unanswered because:

• they are short and lack relevant content

• they are not clearly expressed

• they are not appropriately assigned to a user that is able to answer the question

Approximately 15% of incoming English questions in Yahoo! Answers do not receive any answer and

leave the user that asked the question (asker) unsatisfied (Shtok et al., 2012). One approach to reducing

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/
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the number of unanswered questions in a CQA is to direct an unanswered question to a user knowl-

edgeable about the question (Dror et al., 2011). Another approach automatically extracts answers from

a knowledge base (KB) such as Wikipedia, text passage, or the web (Gyongyi et al., 2007). In certain

question categories in Yahoo! Answers, approximately 25% of questions are recurrent (Shtok et al.,

2012). A third approach takes advantage of this question recurrence by reusing past resolved questions

(PARQ) from within Yahoo! Answers to satisfy unanswered questions. Shtok et al. (2012) used this third

approach to satisfy unanswered questions in the Beauty & Style, Health, and Pets question categories by

matching new questions to PARQ’s if they had a cosine similarity score above a threshold (0.9); features

were then extracted from the new question and PARQ’s to train a classifier. Certain question categories

such as Sports have a high occurrence of named entities and entity name variations. For example, a sports

team can be referred to by its official name, the name of the city it plays in or by any of several nick-

names. Also, the vocabulary in questions in these categories can be diverse and questions are often very

short (Klang and Nugues, 2014; Khalid et al., 2008).

The contribution of this paper is to propose an alternative approach to reducing the number of unan-

swered questions in question categories that contain a large number of entities by taking advantage of the

recent successes in entity linking. We now have systems that can disambiguate named entities to a KB.

Matching questions and answers based on these disambiguated entities, entities, and KB information

related to these entities finds most of the relevant answers to a given question.

We investigate the validity of using an entity-based approach in entity rich categories by first analyzing

150 questions from each of the following categories Beauty & Style, Health, Pets, Sports, Entertainment

& Music and Parenting.

Question category Number of questions with named entities or entity variations
Beauty & Style 70
Health 73
Pets 64
Sports 130
Entertainment & Music 135
Parenting 95

Table 1: Number of questions with named entities or entity variations out of 150 questions from each
category

Table 1 shows that more questions in the Sports and Entertainment & Music categories contain named

entities and/or entity variations. We annotated 200 question pairs that each exhibit shared needs from the

Sports and Entertainment & Music question categories. We observed that 82% of the relevant annotated

question pairs contain either the same named entity or a variation of the entity. This percentage could

increase on a larger dataset. We also observed that the cosine similarity score of the relevant question

pairs varied i.e. the cosine similarity was high in some relevant question pairs and low in others. Hence,

we propose to use an entity-based approach in question categories with high entity usage.

2 Related Work and Background
Yahoo! Answers is one of the largest and most popular CQA sites with more than 20 question categories.

In Yahoo! Answers, there are two parts to a question: (I) the title - a brief description of the question, and

(II) the content - a detailed description of the question (Dror et al., 2011). Posted questions are assigned

to predefined categories, such as Pets, Sports and Entertainment & Music and these questions can be
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answered by any signed-in user. An asked question remains open for four days, or for less if the asker

chose a best answer within this period. If no best answer is chosen by the asker, the task is delegated

to the community, which votes for the best answer until a clear winner arises. Only then is the question

considered resolved. In case a question is not answered while open, it is deleted from the site. Regis-

tered users may answer a limited number of questions each day, depending on their level (Dror et al.,

2011). Some of the categories of CQA questions are: factoid, opinion-seeking, recommendation, open-

ended, and problem solving questions. Different approaches have been proposed to reduce the number

of unanswered questions in Yahoo! Answers. Dror et al. (2011) focuses on matching unanswered ques-

tions to users that are presumed to be experts in the question topic i.e. ”routes the right question to

the right user”. This approach uses a multi-channel recommender system technology for associating an

unanswered question with potential answerers that are in an ”answering mood”. Also in this approach,

a wide variety of content and social signals users regularly provide to the CQA system are exploited

and organized into channels. Gyongyi et al. (2007) automatically generates answers to questions. In this

approach, text passages that may contain the answer to an unanswered question are retrieved and ranked.

The passage with the highest rank is selected to answer the unanswered question. Cao et al. (2011)

proposes an approach to utilizing category information to enhance the performance of question retrieval.

This approach combines the global relevance (the relevance of a query to a category) and the local rele-

vance (the relevance of a query to a question in the category). The intuition behind this approach is that

the more related a category is to a query, the more likely it is that the category contains questions relevant

to the query. The model ranks a historical question based on an interpolation of two relevance scores:

one is a global relevance score between the query and the category containing the historical question, and

the other is a local relevance score between the query and the historical question (Cao et al., 2011). Bian

et al. (2008) attempts to rank past CQA question-answer pairs in response to factual questions. A super-

vised learning-to-rank algorithm is used to promote relevant past answers to the input question based on

textual properties of the question and the answer, as well as indicators for the answerers quality (Shtok

et al., 2012). In Bian et al. (2008), the goal is to detect if a relevant answer exists, and the scope is not

limited to factual questions. Carmel et al. (2000) proposes to find past questions that are similar to the

target question, based on the hypothesis that answers to similar questions should be relevant to the target

question. This approach ranks past questions using both inter-question and question-answer similarity,

with response to a newly posed questions (Shtok et al., 2012). Jeon et al. (2005) demonstrates that similar

answers are a good indicator of similar questions. Once pairs of similar questions are collected based on

their similar answers, they are used to learn a translation model between question titles to overcome the

lexical chasm when retrieving similar questions (Jeon et al., 2005). Wang et al. (2011) matches similar

questions by assessing the similarity between their syntactic parse tree structure (Shtok et al., 2012). This

approach retrieves semantically similar questions and questions with shared needs. Shtok et al. (2012)

answers unanswered questions by reusing similar PARQ. This approach searches a dataset of PARQ for

similar questions to an unanswered question. The answer to the most similar PARQ is used to answer

the unanswered question. This approach relies on the intuition that even if personal and narrow, some

questions are recurrent enough to allow for at least a few new questions to be answered by past material.

Klang and Nugues (2014) shows that resolving entity disambiguations in question answering systems

helps in retrieving relevant answers to a question from documents or passages. Given a question, (Klang

and Nugues, 2014) uses a named entity disambiguation module to merge entities in a question answering

53



system. Strings that could be linked to a unique identifier are merged and a list of synonyms with the

resulting set is created. The candidate answers to a question were ranked based on their frequency i.e.

the number of candidate occurrences after merging. This approach shows that a candidate merging step

using a named entity linking module produces high precision results. Khalid et al. (2008) investigates

the impact of named entity normalization (NEN) on two specific information access tasks: document

and passage retrieval for question answering (QA). These tasks consist in finding items in a collection of

documents, which contain an answer to a natural language question. In the NEN task, a system identi-

fies a canonical unambiguous referent for names like Bush or Alabama(Khalid et al., 2008). Two entity

normalization methods based on Wikipedia in the context of both passage and document retrieval for

question answering were evaluated. It was found that normalization methods lead to improvements of

early precision, for both document and passage retrieval.

3 Entity Name Variation in CQA systems
Due to the lack of uniformity in CQA users writing styles (Khalid et al., 2008), the lack of content

in some questions, and the frequent use of entity name variations in question categories with a large

number of entities, it is necessary to use an entity-based approach to find PARQ with shared needs to a

given question. In order to retrieve most of the relevant PARQ to a given question with high precision,

it is important to identify the named entities and entity variations in the given question and PARQ. For

example, Q1 and Q2 below are questions with a shared need referring to Pro MLB umpire and Major

League Baseball Umpire respectively.

• Q1: How does any one become a Pro MLB umpire?

• Q2: How can I become a Major League Baseball Umpire?

The proposed algorithm, ENTITY-ALCHEMY has 2 stages:

3.1 Stage 1

Given the question pair, (Qgiven, [Qpast, Answer]), where Qgiven represents a given question, Qpast rep-

resents a past resolved question, and Answer is the answer to Qpast (Shtok et al., 2012), ENTITY-

ALCHEMY identifies named entities in (Qgiven and Qpast) and links these entities to an external KB,

using entity linking, to find their name variations and anchor phrases (surface form), textual phrases that

potentially link to the entity in the KB (Guo et al., 2013). Using the question-title for retrieval of similar

questions in a CQA is of highest effectiveness, while using the question body results in lower Mean Av-

erage Precision (MAP) (Shtok et al., 2012). In this stage, we identify named entities and entity variations

in the question-title section of Qgiven and Qpast. ENTITY-ALCHEMY selects Qpast as a candidate similar

question to Qgiven if both questions have a common entity, entity name variation, or anchor phrases.

3.2 Stage 2

In stage 2, the algorithm extracts features from a pair of Qgiven and Qpast, selected in stage 1. The extracted

features are used to score whether the answer to Qpast can be used to satisfy the given question, Qgiven.

3.2.1 Features

Entities and KB information: We collect the following statistics from (Qgiven and Qpast): number of com-

mon entities, number of common entity variations, number of common anchor phrases, number of com-

mon words or phrases.
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Lexical Analysis: We classify words in (Qgiven and Qpast) into their parts-of-speech and extract the

number of matching nouns, verbs, and adjectives, if they exist.

Cosine similarity: Cosine similarity is popularly used to show the similarity between docu-

ments (Salton and McGill , 1986). We calculate the cosine similarity of the ”title” and ”title + content”

of (Qgiven and Qpast).

Dice coefficient: Misspelled words are common in CQA systems. We use dice coefficient to calculate

the string similarity score between identified entities in (Qgiven and Qpast).

Word2vec feature: Mikolov et al. (2013) introduced an efficient implementation of the continuous bag-

of-words and skip-gram techniques that can be used for learning high-quality word vectors from huge

datasets with billions of words and with millions of words in its vocabulary called word2vec (Mikolov

et al., 2013). We trained a word2vec model with a Wikipedia dump and 200 question pairs from Yahoo!

Answers.

3.2.2 Classifier model

For learning, we used SVM with a polynomial kernel as implemented by Weka machine learning

workbench (Hall et al., 2009). The default SVM parameters were used.

4 Experiments
4.1 Experimental Setup

For this research we used a repository of PARQ from Yahoo! Answers. Since we are interested in finding

PARQ with answers that can satisfy a given question, we selected the best answers for each question in

the Sports and Entertainment & Music question categories. We selected these question categories because

of the high recurrence of questions and the high occurrence of named entities and named entity variations

in these question categories.

4.2 Data Construction and Labeling

The dataset used to train and evaluate our system contains question pairs, (Qgiven, [Qpast, Answer]), where

Qgiven, Qpast, and Answer belong to the Yahoo! Answers repository. Each question pair was associated

with a label, described below:

• Potential answer: given a question pair, (Qgiven,[Qpast, Answer]), Answer is a ”potential answer” if

it can be used to satisfy Qgiven.

• Similar question: Qpast is similar to Qgiven if they both refer to the same topic1, but the answer to

Qpast cannot be used to satisfy Qgiven.

• Related question: Qpast is related to Qgiven if it contains a common entity as Qgiven, but refers to a

different topic from Qgiven.

We sampled 1500 resolved questions from the Sports and Entertainment & Music question categories

(750 from each question category) and observed that approximately 20% and 17% respectively of the

sampled questions were recurring. To generate the given question and PARQ pair, (Qgiven, [Qpast, An-

swer]), we selected 3000 and 5000 PARQ from the Sports and Entertainment & Music question cat-

egories respectively from the language data section of Yahoo labs WebscopeTM dataset, and Yahoo!

1 A topic is an activity or event along with all directly related events and activities. A question is on topic when it discusses
events and activities that are directly connected to the topic’s seminal event
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Answers dataset (Chang et al., 2008). Given a question from the selected dataset of PARQ, we selected

a candidate similar question in the selected dataset if it had a common named entity, entity variation

or anchor phrase as the given question. We had three independent reviewers label the question pairs as

either a potential answer, similar question, or related question. We selected a question pair if at least two

of the reviewers agreed on the question pair label. We annotated 500 question pairs from the Sports and

Entertainment & Music question categories. Table 2 shows the number of question pairs and their labels

in each of the question categories. Table 4 presents some of the named entities and their variations in our

dataset. In each of the question categories, we calculated the reviewer agreements by using Fleiss’ kappa2

Table 3 shows the calculated kappa values. This dataset will be provided to the research community.

We used an entity linking tool, AlchemyAPI (Turian, 2013) to extract named entities, named entity

disambiguations, and anchor phrases from a given question and a PARQ. AlchemyAPI extracts anchor

phrases from the following KB’s, dbpedia and freebase. In our experiments we split our dataset by using

66% for training and 34% for testing. We conducted two baseline experiments on our dataset using SVM

described in Section 3.21.

Category Sports Entertainment & music
Potential answer 130 141
Similar question 64 40
Related question 65 60

Table 2: Number of question pairs in each question pair category

Question Categories Kappa
Sports 0.579
Entertainment & Music 0.55

Table 3: Fleiss’ Kappa calculation in each question category

Named Entity Entity Name Variation
English Premier League EPL, premier league
New York City marathon NYC marathon
Jonas brothers Jonas bros
Manchester United Man u, munited

Table 4: Some named entities and their name variations in our dataset

Below are examples of question pairs in each question pair category:

Question pair 1
How do you get on Oprah?

<potential answer>

How do I get on the Oprah Winfrey show?

Question pair 2
how do i win to Germany to watch the FIFA WORLD CUP?

<similar question>

how do i get tickets for Fifa Worldcup 2006 in Germany ?

2 Fleiss kappa assesses the reliability of the agreement between the raters when assigning labels to the question pairs.
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Question pair 3
How can I get on the Jay Leno show?

<related question>

how do i get salmas hayek interview with jay leno on march 3 2006?

4.3 Evaluation Metric

We measure the precision, recall, and accuracy of the proposed algorithm.

Precision: the fraction of returned answers that are correct i.e. potential answers.

Recall: the fraction of the labelled potential answer question pairs that where returned by the system.

Accuracy: the overall fraction of potential answer question pairs classified correctly.

4.4 Results

The first baseline, ENT, uses AlchemyAPI to extract named entities from a question pair. The extracted

entities are not disambiguated to a KB and anchor phrases from the named entities KB entries are not

extracted. In this baseline, we aim to find the most similar PARQ with common entities as a given

question. ENT has two stages: In stage 1, given a question pair, (Qgiven, [Qpast, Answer]), we select Qpast

if it contains a common named entity as (Qgiven). In stage two, we extract the features described in section

3.2.1 from the question pair.

Yahoo! Answers is an informal forum, hence, there is a high prevalence of misspelled words. The

second baseline, ENT-VARIANT aims to find the most similar PARQ with common entities and minor

entity spelling errors as a given question. ENT-VARIANT uses AlchemyAPI to identify the named entities

in each question in a question pair. ENT-VARIANT has two stages. In stage 1, given a question pair,

(Qgiven, [Qpast, Answer]), we select Qpast if it contains a common named entity as (Qgiven). Also, dice

coefficient is used to compare the identified named entities in Qgiven and Qpast. This comparison helps

resolve minor spelling errors in the question pair. In our experiments, two named entities in Qgiven and

Qpast respectively, are considered a variation with minor spelling errors if they have a dice coefficient >

0.75. In stage 2 of ENT-VARIANT, we extract the features described in section 3.2.1 from the question

pair.

ENTITY-ALCHEMY performed better than both baselines as shown in Table 5. This shows that iden-

tifying named entities, disambiguated entities to a KB and, extracting anchor phrases from the identified

named entities KB entries finds more relevant PARQ to a given question.

Algorithm Precision Recall
ENT 66% 43.05%
ENT-VARIANT 67.1% 44.5%
ENTITY-ALCHEMY 71% 55.15%

Table 5: Precision and recall of ENTITY-ALCHEMY and two baselines

For each of the question categories we measured the accuracy, as defined in section 4.3, of the baseline

algorithms and ENTITY-ALCHEMY. Table 6 presents the accuracy of ENTITY-ALCHEMY and

the two baselines on the Sports and Entertainment & Music question categories . Most of the entity

variations in our dataset are not minor spelling errors, hence the second baseline, ENT-VARIANT did

not perform a lot better than the first baseline, ENT.
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Algorithm Sports Entertainment & music
ENT 54% 40%
ENT-VARIANT 55% 42%
ENTITY-ALCHEMY 60% 62%

Table 6: Accuracy of ENTITY-ALCHEMY and the baselines

We tested ENTITY-ALCHEMY on a question category, Parenting, which contains few named entities

and entity name variations to see how well it will perform. We extracted 500 questions from the Par-

enting question category of Yahoo! Answers and selected question pairs from this extracted dataset by

applying stage 1 of ENTITY-ALCHEMY. Table 7 shows the results of ENTITY-ALCHEMY and cosine

similarity on the Sports and Parenting question categories. ENTITY-ALCHEMY identified 51% of simi-

lar questions that exhibited shared needs. We also selected question pairs by conducting cosine similarity

and our experiments showed that in this question category, a cosine similarity > 0.5 identified 87% of

similar questions that exhibited a shared need. We applied cosine similarity to the Sports question cate-

gory by selecting question pairs that exhibit shared needs from 500 extracted questions from the Sports

category. Our experiments show that ENTITY-ALCHEMY identified 83% of the similar question pairs

that exhibited a shared need and a cosine similarity > 0.5 identified 49% of the similar questions. Hence

in question categories with less entity and entity variation usage, a non-entity-based approach such as

cosine similarity should be used to find similar questions with shared needs to a given question. Also,

in entity rich question categories, an entity-based approach should be used when searching for questions

with shared needs.

Algorithm Sports Parenting
Cosine Similarity 49% 87%
ENTITY-ALCHEMY 83% 51%

Table 7: Comparing cosine similarity and entity-based approaches in the Sports and Parenting question
categories

5 Conclusion
In this paper, we proposed an algorithm, ENTITY-ALCHEMY to reduce the number of unanswered

questions in question categories with high entity usage. We evaluated our algorithm on a CQA dataset

with a lot of entities and entity variations and our algorithm performed better than two baselines.

In conclusion, reusing PARQ is an effective method for reducing the number of unanswered questions

in a CQA system. This paper showed that in question categories with a lot of named entities and entity

name variations, using KB information and applying entity linking to identify and disambiguate named

entities finds most of the similar PARQ to a given question.

6 Future Work
In the future, we would research time-sensitive questions especially common in Sports categories. Also,

we would implement an algorithm that can find similar questions to a given question regardless of the

question category.

Acknowledgements
This work was supported by the Center for Science of Information (CSoI), an NSF Science and Technol-

ogy Center, under grant agreement CCF-0939370.

58



References
American Psychological Association. 1983. Publications Manual. American Psychological Association, Wash-

ington, DC.

Association for Computing Machinery. 1983. Computing Reviews, 24(11):503–512.

Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. 1981. Alternation. Journal of the Association for
Computing Machinery, 28(1):114–133.

Dan Gusfield. 1997. Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge, UK.

Bowman Mic, Debray K. Saumya, and Peterson L. Larry. 1993. Reasoning About Naming Systems, volume 15.
ACM Trans. Program. Lang. Syst.

Shtok, Anna and Dror, Gideon and Maarek, Yoelle and Szpektor, Idan 2012. Learning from the past: answering
new questions with past answers Proceedings of the 21st international conference on World Wide Web 759–768

Dror, Gideon and Maarek, Yoelle and Szpektor, Idan 2011. I want to answer; who has a question?: Yahoo!
answers recommender system Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining 1109–1117

Rao, Delip and McNamee, Paul and Dredze, Mark 2013. Entity linking: Finding extracted entities in a knowledge
base Springer Multi-source, multilingual information extraction and summarization 93–115

Soricut, Radu and Brill, Eric 2004. In Automatic Question Answering: Beyond the Factoid HLT-NAACL 57–64

Horowitz, Damon and Kamvar, Sepandar D 2010. The anatomy of a large-scale social search engine In Proceed-
ings of the 19th international conference on World wide web, ACM 431–440

Voorhees, Ellen M and Tice, DM 2000. Overview of the TREC-9 Question Answering Track In Proceedings of
TREC

Strzalkowski, Tomek and Harabagiu, Sanda 2006. Advances in open domain question answering, volume 32
Springer Science & Business Media

Klang, Marcus and Nugues, Pierre 2014. Named entity disambiguation in a question answering system In
Proceedings of The Fifth Swedish Language Technology Conference (SLTC 2014)

Khalid, Mahboob Alam and Jijkoun, Valentin and De Rijke, Maarten 2008. Advances in Information Retrieval
Springer 705–710

Chang, Ming-Wei and Ratinov, Lev-Arie and Roth, Dan and Srikumar, Vivek 2008. Importance of Semantic
Representation: Dataless Classification In proceedings AAAI 830–835

Salton, Gerard and McGill, Michael J 1986. Introduction to modern information retrieval McGraw-Hill, Inc.

Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey 2013. Efficient estimation of word represen-
tations in vector space arXiv preprint arXiv:1301.3781

Liu, Xiaoyong and Croft, W Bruce 2002. Passage retrieval based on language models In Proceedings of the
eleventh international conference on Information and knowledge management, ACM 375–382

Corrada-Emmanuel, Andres and Croft, W Bruce and Murdock, Vanessa 2003. Passage retrieval based on lan-
guage models Journal of Center Intell. Inf. Retrieval, Univ. Massachusetts, Amherst, MA, Tech. Rep.{Online}.
Available: http://ciir. cs. umass. edu/pubfiles/ir-283. pdf

Tellex, Stefanie and Katz, Boris and Lin, Jimmy and Fernandes, Aaron and Marton, Gregory 2003. Quanti-
tative evaluation of passage retrieval algorithms for question answering In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in informaion retrieval 41–47

Guo, Stephen and Chang, Ming-Wei and Kiciman, Emre 2013. To Link or Not to Link? A Study on End-to-End
Tweet Entity Linking HLT-NAACL 1020–1030

Huang, Anna 2008. Similarity measures for text document clustering In Proceedings of the sixth new zealand
computer science research student conference (NZCSRSC2008), Christchurch, New Zealand 49–56

Mikolov, Tomas and Sutskever, Ilya and Chen, Kai and Corrado, Greg S and Dean, Jeff 2013. Distributed
representations of words and phrases and their compositionality Advances in neural information processing
systems 3111–3119

59



Mikolov, Tomas and Yih, Wen-tau and Zweig, Geoffrey 2013. Linguistic Regularities in Continuous Space Word
Representations. HLT-NAACL 746–751

Xue, Xiaobing and Jeon, Jiwoon and Croft, W Bruce 2008. Retrieval models for question and answer archives In
Proceedings of the 31st annual international ACM SIGIR conference on Research and development in informa-
tion retrieval, ACM 475–482

Zhou, Yun and Croft, W Bruce 2007. Query performance prediction in web search environments In Proceedings
of the 30th annual international ACM SIGIR conference on Research and development in information retrieval
543–550

Nadeau, David and Sekine, Satoshi 2007. A survey of named entity recognition and classification Lingvisticae
Investigationes, 30(1):3–26

Gyongyi, Zoltan and Koutrika, Georgia and Pedersen, Jan and Garcia-Molina, Hector 2007. Questioning yahoo!
answers Stanford InfoLab

Mihalcea, Rada and Csomai, Andras 2007. Wikify!: linking documents to encyclopedic knowledge In Proceedings
of the sixteenth ACM conference on Conference on information and knowledge management 233–242

Hoffart, Johannes and Yosef, Mohamed Amir and Bordino, Ilaria and Fürstenau, Hagen and Pinkal, Manfred and
Spaniol, Marc and Taneva, Bilyana and Thater, Stefan and Weikum, Gerhard 2011. Robust disambiguation of
named entities in text In Proceedings of the Conference on Empirical Methods in Natural Language Processing
782–792

Shah, Chirag and Pomerantz, Jefferey 2010. Evaluating and predicting answer quality in community QA In
Proceedings of the 33rd international ACM SIGIR conference on Research and development in information
retrieval 411–418

Jeon, Jiwoon and Croft, W Bruce and Lee, Joon Ho 2005. Finding similar questions in large question and answer
archives In Proceedings of the 14th ACM international conference on Information and knowledge management
84–90

Jeon, Jiwoon and Croft, W Bruce and Lee, Joon Ho 2009. The WEKA data mining software: an update Journal
ACM SIGKDD explorations newsletter, 11(1):10–18

Turian, Joseph 2013. Using AlchemyAPI for Enterprise-Grade Text Analysis. Technical report, AlchemyAPI

Yao, Xuchen 2014. Feature-driven Question Answering with Natural Language Alignment CreativeSpace Inde-
pendent Publishing Platform

Cao, Xin and Cong, Gao and Cui, Bin and Jensen, Christian S 2010. A generalized framework of exploring
category information for question retrieval in community question answer archives In Proceedings of the 19th
international conference on World wide web, 181(24):201–210

Wang, Kai and Ming, Zhaoyan and Chua, Tat-Seng 2009. A syntactic tree matching approach to finding similar
questions in community-based qa services In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, 187–194

Bian, Jiang and Liu, Yandong and Agichtein, Eugene and Zha, Hongyuan 2008. Finding the right facts in the
crowd: factoid question answering over social media In Proceedings of the 19th international conference on
World wide web, 181(24):201–210

Carmel, David and Shtalhaim, Menachem and Soffer, Aya 2000. eResponder: Electronic question responder
Springer, (24):150–161

60



Proceedings of the 2nd Workshop on Noisy User-generated Text,
pages 61–69, Osaka, Japan, December 11 2016.

Whose Nickname is This?
Recognizing Politicians from Their Aliases

Wei-Chung Wang†, Hung-Chen Chen†, Zhi-Kai Ji∗,
Hui-I Hsiao∗, Yu-Shian Chiu∗, Lun-Wei Ku†

†Academia Sinica, Taiwan
{anthonywang, hankchen, lwku}@iis.sinica.edu.tw
∗Data Analytics Technology & Applications Research Institute,

Institute for Information Industry, Taipei, Taiwan
{kevinchi, hhsiao, samuelchiu}@iii.org.tw

Abstract

Using aliases to refer to public figures is one way to make fun of people, to express sarcasm,
or even to sidestep legal issues when expressing opinions on social media. However, linking an
alias back to the real name is difficult, as it entails phonemic, graphemic, and semantic chal-
lenges. In this paper, we propose a phonemic-based approach and inject semantic information to
align aliases with politicians’ Chinese formal names. The proposed approach creates an HMM
model for each name to model its phonemes and takes into account document-level pairwise mu-
tual information to capture the semantic relations to the alias. In this work we also introduce two
new datasets consisting of 167 phonemic pairs and 279 mixed pairs of aliases and formal names.
Experimental results show that the proposed approach models both phonemic and semantic in-
formation and outperforms previous work on both the phonemic and mixed datasets with the best
top-1 accuracies of 0.78 and 0.59 respectively.

1 Introduction

Due to the casual nature of social media, there exist a large number of non-standard words in text expres-
sions which make it substantially different from formal written text. It is reported in (Liu et al., 2011b)
that more than four million distinct out-of-vocabulary (OOV) tokens occur in the Edinburgh Twitter
corpus (Petrovic et al., 2010). This variation poses challenges for natural language processing (NLP)
tasks (Sproat et al., 2001). According to (Baldwin et al., 2015), on encountering the many non-standard
words, found actually to be unknown named entities, they were obliged to manually eliminate these while
normalizing the dataset. Thus, we believe that named entity matching (NEM) is an important problem in
noisy text analysis.

NEM is the task of matching the different alias names for entities back to their respective formal names.
Many applications benefit from this technique, including name transliteration (Knight and Graehl, 1998),
entity linking (Rao et al., 2013), entity clustering (Green et al., 2012), and entity identification for para-
phrase mining (Barzilay and Lee, 2003).

This task is different from most in noisy text normalization. While most work on normalization in-
cludes two parts—informal word identification and word recovery—this work is different in two ways.
First, we focus on the recovery of informal names of named entities, in contrast to the general typo and
abbreviation recovery. Second, the identification of these aliases is a named entity recognition (NER)
problem, while conventional normalization works search for every OOV words. The challenges of NEM
lie in variation, which can be attributed to many factors: nicknames, acronyms, and differences in translit-
eration. As a result, exact string matching can yield poor results. It is reported (Peng et al., 2015) that

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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most tokenization errors are caused by named entities in documents. It is difficult to utilize analysis tools
which depend on tokenized text. While most normalization can be achieved using features within words,
for example, (‘u’, ‘you’) and (‘2mr’, ‘tomorrow’), aliases and formal names may have no graphemic or
phonemic connections, for instance, (‘Slick Willie’, ‘Bill Clinton’).

In this paper, we propose a novel method to train word models for each named entity with full-
connected hidden Markov models (HMMs). We create two datasets of aliases and formal name pairs:
one similar-phonemic pair only dataset and one mixed dataset including both similar-phonemic and non-
similar-phonemic pairs. In both datasets, our method outperforms all of the baselines, including (Peng
et al., 2015). In the mixed dataset, some aliases have no connection with the formal name within words.
Combining our model with the statistical PMI measurement improves performance.

Our contributions are as follows. First, we propose a new method to solve the character sequence dis-
order problem for the NEM task. Second, we propose a new method for pairs of aliases and formal names
which contain no graphemic or phonetic similarity. Third, in our experiment, our method outperforms
other baselines on both datasets.

Below, we describe in Section 2 the related work for the task and in Section 3 the phonetic similarity
formula. The implementation of the word model and the proposed refined version are described in
Sections 4 and 5. The dataset collection, evaluation, and error analysis are in Section 6.

2 Related Work

Entity disambiguation is not an uncommon task. Related work such as entity coreferencing (Soon et
al., 2001; Ponzetto and Strube, 2006; Moosavi and Strube, 2014) identifies entities which are men-
tioned more than once in formal documents. The literature contains extensive discussion on the effects
of using segmentation, POS taggers, and semantic role labeling, which have achieved considerably high
resolution. However, most of those canonical technologies fail to provide accurate information in user-
generated text. Normalization on noisy text is also a highly debated topic. Most words must be nor-
malized in this task; this includes abbreviations, non-standard spellings, and phrases prevalent in social
media. Rather than considering all parts of speech, our task focuses on aliases of name entities, especially
person entities.

Among those different tasks, some useful metrics can be applied to NEM given appropriate refine-
ments. Phonetic similarity is frequently applied in normalization tasks (Li and Liu, 2012; Han and
Baldwin, 2011; Xu et al., 2015). Choudhury et al. (2007) represented both non-formal words and formal
words in phonemics and word pairs are evaluated on the phonetic level using left-to-right HMM model.
Peng et al. (2015) propose a name matching system with a linear SVM model featuring string match
methods. They apply string matching at both the character and phonemic levels. Their experiments
show that adding phonetic features does improve performance.

Another assumption is that aliases contain strong contextual similarity with normal words. Liu et
al. (2012) measures the cosine similarity of the word TF-IDFs in context. Li and Liu (2014) utilize word
embeddings in their work.

3 Phonetic Similarity

Most Chinese characters can serve as meaningful words. Each Chinese character contains only one
syllable, and each syllable is composed of an initial, a final and a tone. Initial refers to the first part of the
Chinese syllable, which is a consonant. Final refers to the second part of the syllable, which is a vowel
with an optional nasal sound. While some Chinese syllables have a null initial which is denoted as ∅, each
syllable has a final. Mandarin Chinese is a tonal language. There are four main tones and one neutral
tone, each of which has a distinctive pitch contour. According to (Liu et al., 2011a), frequently misused
similar-phonemic characters have one of following features: the same sound and same tone (SS), the
same sound but different tones (SD), and similar sounds and the same tone (MS). Similar sounds can be
divided into two categories: the same initial (MS-DF) or the same final (MS-DI). Generally, MS-DI is
more common than MS-DF. Table 1 lists the four features and some examples. We apply this theory to
our word model to create a phonetic similarity character set for each character in our dictionary.
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Category Example
SS (Same sound, Same tone) (蔡[Tsai4],菜[Tsai4])

SD (Same sound, Differ in tone [2] and tone [3]) (才[Tsai2],採[Tsai3])
MS-DF (Similar sound, Differ in final [en] and final [eng] ) (人[Jen2],仍[Jeng2])
MS-DI (Similar sound, Differ in initial [b] and initial [p]) (奔[Ben1],噴[Pen1])

Table 1: Similar-phonemic features and examples

4 Left-to-right Word Model

A modified version of the word model was proposed by Choudhury et al. (2007). The main idea is to
map the formal name to its alias taking into account the graphemic and phonemic aspects. Suppose that
word W1 is composed of a sequence of characters c1c2...cl1 , where ci is a character and l1 is the length
of W1; word W2 is composed of t1t2...tl2 , where tj is a character and l2 is the length of W2 Our goal is
to measure the transition probability from W1 to W2 given the transition probability between ci and tj , i
and j are indexes of characters. As the problem is a sequence prediction problem, it can be modeled as
follows as a left-to-right HMM (Rabiner, 1989).

Each word which consists of l characters is modeled by a word model containing 2l+2 states. The state
set includes a graphemic path with l graphemic states G1, G2, ..., Gl, a phonemic path with l phonemic
states P1, P2, ..., Pl, a start state, and an end state. The start state Start is appended before G1 and
P1, and the end state End is appended after Gl and Pl; these denote the start and end of the character
sequence.

Each state S, including Start, End, Pi and Gj , consists of transition parameters, an emission charac-
ter set, and emission parameters. The transition parameters denote the probability of a transition from S
to the other states. The emission character sets define the candidate characters of S and the emission pa-
rameters denote the probability of the emission characters. The implementation details of the left-to-right
word model are described as follows.

4.1 Graphemic Path

We define each state Gi as a graphemic state and the path from Start to End through the sequence of
graphemic states as the graphemic path. For each graphemic state, we allow three types of emissions:
the original character, the deleted character, and typo, which are respectively denoted as Gi(gi), Gi(ε),
and Gi(@). In Figure 1 the process is illustrated for the word “李登輝” [Li3 Deng1 Hui1].

Figure 1: Graphemic path

4.2 Phonemic Path

We define l phonemic states P1 to Pl, corresponding to the pinyin of each character p1 to pl. The emission
set of each phonemic state is defined as follows. We construct the set according to the phonetic features
of pi. The emission set thus consists of all the pinyin characters that have the same sounds and tones
(SS), the same sounds but different tones (SD), or the same finals but different initials (MS-DI). Take the
character “輝” [Hui1] as example: the pinyin of “輝” is [Hui1]. Same-sound and same-tone characters
include but are not limited to “輝” [Hui1], “揮” [Hui1], “灰” [Hui1], “徽” [Hui1] and “恢” [Hui1].
Table 2 lists other similar-phonemic types and examples thereof. These similar-phonemic characters
compose the emission set of Pi. The emission probability of each character is set uniformly at the
beginning. In Figure 2 the process is illustrated for the word “李登輝” [Li3 Deng1 Hui1].
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Category Pinyin Example
SS Hui1 輝、揮、灰、徽、恢

SD
Hui2 回、迴、佪、恛、茴
Hui3 毀、悔、燬、賄、誨
Hui4 會、惠、繪、匯、檜

MS-DI
Wei1 威、萎、薇、巍、偎
Zhui1 追、錐、椎、隹、揣
Cui1 催、崔、摧、墔、墔

Table 2: Phonemic emission set of輝[Hui1]

Figure 2: Phonemic path

4.3 Crosslinkages
Most aliases are created from formal names with both similar-graphemic and similar-phonemic charac-
ters. For example “李等會” [Li3 Deng3 Hui3] and “李登輝” [Li3 Teng1 Hui1]: these share as the first
character the similar-graphemic “李” [Li3]. The second and third characters are similar-phonemic. In
order to capture this phenomenon, we model crosslinkages between the graphemic and the phonemic
paths. In Figure 3 the process is illustrated again for “李登輝” [Li3 Teng1 Hui1].

Figure 3: Graphemic and phonemic paths with crosslinks

4.4 Construction of Word HMM
Given a name w, we construct the left-to-right HMM for w as follows. First, the graphemic path is
constructed. The pinyin p for w is extracted from a dictionary to construct the phonemic path. Then
we create the phonemic emission set which collects the pinyin characters with the similar-phonemic of
the word. We construct a left-to-right HMM for each of the 72 politician names, from w1 to w72, to
create the training set. There are three model parameters, λ ≡ (A,B, π), where A is the state transition
probabilities, B is the emission probabilities, and π is the initial state distribution. We initialize the
parameters as Choudhury et al. (2007) reported in their work. For each name wj of the left-to-right
HMM, the initial state distribution π0

j is defined as

π(x) =
{

1, ifX = S0

0, otherwise
(1)

The emission probabilities for each graphemic state are Gi(gi) = 0.7, Gi(ε) = 0.2, Gi(@) = 0.1.
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The emission probabilities of the phonemic states are assigned a uniform distribution. The transition
probabilities for the edges from the start state are defined uniformly. For graphemic states, the transition
probability to the next graphemic state is set to twice the probability of the transition to the next phonemic
state. Similarly, for a phonemic state, the transition probability to another phonemic state is set to twice
the probability of the transition to a graphemic state.

4.5 Training Process

Given λ0
j , we use the Viterbi algorithm (Rabiner, 1989) to find the most likely sequences of states through

the HMM for each observation (i.e., aliases in the training set) vj
i for wj . We keep count of every

transition and emission in the HMM, which is increased by f j
i (the frequency of the variant vj

i ) if and
only if the particular transition or emission is used in the Viterbi path of vj

i . Once the process is completed
for all the variations of wj , we re-estimate the model parameters of the HMM based on the final counts
associated with each transition and emission. Add-α smoothing (Harris, 1985) is used to handle zero
counts. We denote this re-estimated model for wj by α∗j . It is possible that we lack the training data
to train word models for some politician names; for these politicians, we use the initial parameters to
predict the probability.

5 Fully Connected HMM

The main disadvantage of the left-to-right HMM is that it fails on prediction when there is no sequence of
similar character matches between the alias and formal name; this phenomenon is more common in this
task than in canonical normalization. For example, “菊姐” [Ju2 Jie3] is the alias of “陳菊” [Chen2 Ju2].
However, for a left-to-right HMM, the model considers similarity with character mappings between “陳
菊” [Chen2 Ju2] and “菊姐” [Ju2 Jie3] as (陳[Chen2],菊[Ju2]) and (菊[Ju2],姐[Jie3]). Even if the alias
and formal name share several identical characters, simply changing their order can fool the left-to-right
HMM. To account for this, we propose a fully connected HMM. We slightly alter the HMM model’s
parameter settings. We retain the emission parameters, which are independent of the character mapping
order. / To achieve this goal, we thus alter the λ initial parameters. The transition probabilities are
refined as follows. The transition probabilities from the start to the rest of the states, except the end, are
distributed uniformly. For graphemic states, the transition to the next graphemic state is set to 0.5, the
transition to the next phonemic state is set to 0.25, and 0.25 is distributed to the rest of the graphemic
and phonemic states. Similarly, for a phonemic state, the transition probability to next phonemic state is
set to 0.5, the transition to next graphemic state is set to 0.25, and 0.25 is distributed to the rest of the
graphemic and phonemic states. After setting all the parameters, we train the fully connected HMM the
same way we train the left-to-right HMM.

6 Experiment and Evaluation

We describe in Section 6.1 the dataset creation, and then in Section 6.2 describe the experiment settings
and in Section 6.3 the evaluation.

6.1 Experiment Dataset

279 distinct alias and formal name pairs are collected from wikiptt 1.The size of formal name set, which
is taken as the candidates for each alias recovery, is 72. From the collection of pairs, we created two
datasets: a mixed dataset and a similar-phonemic dataset. To test the power of the phonetic features em-
bedded in our word model, we built a similar-phonemic dataset, a subset of the mixed dataset containing
167 aliases and normal name pairs which were manually identified as bearing phonetic similarity. The
mixed and similar-phonemic datasets are described in Table 3.

1http://zh.pttpedia.wikia.com/wiki/PTT%E6%94%BF%E6%B2%BB%E4%BA%BA%E7%89%A9%E7%B6%
BD%E8%99%9F%E5%88%97%E8%A1%A8
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Similar-phonemic dataset Mixed dataset
Train 104 194
Test 63 85
Total 167 279

Table 3: Similar-phonemic and mixed datasets

6.2 Experiment Settings

We evaluated performance on a ranking task (the setting of (Andrews et al., 2012)). We constructed
as the candidates a set of normal names covering all of the entities referred to by aliases. The task is
to identify for each alias the best-matched name entity in the normal name set. We acquired two sets
of prior knowledge as follows. We collected 114,438 open-source character-to-pinyin mappings from
OpenFoundry 2. The list of possible initials and finals were provided by Weebly 3, a Chinese online
remote learning system.

From PTT we collected 478,579 posts discussing of politicians. PTT is a well-known Chinese-
language bulletin board system containing 20,000 boards covering a multitude of topics. Users post
their opinions on the board. Under each post, other users can add short comments. As with most user-
generated text, articles posted on PTT contain extremely short text, out-of-vocabulary tokens, and aliases.
We calculated the PMI of each alias and formal name pair at the document level, and then ranked can-
didates according to their PMI value; the inspiration for this comes from entity clustering (Green et al.,
2012), for which related entities tend to be mentioned in the same document.

The experiments were conducted on both the mixed and similar-phonemic datasets. A baseline (Base-
line) was implemented based on a statistical character-level transition model. We calculated the fre-
quency of character transitions between aliases and formal names in our training set and handled zero-
count transitions using add-α smoothing. We use the pre-trained model (Mingpipe) provided by (Peng et
al., 2015) as a comparable setting. The Fixed Order HMM setting denotes the basic left-to-right HMM
model. To account for character sequence mismatches between alias and normal name, a simple solution
is to rearrange the character order. Thus the (All sequence baseline) and (All sequence HMM) settings try
all possible character sequences for each alias with brute force and report the result of the highest match-
ing sequence. The (Fully Connected HMM) denotes a trained fully connected HMM model trained with
our dataset and the (Fully connected No training) is a non-trained version. In Tables 4 we compare the
rank-one prediction of each setting. The HMM + PMI Hybrid setting ranked candidates according to the
average of ranks of PMI and Fully Connected HMM.

6.3 Result and Discussion

In the upper part of the Table 4, we focus on phonetically similar pairs. Applying all sequence metrics
improved performance both for the baseline and the HMM model, because different aliases for same
formal names tend to contain the same character but in dissimilar order. The Mingpipe model considers
several string-matching metrics. It defeats our character-level statistical model but falls behind the basic
left-to-right HMM model. This supports our assumption that simple string matching is not the best solu-
tion for alias recovery; applying phonetic similarity can greatly improve performance. Fully connected
HMM is designed for sequence disorder pairs. It can be improved by learning from the training set, while
for different aliases for the same formal name, the trained model tends to contain the same character but
in dissimilar order. The trained HMM is hence likely to identify the name entity given the alias if the
named entity was seen in the training set. Among the 72 candidates, our proposed model achieved 0.936
at precision @ 5, which is considerably high.

We further investigated each sample and compared our best model with other HMM settings. The
Fixed Order left-to-right HMM fails for samples such as (菊姐[Ju2 Jie3], 陳菊[Chen2 Ju2]), (世間

2https://www.openfoundry.org/of/download_path/cnsphone2010/2016.08.02/
CnsPhonetic2016-08_GCIN.cin.zip

3http://tzenglaoshi.weebly.com/uploads/6/9/9/2/6992410/pinyin_table.pdf
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情[Shi4 Jian1 Qing2], 王世堅[Wang2 Shi4 Jian1]) and (臭青母[Chou4 Qing1 Mu3], 周美青[Zhou1
Mei3 Qing1]). Though using the All sequence HMM setting seems to solve the problem, this setting
occasionally goes too far and mistakes (金貝勒[Jin1 Bei4 Le4], 金溥聰[Jin1 Pu3 Cong1]) for (金貝
勒[Jin1 Bei4 Le4],王金平[Wang2 Jin1 Ping2]).

In the lower part of the Table 4, we consider the mixed dataset of common aliases and normal name
pairs. The Fully connected HMM model outperforms on the mixed set, but the training process does not
yield better performance because the connections of 24 out of 85 pairs require more knowledge than our
word model has. For example, “台灣之子” [Tai2 Wan1 Zhi1 Zi3, Son of Taiwan] refers to entity “陳
水扁” [Chen2 Shui3 Bian3] because he was the first president of Taiwan who was also born in Taiwan.
“大甲王” [Da4 Jia3 Wang2, King of TaChia] refers to entity “顏清標” [Yan2 Qing1 Biao1] because he
lived in TaChia, a district located in the middle of Taiwan. These samples are corrected in the setting
HMM + PMI Hybrid.

Similar-Phonemic Dataset
Baseline Mingpipe HMM Hybrid

Baseline All sequence Mingpipe Fixed order All sequence Fully connected
Fully connected

No training
HMM+ PMI

Pre @ 1 0.29 0.32 0.37 0.62 0.65 0.78 0.68 NAN
Mixed Dataset

Baseline Mingpipe HMM Hybrid

Baseline All sequence Mingpipe Fixed order All sequence Fully connected
Fully connected

No training
HMM+ PMI

Pre @ 1 0.21 0.19 0.27 0.47 0.49 0.54 0.54 0.59

Table 4: The experiment result with similar-phonemic dataset and mixed dataset

HMM
Similar-phonemic dataset Mixed dataset
top 3 top 5 top 10 top 3 top 5 top 10

Correct 57 59 60 59 59 59
Total 63 63 63 85 85 85

Pre @ N 0.90 0.94 0.95 0.69 0.69 0.75

Table 5: Top-N HMM results

6.4 Error Analysis

We conducted an error analysis on our best setting, hoping to provide direction for others who also are
interested in alias recovery. There were 39 alias and formal name pairs which were not predicted correctly
by Fully connected HMM. Most of these errors were caused by aliases which shared no graphemic and
phonemic similarity with the formal entity names. See for instance (“大甲王” [Da4 Jia3 Wang2], “顏
清標” [Yan2 Qing1 Biao1]). Also, some politicians’ formal names share last names, especially for
politicians whose sons are also politicians; for example “馬鶴凌” [Ma3 He4 Ling2], “馬英九” [Ma3
Ying1 Jiu3]. A rare special case is when name entities share the same alias, for example (“黃敏惠”
[Huang2 Min3 Hui4], “惠惠” [Hui4 Hui4]) and (“翁啟惠” [Weng1 Qi3 Hui4], “惠惠” [Hui4 Hui4]). In
this case our model fails to distinguish the two.

7 Conclusions

In this paper, we proposed a refined HMM for alias recovery of person entities and further improved
the model with document-level PMI ranking, which has not been done previously. Both proposed mod-
els outperform previous work for both datasets. Our experiments show that considering alias recovery
merely as a sequence of character matches yields poor performance.
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Abstract

Accurate event detection in social media is very challenging because user generated contents are
extremely noisy and sparse in content. Event indicators are generally words or phrases that act
as a trigger that help us understand the semantics of the context they occur in. We present a
weakly supervised approach that relies on using a single strong event indicator phrase as a seed
to acquire a variety of additional event cues. We propose to leverage various types of implicit
event indicators, such as props, actors and precursor events, to achieve precise event detection.
We experimented with civil unrest events and show that the automatically learnt event indicators
are effective in identifying specific types of events.

1 Introduction

Social media data has today evolved into a crowd-sourced knowledge base of real-time happenings, sen-
timents, and future events. For instance, in a recent natural disaster, rescue volunteers used social media
to coordinate their actions and identify survivors (Starbird and Palen, 2011). Accurately identifying a
particular class of events in social media will benefit many downstream applications such as event track-
ing, event time-line generation, and event summarization. However, some critical information is buried
within piles of mundane tweets and is hard to detect precisely. In Table 1, we provide some examples of
potentially critical content embedded within tweets that our system was able to extract.

Two intuitive approaches have been widely applied to event detection in tweets, first the event keyword
matching approach that is far from being perfect with our experiments yielding accuracies as low as 14%,
even while using keywords very relevant to a domain. Second, unique to tweets, hashtags, for instance,

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

Tweet Critical Content

Public transport suspended in Istanbul as part of authorities precaution to
curb #MayDay gatherings in Taksim Square

Real-time warning

Extreme violence of police in Besiktas, Istanbul now! Let the world know Pleas for help
1km chain of citizens to build a barricade in besiktas, akaretler. Potential risk in future
An innocent young girl was put into a coma due to tear gas attacks and
was later labeled by the government as a terrorist

Consequence of event

This is the craziest I’ve seen Cairo in the two years I’ve been here. So
many clashes, tear gas everywhere. Insane

Sentiment about event

Dear Policemen, Thank you so much for using bean bag rounds and rub-
ber bullets in Brisbane. I really appreciate your protection of life

Sarcasm

Table 1: A few examples of highly critical tweets that we have detected using the bootstrapping approach
and a single high quality event indicator seed “tear gas”.
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Trigger Type Examples

Instruments/Props barricades, rubber bullets
Sub-events police pushing, crowd shouting
Precursor events government bans, arrest of prisoner
Consequences injury, damaged
Locations Taksim Square, Ankara
Actors angry employees

Table 2: Civil unrest event indicators types with examples of extracted phrases. Clustering algorithm is
useful towards understanding the semantic types of the learned event indicators.

“#RiseUpOctober” can be used to accurately identify tweets describing the October New York protest
in 2015. However, this approach is heavily biased towards already known trending events that are more
likely to be “hashtagged”, and is often not reliable even to capture tweets referring to a single event.

Tweets belonging to a particular event domain (eg. civil unrest, disaster, presidential election) can be
identified by learning various kinds of event indicators or sensors across contexts. In spite of their highly
informal and ambiguous nature (Ritter et al., 2011), tweets often mention multiple event characteristic
properties and features that act as implicit event cues. An event indicator is defined as any word or phrase
that can act as reliable evidence towards detecting an event mention in text. A strong indicator is one
that is almost exclusively relevant to the event under consideration (eg. touchdown is strong evidence of
a sports event). A weak indicator tends to occur in more generic textual contexts and is therefore less
useful.

We also observe that these event indicators can be categorized into sub-classes, depending on how
they influence the event. Table 2 presents a summary of event indicator types that were prevalent for the
civil unrest domain, and corresponding examples of the extracted indicator phrases.

For example, the following tweet,

“Police attacking us with plastic bullets and tears gaz in istanbul! 5people died, hundreds
injured! Help”

contains multiple indicators including a sub-event (police attacking), instruments (plastic bullets and
tears gaz) and consequential events (people died and hundreds injured). Some event indicators are so
strong that tweets containing one such phrase are almost certainly relevant, for instance “tear gas” is a
unique type of instrument used in civil unrest events.

Following these observations, we propose a weakly supervised approach to automatically learn such
event indicators. The system starts with a single high quality event indicator seed, and extracts an initial
set of highly relevant tweets, which are likely to contain other indicators. These potential indicators
are then combined with the seed set to grow a collection of indicators. This way, the tweet extraction
and collection expansion phases augment each other mutually, the whole process iterates while using
empirical thresholds to monitor quality of extraction (Riloff et al., 1999). We then proceed to cluster
these indicators based on their contextual similarities, which yield some naturally occurring categories
of event triggers as seen in Table 2. Our approach is able to outperform naive keyword matching even
without having any prior knowledge or hand labeled data, other than a single seed word. Furthermore,
our indicators were able to identify tweets that did not contain a single event keyword.

2 Prior Work

Our research closely follows the multi-faceted event recognition approach (Huang and Riloff, 2013) for
news articles which suggests that event facets, namely agents and purposes, supplement event expres-
sions. However, event indicators in tweets are loosely defined and lack phrasal dependencies, hence
posing a more challenging problem.

71



Implicit	
Event	

Indicators

Seed	Phrases

Event	
Relevant	
Tweets

string	match

n-grams
frequency,	 specificity	check

Raw	Tweet	Stream

Figure 1: The bootstrapping process iteratively adds event relevant tweets and implicit event indicators.

First, in contrast to event facets, event indicators are loosely defined event properties and features
which cover a broader range of implicit event cues. Second, in their proposed bootstrapping system,
strict phrasal structures for event facet phrases and dependency relations between event facet phrases and
the main event expression are required. Instead, our system is well tailored to event indicator learning
in noisy tweets, where learning targets are simply n-grams1 and we only consider n-grams that strongly
correlate with domain-specific tweets as generated through the bootstrapping process.

(Atefeh and Khreich, 2015) summarize the key literature in the spectrum of event detection in Twit-
ter, and establish a taxonomy of these techniques based on type of event, detection task, and detection
method. Our weakly supervised approach is capable of detecting both new and retrospective unspecified
event types.

(Becker et al., 2011), together with (Sankaranarayanan et al., 2009) and (Petrović et al., 2010), discuss
an approach that collects tweets in temporal bins, forms event clusters, and trains a classifier to identify
real world events. This approach however is heavily dependent on the incremental clustering criteria,
training set of events, and sparse TF-IDF vectors. In this work, we stress on the broader task of extracting
tweets that are relevant to a given class of event.

The event extraction task itself most closely resembles that of (Ritter et al., 2012), which presents a
hidden variable model for event type discovery on a collection of tweets. Tweets are segregated into
discrete event types by first training a sequence model that can identify event triggers, and then using a
latent variable model to discover the types implicit within the tweets, and segregating them accordingly.
Instead, we focus on improving accuracy of detecting individual tweets that describe a particular type of
event by assuming prior knowledge about the event type in the form of a single seed.

This, to the best of our knowledge, is the first attempt to extract events from social media data using a
weakly supervised approach.

3 System Overview

Our system broadly comprises of (1) a bootstrapping module for unsupervised learning of event indica-
tors and (2) a clustering module for understanding context of occurrence of these event indicators.

3.1 Bootstrapping

Figure 1 shows the bootstrapping process. We start by selection of initial seed phrases, based on inspec-
tion of civil unrest event indicators. Generally, any word that is deemed by a domain expert as being
highly relevant to an event, can be used as the seed. We add the seed phrases to the set of implicit event
indicators, which are then searched over the raw tweet stream to identify event relevant tweets. From
these event relevant tweets, we select n-grams as implicit event indicators for the next iteration, based on
frequency and specificity checks.

For our experiment, we used “tear gas” as the initial seed word. We used about 200 million tweets that
were collected over a period of 6 months in 2013 for bootstrapping implicit event indicators and event

1We consider 1, 2, 3, 4-grams as candidate event indicators.
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relevant tweets. We stop after a couple of iterations as our study is currently in initial phase. We discuss
generation of event relevant tweets and implicit event indicators, including filtering steps, redundancy
handling, and selection criteria. We also discuss the phrase specificity parameters used for monitoring
the quality of extraction.

3.1.1 Event Relevant Tweets
The bootstrapping algorithm first finds all the tweets containing the seed phrases. Redundant tweets
drastically impact frequencies and thus selection of event indicators, therefore the algorithm performs a
redundancy check for removal of any duplicate tweet texts. This includes removing tweets that are exact
matches, substrings, and differing only in use of RTs, preceding and succeeding punctuations, @ and #
associations, and web urls. A recursive check is performed as such differences can occur in any order.
We then use the non-redundant tweets for determining implicit event indicators for the next iteration.
We additionally base selection of tweets on specificity factor, which we describe next to generation of
implicit event indicators.

3.1.2 Implicit Event Indicators
Our algorithm generates candidate implicit event indicators from newly learned event relevant tweets.
For this purpose, we extract n-grams (n=1,2,3,4) from tweets. We use pre-filtering where we discard any
n-grams that have frequency less than 5 in the event relevant tweets. This helps us in removal of n-grams
less likely to be event indicators. However, this way, we also get a large number of n-grams that are
general, i.e., which can occur in any set of random tweets. To handle this, we use the specificity factor,
which we describe next.

3.1.3 Specificity Factor
We select both the event relevant tweets and implicit event indicators based on specificity checks. We
define specificity factor (sf ) as the normalized ratio of frequency of an event indicator occurs in the
event relevant tweets and frequency in a random tweet set. To calculate the specificity factor, we use the
formula:

sf =
(hc/cc)
(hr/cr)

where hc = event indicator hit count in event relevant tweets, cc = count of tweets in tweet collection,
hr = event indicator hit count in event relevant tweets, cr = count of tweets in random tweet set

We formed the random tweet set by sampling about 1% i.e. 2 million tweets from the original dataset
used for bootstrapping. A general phrase occurs frequently in both the random set and tweet collection.
Hence, its specificity factor is low. On the other hand, an event indicator occurs more frequently in the
tweet collection as compared to the random set. Only phrases above the set specificity factor thresholds
(1000 for unigrams, 5000 for 2,3,4-grams) are retained as event indicators for the next iteration, i.e.,
for finding event relevant tweets. We also distinguish strong event indicators from relatively weak ones.

Strength Examples of Event Indicator

Strong In-
dicators

gas shells, firing tear, clouds fill, disperse protesters, gas canisters, during clashes,
water canons, throwing tear, gas attack, gas shot, shooting tear, stun grenades, police
disperse, police firing, tear gas, gas clouds, fired by police

Weak In-
dicators

forces fire, pressurized water, police use, against peaceful, riot police, against
protesters, gas bombs, rubber bullets, pressurized, barricades, grenades, anti-
government, mercenaries, protesters, demonstrators, clashes, #occupygezi, quell,
#bahrain

Table 3: Top event indicators resulting from the bootstrapping approach in descending order of phrase
specificities. Different semantic types could be learned starting with a single high quality seed phrase.
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Figure 2: Extraction of context windows from one the tweets containing the learnt phrase ’tear gas’.
The tweets are padded on both sides with UNK tokens and a frequency threshold is used to discard
unimportant tokens

Strong event indicators have specificity greater than 20000. A tweet is determined to be a relevant tweet
if it contains one strong event indicator or two weak event indicators. These thresholds were identified by
inspecting specificity factor scores of the n-grams generated from initial couple of iterations. Note that
we expect the concrete parameters to change when applying the same system but to learn event indicators
for a different event domain, however, tuning the parameters in our experiments based on the generated
candidate event indicators from the first one or two iterations is quite manageable. Table 3 shows the top
event indicators organized in these two categories.

3.2 Clustering

Upon building a collection of event indicators, we attempt to identify contextual similarities, i.e how each
phrase acts as a cue for an event, as discussed in Table 2. For each phrase, we accumulate its contexts
using a window of 5 words on either side of each tweet in which the phrase occurs, as shown in Figure 2.
Next, we build a feature vector to represent the context words of each indicator using two approaches -
(1) frequency bag-of-words (2) sum of word embeddings (“tweet-token embedding” to be precise) while
clipping stop words and infrequent words. We use the 200-dimensional global vectors (Pennington et
al., 2014), pre-trained on 2 billion tweets, covering over 27-billion tokens. We then perform clustering
using the affinity-propagation algorithm (Frey and Dueck, 2007).

4 Evaluation

We evaluate the quality of tweets identified by using the automatically learned event indicators over the
successive iterations of the bootstrapping phase, as described in Section 3. Table 4 shows the number of
event indicator phrases and civil unrest tweets that were collected after each iteration of bootstrapping.
Table 5 shows examples of correct and incorrect tweets.

To measure the relevance of the tweets as identified by the event indicators, we sampled 500 tweets
from the final set collected after 4 iterations. Further, to verify the capability of our system to learn less
prominent indicators such as “cops rounded”, “spark clashes”, “made demands”, we collect an additional
500 tweet sample after filtering out tweets that contain a common event keyword like “protest”, “riot”,
etc.

We also separately collected another random sample of 1000 tweets from the original corpus of 220

Iteration Event
Cues

Relevant
Tweets

1 1 1445
2 309 4503
3 719 7555
4 1037 8521

Table 4: Event indicators and relevant tweets accumulate with each iteration. Semantic drift occurs in
this process.
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Correct:
Protesters chant ’Stop the IRS’ in Cincinnati: CINCINNATI (AP) Tea party activists waving flags
and signs, singing pat
Protestors have attacked Al Jazeera TV headquarters in Egypt and have set fire to the building
ISTANBUL - Riot police used tear gas and pressurized water in a dawn raid on Friday to rout a
peaceful demonstration by hundreds of peopl
NYC protest at Zuccotti Park in solidarity with #OccupyGezi starting now
CNN: 25 people killed, 70 others wounded as clashes erupted between Iraqi Security Forces and
protesters in Hawija, Iraq

Incorrect:
Saudi Arabia postpones crucifixion, firing squad executions: Seven juveniles were arrested for
armed robbery
ICYMI: Watch video of my comments on @CTVnews on #Syria and #sarin gas. Iraq WMD deja
vu? Or #Assad war crime

Table 5: Examples of correct and incorrect tweets learned through the bootstrapping process.

million tweets, so as to train a supervised baseline classifier.
Each sample was then annotated by two-annotators to determine if each tweet was actually relevant

to civil unrest, with an inter-annotator agreement, κ = 0.81 (Cohen, 1968), suggesting that our task
guidelines are well-defined and unbiased.

We next show the event detection performance of the supervised system and the performance of our
event indicator matching approach. In addition, we explain the semantic drift in the bootstrapping pro-
cess, and demonstrate the results of event indicator clustering.

4.1 Supervised Baseline
To train the baseline model, we used a simple bi-gram model to extract features from each tweet, and
trained a Support Vector Machine classifier using a a linear kernel, on the sample of annotated tweets
held out exclusively for training purpose.The sample contained 350 relevant tweets.

We then tested this model on the sample set extracted after 4 iterations of our algorithm. The super-
vised model was able to achieve a precision of 95%, but only yielded a recall of 4%, leading to a poor
F-Score of 8%.

The main point to note here is that supervised algorithms are restricted to learning only features that
they have been exposed to, and are vulnerable and limited when abundant annotated data is not available.

4.2 Precision and Recall
Table 6 shows accuracies of the event keyword matched tweets and the two tweet samples identified by
using learned event indicators. We can see that event keyword alone is very unreliable in detecting tweets
that describe a particular type of event and the accuracy is as low as 12%. Using event indicators, we
can greatly improve the accuracy of event detection to 66%. The automatically learned event indicators

Methods Accuracy

Event keyword Matching 12%
Bootstrapped (contain a keyword) 66%
Bootstrapped (contain no keyword) 35%

Table 6: Accuracy of bootstrapping on collected tweets. Our system outperforms the baseline event
keyword matching. The automatically learned event indicators is even able to identify the relevant tweets
that do not contain an event keyword.
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Figure 3: A few examples of the different categories of event indicators our clustering algorithm was
able to identify, namely props, locations and actions

can even discover relevant tweets that do not contain a common event keyword, achieving an accuracy
of 35%, which is still much better than using the method of keyword matching.

However, we do not analyze recall at this point since it is hard to define a global notion of what subset
of the tweets of the entire stream are true positives that our system is expected to detect. We will look
into more doable laboratory settings in the future.

4.3 Semantic Drift
While the automatically learned event indicators have significantly improved the accuracy of event de-
tection, the performance is not perfect and many irrelevant tweets were wrongly labeled. Table 5 shows
examples of tweets that are truly event relevant tweets and the ones that are errors. Our analysis of
the errors shows that the current bootstrapping algorithm suffers from a major drawback, semantic drift
(Davenport and Cronin, 2000). After each iteration, a conceptual drift in the target collection is triggered,
with a few poor indicator phrases propagating error and causing a gradual shift in domain. For instance,
there was some noise induced from tweets on police arrests and war crimes. In the future, we are going
to investigate techniques for reducing the semantic drift.

4.4 Clustering
While the sparsity and inconsistency of the twitter vocabulary tend to ambiguate the notion of contextual
similarity, the final clusters obtained from either feature set (BoW or GloVe), reflected a few interesting
patterns, similar to Table 1. For instance, ‘tear gas’, ‘lathi’, ‘water cannons’ and ‘pepper spray’ were
clustered together, and similarly were ‘dispersed’, ‘violence on’, ‘sprayed on’. Hence, clustering can
prove useful towards understanding the latent semantic categories of the learnt event indicators. However,
we reserve strict evaluation of these clusters for future work, as this task is heavily contingent on our
primary task of learning high quality event indicators. Figure 3 shows a few examples of the preliminary
clusters we were able to isolate in this setting.

Another interesting observation is that most of the domain-drift inducing indicators discussed in Sec-
tion 5.2 were grouped together, suggesting that we can filter them out in the future.

5 Future Work

Extracting meaning from tweets is task far more challenging beyond the perspective we have adopted,
and requires many more standpoints. The next level of our work is to investigate more event domains
as well as to suggest means of eliminating noise propagation in the bootstrapping process. We look to
analyze recall using feasible methods. We are also going to further investigate understanding of semantic
types through means of clustering.
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Abstract

Stemming is an essential processing step in a wide range of high level text processing appli-
cations such as information extraction, machine translation and sentiment analysis. It is used
to reduce words to their stems. Many stemming algorithms have been developed for Modern
Standard Arabic (MSA). Although Arabic tweets and MSA are closely related and share many
characteristics, there are substantial differences between them in lexicon and syntax. In this pa-
per, we introduce a light Arabic stemmer for Arabic tweets. Our results show improvements over
the performance of a number of well-known stemmers for Arabic.

1 Introduction

The last few years have seen an enormous growth in the use of social networking platforms such as
Twitter in the Arab World. A study prepared and published by Semiocast in 2012 has revealed that
Arabic was the fastest growing language on Twitter in 2011. People post about their lives, share opinions
on a variety of topics and discuss current issues. There are millions of tweets daily, yielding a corpus
which is noisy and informal, but which is sometimes informative. As a result, Twitter has become one
of the most important social information mutual platforms. The nature of the text content of microblogs
differs from traditional blogs. In Twitter, for example, a tweet is short and contains a maximum of 140
characters. Tweets also are not always written maintaining formal grammar and proper spelling. Slang
and abbreviations are often used to overcome their restricted lengths (Java et al., 2007).
Stemming is an essential processing step in a wide range of high level text processing applications such as
information extraction, machine translation and sentiment analysis. It is a non trivial problem especially
with languages that have rich and complex morphology such as Arabic. The function of a stemmer is to
reduce words to their stems by stripping off all affixes (Frakes, 1992). Affixes are syntactic units that do
not have free forms, but are instead attached to other words. They use the same alphabet as that of words
and are concatenated one after the other with no demarcating marking such as the English apostrophe.
Therefore, they are not easily recognisable. Although there have been several studies on developing
morphological and stemming tools for Modern Standard Arabic (MSA), a stemmer that can work on
Arabic tweets or similar text styles is yet to be developed.
In this study, an unsupervised stemmer for Arabic tweets is proposed, implemented and tested. It applies
a light stemming technique on Arabic words to extract their stems. Our Arabic stemming approach is not
dictionary based, which is crucial for stemming Arabic tweets, since they have a very open lexicon, and
we are able to reach around 78% stemming accuracy. The results are compared with an Arabic stemmer
which uses similar approach described in the literature.
The rest of this paper is organised as follows: In Section 2, we give an overview of the related work,
followed by the representation of Arabic words in 3. Our approach is presented in Section 4. In Section
5, we discuss the evaluation, results and their analysis. In Section 6, we talk about conclusion and future
work.
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2 Related Work

There have been several studies on developing morphological and stemming tools for MSA. These tools
can be classified into three categories: manually constructed dictionaries (heavy stemming), light stem-
ming and statistical stemming.
Heavy stemming approaches try to find the stems and roots by using dictionaries. There are many exam-
ples of recent research work under this category such as (Buckwalter, 2004), (Khoja and Garside., 1999)
and (Algarni et al., 2014). The Buckwalter Arabic Morphological Analyzer (BAMA) is the best known
example of such an approach. It is an open-source software package morphological analyser developed
by Tim Buckwalter. He developed a set of lexicons of Arabic stems, prefixes, suffixes and a table con-
taining valid morphological combinations in order to produce all possible stems for each word. Khoja
stemmer is another example of this class. It based on one dictionary for Arabic roots. It removes the
longest suffix and the longest prefix. Then, it matches the remaining word with roots in the dictionary
and a list of patterns. This category produces well-formed stems and roots which are potentially correct,
but it generates multiple analyses, therefore it has to have some downstream mechanisms for choosing
between them and the dictionaries are extremely difficult to maintain.
Light stemming approach is a process of stripping off a set of affixes from a word without trying to
recognise patterns and find roots. It is fast, does not need roots or stems dictionaries and plays safe in
order to avoid over-stemming errors, but it may produce the stem that may not even be a real Arabic
word (Paice, 1994). (Al-Kabi et al., 2015) uses a light stemmer approach but does not cover all affixes
in Arabic.
Statistical approach is a process of inducing a list of affixes automatically and using clustering techniques
to group word variants. Most statistical approaches require annotated training data such as (Darwish and
Oard, 2007) and (De Roeck and Al-Fares, 2000). This data is expensive and is not always available.
Although there have been some positive results with un annotated training data for many different lan-
guages such as (Goldsmith, 2001) and (Dasgupta and Ng, 2007), it seems likely the complexity of Arabic
language makes that kind of approach is infeasible.
On the other hand, there has been relatively little work on building stemmers for Arabic dialect. Most
of these works targeted one specific dialect such as (Alamlahi and Ahmed, 2007) and (Al-Gaphari and
Al-Yadoumi, 2010).
Our work is, to the best of our knowledge, the first step towards developing a stemmer for Arabic tweets
or similar text styles which can benefit a wide range of downstream NLP applications such as information
extraction and machine translation. Our approach does not rely on any root dictionary or list of patterns.
We use a light stemming approach and shortest stem strategy to extract the stems of the words.

Word 	àñÊª 	®J
�ð ”wsyfElwn”

Prefixes

Arabic Translit.
ð w

� s

ø
 y

Stem Éª 	̄ fEl

Suffixes 	àð wn

Table 1: Example of Arabic Affixes

3 Arabic Word Form

Arabic is a morphologically rich language where the letters are attached together to form a word. A
word often conveys complex meanings that can be decomposed into several morphemes (i.e. prefix,
stem, suffix). Consequently, it presents significant challenges to many NLP applications such as tagging.
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Figure 1: Possible sub-tokens in Arabic
nouns
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Figure 2: Possible sub-tokens in Arabic
verbs

For example, the Arabic word1 	àñÊª 	®J
�ð ”wsyfElwn” which means ”and they will do”, consists of five
elements as shown in Table 1. We notice that Arabic affixes (prefixes and suffixes) attach to the base
word in a strict order. These affixes are differ based on the word type, but in general we can represent
the word as follows:

Word ≡ Prefixes + Stem + Suffixes

Arabic morphotactics allow words to have affixes. Affixes themselves can be concatenated one
after the other. A noun can comprise up to six sub-tokens as illustrated by Figure1. Similarly a verb
can comprise up to five sub-tokens as illustrated by Figure 2. The combination of words with affixes
is governed by various rules. These rules are called grammar-lexis specifications (Dichy and Farghaly,
2003). An example of these specifications is a rule that states that the prefix ”s”, which denotes the
future of verbs, is only combined with imperfective verb stems.

4 Our Approach

Although Arabic tweets and MSA are closely related and share many characteristics, there are substantial
differences between them in lexicon and syntax (Albogamy and Ramsay, 2015). The lexicon is always
evolving and many words in Arabic tweets are not present in MSA. Therefore, dictionary-based stem-
ming approaches will not work for Arabic tweets. The statistical approaches that are used to induce a list
of affixes automatically are also not applicable because we predefined a limited set of prefixes and suf-
fixes for Arabic tweets and there is no annotated training data available. In Arabic tweets domain, there
are millions of words that need to be stemmed, so stemming approaches that use a set of rules to identify
words patterns are not suitable because they consume lots of computational resources (Al-Serhan and
Ayesh, 2006).
Based on that, we decided to use a light stemming approach similar to the one that has been used in
(Al-Kabi et al., 2015), but we cover all Arabic affixes. We define all possible affixes and write a set of
rules of valid prefixes, suffixes and word forms and select the shortest stem of a word as the correct stem.
We built our light stemmer by using Python and a basic grammar that we wrote to describe the morpho-
logical rules of Arabic noun and verb (see Figure 3). We are interested in two major word types; noun
and verb. We defined them as a combination of allowable prefixes, and a word stem which is all letters
between the prefix and the end of the string. In case that the word types have suffixes, the stem is defined
as all letters between the prefix and the suffix. Our approach has two phases and deals with one word
at a time. The first-phase is dedicated to taking the input word and trying it against the definition of its
word type in the grammar. Then the stemmer will produce a list of all possible stems. The second-phase
is to select the shortest stem as the correct stem. We use the word YJ
ËAK. ð ”wbalyd” which means ”and by
the hand” to demonstrate our approach ( see Figure 4). The stemmer tried this word gainst the noun type
grammar. It produced three possible stems. Then, the shortest stem (analysis 1) was selected ’yd’ as the
stem for this word. In this particular example, the stem chosen is the correct stem.

1The word is delimited by a white space

80



patterns = {
"ART": "Al|",
"CONJ": "w|b",
"NSTEM": ".{3,}?",
"VSTEM": ".{2,}?",
"PRON": "y|h|ha|hmA|hm|hn|k|kn|km|kmA|nA",
"VPRON": "PRON|NY",
"NY": "ny",
"PREP": "b|k|l",
"FUT": "s",
"TNS1": "O|n|A|y|t|",
"TENSE": "(FUT)?(TNS1)",
"PERSON": "(?(ON)AGR-ON|(?(AY)AGR-AY|

(?(t)AGR-T|(?(past)AGR-PAST))))",
"AGR-ON": "",
"AGR-AY": "(A|An|wA|wn|n|)",
"AGR-T": "(yn|An|wn|n| )",
"AGR-PAST": "(tmA|tm|tn|t|A|wA|n|)",
"AGREE": "wn|yn|p|An|At|",
"NOUN": "(CONJ)?(PREP)?(ART)(?P<stem>NSTEM)

(AGREE)(PRON)?",
"VERB": "(CONJ)?(TENSE)(?P<stem>VSTEM)

(PERSON)?(VPRON)?"}

Figure 3: Combination rules of Arabic noun and verb”

Analysis 1:[’w’, ’b’, ’al’, ’yd’]
- prefix: [’w’, ’b’, ’al’]
- stem: yd

Analysis 2:[’w’, ’b’, ’alyd’]
- prefix: [’w’, ’b’]
- stem: alyd

Analysis 3:[’w’, ’balyd’]
- prefix: w
- stem: balyd

Analysis 4:[’wbalyd’]
- stem: wbalyd

Figure 4: Possible stems for the word YJ
ËAK. ð ”wbalyd”

5 Evaluation

As mentioned earlier, we have implemented our proposed stemming approach using Python program-
ming language. The system accepts a text file that includes the Arabic nouns and verbs. Then, it produces
the stems of those words. Example of the system’s output results are shown in Table 1. Data used to test
our stemmer for Arabic tweets, the results and error analysis are shown in the following subsections.

5.1 Experimental Setup
The corpus from which we extract our dataset contains 10 millions tokens taken from Twitter (Albogamy
and Ramsay, 2015). They used Twitter Stream API to retrieve tweets from the Arabian Peninsula by using
latitude and longitude coordinates of these regions since Arabic dialects in these regions share similar
characteristics and they are the closest Arabic dialects to MSA.
To create our test set, we sampled 390 tweets from the above corpus to be used in our experiments. A set
of correctly annotated nouns and verbs for this sample (gold standard) is required in order to be able to
appraise the outputs of the stemmer. Once we have this, we can compare the outputs of the stemmer with
this gold standard. Since there is no publicly available annotated corpus for Arabic tweets, we manually
annotated our dataset. The dataset contains 1250 nouns and 692 verbs.

5.2 Results
In our experiments, we used two different settings of stem length: 3-character stem and 2-character stem.
In the first experiment, we restricted the length of stems to be at least three characters for nouns and verbs
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Word Type Stem Length Accuraccy
Nouns >=3 characters 78.16 %
Verbs >=3 characters 67.19 %

Table 2: Stemming accuracy if stem length is 3 characters and more

Word Type Stem Length Accuraccy
Nouns >=2 characters 76.8 %
Verbs >=2 characters 77.45 %

Table 3: Stemming accuracy if stem length is 2 characters and more

since most of words in MSA have a 3-letter stem. We got 78.16% and 67.19% stemming accuracy for
nouns and verbs respectively as shown in Table 2. However, we noticed that for some nouns and verbs
their stems were written in two letters. Therefore, they were ignored by the stemmer. In the second
experiment, we restricted the length of stems to be at least two characters or more for nouns and verbs to
cover all missed cases in the first experiment. The stemming accuracy for verbs was improved by about
ten percent whereas the stemming accuracy for noun was decreased by around two percent as shown in
Table 3.
Based on the experiments results, we decided to use two different constrains; one for nouns and the other
for verbs. the length of stems has to be at least three characters or more for nouns and to be at least
two characters or more for verbs. As we can see in Table 4, the best overall stemming performance
is achieved when the minimum stem length is three characters for nouns whereas two characters for
verbs. The results of the tests on our stemmer yield an accuracy of 77.91% of the whole collection.
We have compared our stemming accuracy with (Al-Kabi et al., 2015), (Khoja and Garside., 1999)
and (Ghwanmeh et al., 2009). Those three stemmers yield accuracies 75.03%, 74.03% and 67.40%
respectively (Al-Kabi et al., 2015). Our results show improvements over the performance of those three
well-known stemmers for Arabic. Moreover, we used a light stemming approach whereas they used
heavy stemming approaches. We also experimented on Arabic tweets domain which is noisier than
MSA. In addition, we are able to extract two and three characters stems length which are most stemmers
for Arabic cannot do so.

Stem length Overall accuracy (nouns and verbs)
>=2 characters 77.03 %
>=3 characters 74.25 %

Verb stem >=2 and noun stem>=3 77.91 %

Table 4: Overall stemming accuracy (nouns and verbs)

5.3 Error Analysis

We examined the words that were incorrectly segmented by our system. The errors can be broadly
divided into three categories: under-stemming, over-stemming and orthography errors. Under-stemming
errors happen when the stemmer does not remove all affixes in the words. For example, the word 	á�
 	JÓ 
ñÒÊË
”For the believers” the algorithm removes the first letter of the prefix ÉË but not the second one since it
is considered as part of the stem in this case (see Table 5, the first row). Over-stemming errors happen
when the stemmer considers part of the words is an affix and removes it. Consider the Arabic word
Yg@ð ”One”, the stemmer removes the original letter ð because it looks like a conjunction (see Table 5,
the second row). Orthography errors occur when the stemmer removes all affixes and finds the correct
stems, but the last letter of the stems have a wrong shape. For example, the word Ñî �DÒÊ¿ ”Their word”

the stemmer removes the suffix Ñë and it considers �IÒÊ¿ as the stem which is correct except that the last

82



letter should be replaced by �è instead of �H (see Table 5, the third row)

Arabic word Our stemmer Gold Standard Error Type	á�
 	JÓ 
ñÒÊË
”For the believers”

	áÓ 
ñÖÏ 	áÓ 
ñÓ under-stemming

Yg@ð
”One”

Yg@ Yg@ð over-stemming

Ñî �DÒÊ¿
”Their word”

�IÒÊ¿ �éÒÊ¿ orthography

Table 5: Examples of Stemming errors

6 Conclusion

We have proposed, implemented and evaluated a new stemmer for Arabic tweets. It does not rely on any
root dictionary, which is crucial for stemming Arabic tweets, since they have a very open lexicon. It is
a light stemming approach that uses shortest stem strategy to extract the stems of the words. It has two
phases: phase 1 is dedicated to producing a list of all possible stems by using the grammar, and phase 2
is to select the shortest stem as the correct stem. We compared our stemmer with three Arabic stemmers
where one of them uses a similar approach to ours. Results showed that our stemmer is better in terms
of accuracy in comparison with other three Arabic stemmers.
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Abstract

Topic modelling techniques such as LDA have recently been applied to speech transcripts and
OCR output. These corpora may contain noisy or erroneous texts which may undermine topic
stability. Therefore, it is important to know how well a topic modelling algorithm will perform
when applied to noisy data. In this paper we show that different types of textual noise can have
diverse effects on the stability of topic models. On the other hand, topic model stability is not
consistent with the same type but different levels of noise. We introduce a dictionary filtering
approach to address this challenge, with the result that a topic model with the correct number of
topics is always identified across different levels of noise.

1 Introduction

Topic modelling techniques are widely applied in text retrieval tasks. Frequently these techniques have
been applied to explore high-quality texts such as news articles (Newman et al., 2006) and blog posts
(Yokomoto et al., 2012) which have low levels of noise (i.e. few missing, misspelled, or incorrect terms
and phrases). However, with the reduction in the cost of automatic speech transcription and optical char-
acter recognition (OCR) technologies, the range of sources that topic modelling can now be applied to is
growing. One challenge with such textual sources is dealing with their inherent noise. In speech to text
transcriptions, humans in general manage a WER of 2% to 4% (Fiscus et al., 2007). When transcribing
with a vocabulary size of 200, 5000 and 100000 terms, the reported corresponding word error rates are
3%, 7% and 45% respectively. The best accuracy for broadcast news transcription is 13% (Pallet, 2003),
but this drops below 25.7% in conference transcription and gets worse in casual conversation (Fiscus
et al., 2007). These results indicate that the difficulty of automatic speech recognition increases with
vocabulary size, speaker dependency, and level of crosstalk.

Noise aside, many of these newly available sources contain rich and valuable information that can be
analysed through topic modelling. For example, automatic speech transcription applied to call centre
audio recordings is able to capture a level of detail that is otherwise unavailable unless the call audio is
manually reviewed which is infeasible for large call volumes. In this case topic modelling can be applied
to transcribed text to extract the key issues and emerging topics of discussion.

In this study we propose a method for simulating various types of transcription errors, for the purpose
of examining the effect of noise on topic modelling algorithms. We then test the robustness of proba-
bilistic topic modelling via Latent Dirichlet Allocation (LDA) using a topic stability measure (Greene et
al., 2014) over a variety of corpora. The stability of a clustering model refers to its ability to consistently
produce similar solutions on data originating from the same source (Lange et al., 2004) (Ben-David et
al., 2007). A high level of agreement between the resulting clusterings indicates high stability, in turn
suggesting that the current model fits the data well. Consequently, we measure stability of probabilis-
tic topic models over noise-free dataset and its corresponding noisy dataset. A high agreement score
indicates an appropriate selection of topic model which is robust against textual noise.
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2 Topic Modelling and Metrics

Topic models aim to discover the latent themes or topics within a corpus of documents, which can
be derived by studying the distribution of co-occurrences of words across the documents. Popular ap-
proaches for topic modeling have involved the application of probabilistic algorithms such as Latent
Dirichlet Allocation (LDA) introduced by Blei et al. (2003). For the evaluation of topic models, we
follow the approach by Greene et al. (2014) for measuring topic model agreement. We can denote a
topic list as S = {R1, ..., Rk}, where Ri is a topic with rank i. An individual topic can be described
as R = {T1, ..., Tm}, where Tl is a term with rank l belong to the topic. Jaccard index (Jaccard, 1912)
compares the number of identical items in two sets, but it neglects ranking order. Average Jaccard (AJ)
similarity is a top-weighted version of the Jaccard index used to accommodate ranking information. AJ
calculates the average of the Jaccard scores between every pair of subsets in two lists. Based on AJ,
we can evaluate the agreement of two sets of ranked lists (topic models). The topic model agreement
score between S1 and S2 is a mean value of the top similarity scores between each cross pair of R. The
agreement score is solved using the Hungarian method (Kuhn, 1955) and is constrained in the range
[0,1], where a perfect match between two identical k-way ranked sets results in 1 and a score 0 for
non-overlapping sets (Greene et al., 2014).

3 Datasets

In this paper, we make use of two previously-studied text datasets which differ in terms of content and
documents lengths. The bbc corpus includes 2225 general news articles assigned to five ground truth
topics. The wikilow corpus is a subset of 4986 Wikipedia articles, where the articles are labeled with 10
fine-grained WikiProject sub-categories. In both datasets the topics consist of distinct vocabularies which
we would expect LDA to detect. For example, the topics in bbc datasets are business, entertainment,
politics, sport, and technology.

Table 1: Corpora used in the experiments, including the total number of documents n, terms m, and the
number of labels k in the associated “ground truth”.

Corpus n m k̂ Description
bbc 2,225 3,121 5 General news articles from the BBC

(Greene and Cunningham, 2005).
wikipedia-low 4,986 15,441 10 A subset of Wikipedia. Articles are labeled with fine-

grained WikiProject sub-groups (Greene et al., 2014).

3.1 Simulated Corpus with Word-level Noise
We artificially introduce noise into the above datasets to approximate the performance of topic modelling
over naturally noisy sources. We measure noise using word error rate (WER), a common metric for
measuring speech recognition accuracy. Moreover, WER has been used as a salient metric in speech
quality analytics (Saon et al., 2006) and spoken dialogue system (Cavazza, 2001). WER is defined as
the fraction between the sum of the number of substitutions S, the number of deletions D, the number
of insertions and the number of terms in reference N :

WER =
S + D + I

N
(1)

The experiments investigate the robustness of topic models against each type of noise, and at which
noise levels the output of a topic model is consistent with that of the original corpus. Deletion noise is
introduced by randomly removing a portion of text in the corpus. The proportion of deletion ranges from
0% to 50% and the term selection is based on uniform distribution. Insertion is introduced by adding
a portion (0% to 50%) of frequent terms from a list of frequent English words with 7726 entries1. The
probability of sampling of a certain term from the list is based on the term frequency.

1http://ucrel.lancs.ac.uk/bncfreq/flists.html
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3.1.1 Metaphone Replacement
We simulate speech recognition errors using Metaphone, a phonetic algorithm for indexing English
words by their pronunciation (Philips, 1990). Here we use the Double Metaphone (Black, 2014) algo-
rithm in replacement and the replacement is on a one-to-one basis. This may not simulate the full range
of errors produced by ASR systems, in which the substitution may be a one-to-many or many-to-one
mapping, but it was deemed sufficient for the current experiments.

Table 2: Double metaphone dictionary where terms are ranked with descending frequencies.
Metaphone Matching terms
ANTS industry, units, induced, wound, ...
KRTF grateful, creative, Cardiff, ...

Table 3: An example of 30% metaphone replacement in the bbc dataset.
Original text Replaced text
We are hoping to We air hoping to
understand the understand the
creative industry Cardiff induced
that has a natural that has a neutralist
thirst for broadband thirst for portable
technology technology

In this study we map Metaphone codes to frequent English words (see examples in Table 2). Then in a
given text document, we randomly select X percent terms and replace each by a term in the Metaphone
map. The candidate terms sharing the same metaphone symbol are selected based on term frequencies.
A frequent term has higher probability to be selected over a rare term (see Table 3).

3.2 Simulated Corpus with Image-level Noise
In the last section we simulatde word-level noise with deletion, insertion and metaphone replacement
errors. As an alternative, we now introduce image-level random noise and simulate term errors from
OCR. ImageMagick2 is a popular software tool which can apply transformations and filters to images.
Tesseract3 is a widely-used open source OCR engine. We combine ImageMagick and Tesseract in se-
quence to generate noisy document images and then re-scan the content from those images. The level of
image noise can be specified as a parameter to ImageMagick. The number of error terms from OCR is
assumed to be proportional to the level of image noise that has been added. However, we observe that the
robustness of OCR is highly influenced by the choice of text font. For instance, Tesseract scans of text
in a monospace (fixed-width) font tend to be identical across a range of increasing noise until a certain
level is reached, above which almost no characters are retrieved. Therefore, we opt to use variable-width
font Verdana in this study, as its noise resistance performance is close to linear.

Figure 1 shows two snippets of ImageMagick generated images with noise level 1 and 3. The source
texts are from the same document from the bbc corpus. The text in the image with level 1 noise remains
clearly legibile. However it is rather difficult to read the content from the image with level 3 noise. Figure
2 shows texts scanned by Tesseract from the images of Figure 1. We can observe systematic errors on
both images. On Figure 2 (a), sales is translated as saies, and Google is translated as Googie.
On Figure 2 (b), which is retrieved as wildi, and the is retrieved as die. The word Time is read as
1Ine, Tine or The. These are only part of the errors from OCR output, but they show both one-to-one
mapping and one-to-many mapping.

Figure 3 shows the Recall (i.e. how many instances in the scanned texts match the instances of words
in original texts) of Tesseract OCR against original texts in bbc and wikilow corpora. The recall score
at each noise level is a mean value of recall from each pair of documents (one original document and
its corresponding scanned text). In both corpora the highest recall value is observed from noise level 2.

2http://www.imagemagick.org
3https://github.com/tesseract-ocr
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(a) noise level 1 (b) noise level 3

Figure 1: Snippets of ImageMagick generated images with noise level 1 (a) and level 3 (b).

(a) noise level 1 (b) noise level 3

Figure 2: Snippets of Tesseract scanned texts with noise level 1 (a) and level 3 (b).

Therefore we drop the assumption that the error rate of scan is linearly scalable to noise levels. Another
observation is that recall scores in both corpora are close to each other on each level of image noise,
although the contents as well as scan errors of two corpora are quite different.
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Figure 3: Recall of Tesseract OCR against original texts in bbc and wikilow corpora

4 Experiments

In our experiments with LDA, we aim to test topic stability over different levels of noise and different
numbers of topics. In other words, when there is noise added to a text corpus, would the generated topic
models be consistent with those from original corpus? If not, how much discrepancy exists between the
two? Two sets of experiments are designed to introduce word-level noise and image-level noise to the
original data. Our aim is to find guidelines for topic modelling over real noisy text sources in practice.

Since average Jaccard (AJ) score measures the similarity between two ranked lists (topics), we use AJ
as an element in evaluating the similarity of two topic models Sx and Sy. If Sx and Sy each contains

88



(a) Deletion errors

0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5
Noise Level of Input Texts

H
un

ga
ria

n 
sc

or
e

numTopics

3

5

10

15

20

30

Hungarian agreement of Ref. and  Deletion mixd texts on  bbc  corpus

0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5
Noise Level of Input Texts

H
un

ga
ria

n 
sc

or
e

numTopics

3

5

10

15

20

30

Hungarian agreement of Ref. and  insertion mixed texts on  bbc  corpus

0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5
Noise Level of Input Texts

H
un

ga
ria

n 
sc

or
e

numTopics

3

5

10

15

20

30

Hungarian agreement of Ref. and  metaphone mixed texts on  bbc  corpus

0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5
Noise Level of Input Texts

H
un

ga
ria

n 
sc

or
e

numTopics

3

5

10

15

20

30

Hungarian agreement of Ref. and  Deletion mixd texts on  wikilow  corpus

(b) Insertion errors (c) Metaphone errors

Figure 4: LDA Hungarian scores against noise levels for the bbc corpus (5 reference topics).
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Figure 5: LDA Hungarian scores against noise levels for the wikilow corpus (10 reference topics).

k ranked lists (topics), they are denoted as Sx = {Rx1, ..., Rxk} and Sy = {Ry1, ..., Ryk}. We build a
k× k matrix M to register each similarity score. In this matrix entry Mij indicates the AJ score between
topic Rxi and topic Ryj . The best matching between the rows and columns of M can be found using
the Hungarian method (Kuhn, 1955). The agreement score produced from M is named as Hungarian
agreement score, and is used as a measure of topic model stability in the following experiments.

4.1 LDA with Word-level Noise

In order to produce consistent and repeatable results where each noise generation method relies on a
degree of randomness with word deletion, insertion or substitution we generate multiple copies of each
modified corpus using 5 random seeds. Similarly we perform 5 iterations of each Mallet LDA (McCal-
lum, 2002) topic model as the algorithm initial state is determined by a random seed. LDA hyperparam-
eters are defined with default values, and each topic is represented by the top 25 terms. The final stability
score on each level is a mean value of a number of iterations with fixed seeds.

Figure 4 and Figure 5 show the topic stability achieved by LDA on the bbc and wikilow corpora, which
have 5 and 10 reference topics respectively. For each level of topic model complexity, a downward slope
indicates decreasing stability of topic models against increasing noise.

For the bbc corpus, the stability measure shows clear differences with different types of noise. The
model is especially robust against Deletion errors. When noise increases from 5% to 50%, the Hungarian
agreement score of output topics only drops about 1% (for the fitted model with K = 5 in Figure 4(a)).
By inspecting each model in Figure 4(a), we can say that the topic models are robust against random
Deletion noise in the case of the bbc corpus.

In Figure 4(b), the model with 5 topics achieves the highest Hungarian agreement score at noise level
5% and 10%, but it drops significantly afterwards. The best and most stable topic model with noise higher
than 15% of Insertion errors is the model with 15 topics, which is three times of the reference. Similar
trend is observed with Metaphone replacement errors in Figure 4(c). The topic model with reference
number of topics achieves the highest stability when noise level is low. However, there are differences
between Insertion and Metaphone errors in bbc corpus tests. With 50% of Insertion errors, the model
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with 15 topics achieves 56.4% agreement with original model, but the agreement is only 32.4% with
Metaphone errors. In bbc corpus Metaphone errors are the most challenging case.

For the wikilow corpus, we observe similar trends in Figure 4 and Figure 5 on specific types of noise.
With Deletion errors, the topic model with the reference number of topics is most stable across noise
levels. The difference in topic agreement scores is below 2% across the noise levels. With Insertion and
Metaphone errors, the topic model with reference number of topics is almost the best when noise is low,
but drops below others when noise is higher than 15%.

Although there are many similarities between Figure 4 and 5, we observe two major differences across
corpora. In Figure 5(b) and 5(c), Hungarian scores of different topic models (number of topics) share
similar gradient of descending slope. However, a few models for the bbc corpus (K = {15, 20, 30})
achieve quite stable Hungarian scores in Figure bbc(b). Another difference is that the most stable topic
models against noise levels higher than 20% in Figure 4(b) and 4(c) both have 15 topics, whereas the
most stable models in wikilow have 30 topics in the same settings. However, if we compare them with
corresponding reference topic numbers K, the most stable topic models with high systematic errors all
have K ∗ 3 topics. Models with topic number higher than K ∗ 3 are not optimal in Figure 4(b) and 4(c).

4.1.1 Discussion
In Section 4.1 we considered topic model stability on two corpora with three types of noise. Here we
can define a single measurement of topic stability across different settings. If a level of agreement is
set as 70%, LDA is robust against Deletion noise up to 50% in both bbc and wikilow corpora. However,
LDA model reaches this agreement level only on 10% Insertion noise and on 5% Metaphone replacement
noise. We see that Metaphone replacement and insertion are more severe challenges to topic models vs.
deletion.

Regarding deletion errors, we observe that the robustness of a topic model is mostly determined by
the number of topics. When this matches the number of reference topics, the topic model is the most
stable. However, this does not emerge with insertion and metaphone errors. Reference topic models with
5 (bbc) and 10 (wikilow) topics achieve high stability only when noise is ≤ 10%. With higher levels of
noise, a more complex topic model exhibits higher stability.

An explanation of the high stability of topic models against Deletion error concerns the LDA model.
LDA takes term frequency into account. The probability of a word belonging to a topic is high if it
appears frequently in one topic and seldom in other topics. Such a word is very likely to be an entry
in a topic model. If we randomly delete corpus terms, the scale of frequent terms is influenced trivially
and these frequent terms still have a high probability of selection. All rare terms may be removed by
deletion, but they have a low chance of appearing in the original topic model anyway. Therefore LDA
model has high stability over various levels of deletion errors. Insertion and Metaphone replacement
introduces systematic noise, which changes the distribution of original texts with respect to frequency,
thus having more impact on the LDA model. A high portion of general frequent terms may dilute the
frequency of characteristic terms and add noisy terms to a topic model. However, a topic model with
many more topics than the reference can deal with the effect of systematic errors.

4.2 LDA with Image-level Noise

In Section 3.2 we introduced the concept of image-level random noise. By using this approach, the
Tesseract scanned texts contain character-level noise and many of them are systematic errors. For ex-
ample, many instances of character l are retrieved as i in Figure 2. In this section we evaluate the
stability of LDA topic models over corpora with substantial systematic errors. Mallet LDA topic model
is evaluated over the scanned corpora of noise levels 1 to 4. On each noise level, topic model stability
is evaluated with a selection of model complexity (the number of topics ranges from 3 to 30). Since
Dirichlet prior of a LDA model is set with a random seed, we test one LDA model three times with 3
fixed seeds and get model stability score from the mean value of three iterations. The number of terms
in each topic is 25.

Figure 6(a) and 6(c) show Hungarian agreement scores for LDA topic models, as achieved on the
original corpus and a corresponding polluted corpus with image-level noises. Figure 6(a) is from the bbc
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(a) bbc corpus from scanned images
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(b) bbc corpus with dictionary filtering

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●●●

0.0

0.2

0.4

0.6

0.8

1 2 3 4
Noise Level of Input Texts

H
un

ga
ria

n 
sc

or
e

numTopics
●

●

●

●

●

●

3

5

10

15

20

30

Hungarian agreement of Ref. and additive image noise on wikilow corpus

(c) wikilow corpus from scanned images
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(d) wikilow corpus with dictionary filtering

Figure 6: LDA Hungarian scores over scanned corpora (a) and (c), and dictionary filtered corpora (b)
and (d). In reference dataset, bbc corpus has 5 topics and wikilow has 10 topics.

corpus and Figure 6(c) is from the wikilow corpus. In these two figures Hungarian agreement score drops
with increasing image-level noises (noise 2 to 4), but rises from noise 1 to 2. As a comparison, curves in
Figure 3 follow similar trends. The stability of LDA model is influenced by character-level noises in the
scanned corpus.

For the bbc corpus (Figure 6(a)) a model with 5 topics achieves (almost) the highest Hungarian agree-
ment score at noise level 1 and 2, but it drops considerably at noise level 3 and 4. Models with 20 and 30
topics reach the highest Hungarian agreement score at noise level 3 and 4 respectively. For the wikilow
corpus (Figure 6(c)), the model with 10 topics achieves (almost) the highest scores across noise level 1 to
2, but it drops near to the bottom at noise level 3 and 4. Choosing 15 topics yields the highest Hungarian
agreement score at noise level 3 and 4.

4.2.1 Filtering Noisy Corpus with English Dictionary
OCR generates character-level outputs and therefore the scanned corpora contain erroneous terms which
are out of English vocabulary (e.g., saies). We propose a filtering step over the OCR scanned corpus
before the topic modelling step. A general English dictionary with 110k entries is used as a reference set
to filter off any undefined terms.

LDA topic models are tested on the dictionary filtered corpora following the same steps used in Section
4.2, and the Hungarian agreement scores are plotted in Figure 6(b) and 6(d). At the first look, we observe
similar curves as experiments with unfiltered corpus (Figure 6(a) and 6(c)). However, there are important
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differences. In Figure 6(b) topic number 5 reaches the highest agreement scores across noise level 1 to
4. In Figure 6(d) topic number 10 reaches the highest agreement scores across noise level 1 to 4. In both
corpora, the topic models with the reference number of topics are most stable with the dictionary filtered
texts. On each noise level, if we compare the highest agreement scores across two figures side by side,
we can see that dictionary filtering brings an increase of model stability over 10% in most cases and it
can be as high as 20% on high level noises.

4.2.2 Discussion
We evaluate the stability of topic models over scanned corpus of noisy images, and we find common
observations as the experiments in Section 4.1. In general, the stability of LDA models drops with
increasing simulated insertion and Metaphone replacement errors because these errors are not random
terms. More consistent systematic errors (e.g., Figure 2) give higher challenge to topic models. Under
these challenges, a topic model with reference number of topics performs best at relatively low noise
levels. When noise is as large as 4, LDA models with 30 topics (bbc) or 15 topics (wikilow) are more
stable in both corpora.

When we apply dictionary filtering to scanned texts, LDA stability improves considerably. Moreover,
the stability of topic models for the reference number of topics is still highest, despite significant levels of
noise. There is no more need to increase topic model complexity for better performance. Although there
may be a risk that we may remove terms which correspond to names or specialised terminology, this issue
could be overcome by augmenting the dictionary with lists of people, organisations, and domain-specific
lexicons.

5 Conclusions

In this paper we investigated how transcription errors affect the quality and robustness of topic models
produced over a range of corpora, using a topic stability measure introduced a priori. We simulated
word-level transcription errors from the perspective of word error rate and generated noisy corpora with
deletion, insertion and Metaphone replacement. Topic models produced by LDA showed high tolerance
to deletion noise up to a reasonably high level, but low tolerance to insertion and metaphone replacement
errors. We also simulated image-level OCR transcription errors which are close to real OCR applications.

In general, we found that the robustness of topic models is mainly determined by the extent of sys-
tematic errors which modifies the distribution of words in the original texts. With relatively low levels of
systematic errors, topic models with reference number of topics were most stable. However, in the case
of high level systematic errors, topic models with many more redundant errors were stable.

In order to increase topic model stability when analysing a noisy corpus, we introduced English
dictionary-based filtering. Dictionary filtering was shown to be effective in correcting systematic errors
across different noise levels, with the result that topics generated from collections of noisy documents
were still informative. In future experiments, we aim to explore more approaches in improving topic
model stability over noisy sources.
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Abstract

Postmarketing surveillance (PMS) has the
vital aim to monitor effects of drugs af-
ter release for use by the general pop-
ulation, but suffers from under-reporting
and limited coverage. Automatic meth-
ods for detecting drug effect reports, es-
pecially for social media, could vastly in-
crease the scope of PMS. Very few auto-
matic PMS methods are currently avail-
able, in particular for the messy text types
encountered on Twitter. In this paper we
describe first results for developing PMS
methods specifically for tweets. We de-
scribe the corpus of 125,669 tweets we
have created and annotated to train and test
the tools. We find that generic tools per-
form well for tweet-level language iden-
tification and tweet-level sentiment anal-
ysis (both 0.94 F1-Score). For detection
of effect mentions we are able to achieve
0.87 F1-Score, while effect-level adverse-
vs.-beneficial analysis proves harder with
an F1-Score of 0.64. Among other things,
our results indicate that MetaMap seman-
tic types provide a very promising ba-
sis for identifying drug effect mentions in
tweets.

1 Introduction

Postmarketing surveillance (PMS) is a vital part of
pharmacovigilance, taking place during the final,
post-licensing phase of drug development when
the effects on larger numbers of users, who may
have other conditions and take other medicines
than those included in pre-approval tests, can be

assessed. PMS is implemented in passive na-
tional reporting schemes such as the Yellow Card
Scheme in the UK and MedWatch in the US; it is
also implemented as active surveillance, e.g. or-
ganisations such as the MHRA in the UK and the
FDA in the US conduct post-approval studies and
postmarketing surveys.

Existing PMS methods either rely on health
practitioners and patients to report adverse effects
to which only a small (self-selected) proportion
of patients in particular will contribute (report-
ing schemes), or they involve single products and
small numbers of participants (surveys). More
generally, such methods are more likely to iden-
tify (i) very serious problems, and (ii) problems
relating to newly released drugs and drugs already
under continuous surveillance.

The ultimate goal of our work is to develop text
analysis techniques to facilitate automatic, contin-
uous and large-scale monitoring of adverse drug
reactions (ADRs), and more generally of effects,
beneficial or otherwise, reported for given drugs.
There is currently huge interest in such methods
in the pharmaceutical industry, in particular where
they can be used to monitor what is being said on
social media about specific drugs. Automatic PMS
methods are also of interest to national regulatory
bodies.

The potential benefits of high-precision auto-
matic ADR detection methods for social media are
great: such methods would ameliorate the recog-
nised problem of under-reporting of ADRs via ex-
isting channels (Lardon et al., 2015), and could in-
form the design of post-approval studies. Studies
have already demonstrated that analysis of social
media contents (manual analysis so far) can lead
to the discovery of serious side effects, e.g. Abou
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Taam et al. (2014) retrospectively identified a se-
vere side effect on the basis of user content posted
months before the drug in question was withdrawn
because of the same side effect. The challenge is
to automate this process so that suitably large por-
tions of social media can be scanned.

2 Related Research

The main interest has so far been in discovering
ADRs, defined by the World Health Organisation
as a “a response to a medicinal product which is
noxious and unintended and which occurs at doses
normally used in [humans] for the prophylaxis, di-
agnosis or therapy of disease or for the restoration,
correction or modification of physiological func-
tion” (WHO, No date).

While studies involving manual analysis have
confirmed the usefulness of social media content
in ADR identification (see previous section), man-
ual analysis is necessarily limited to minute frac-
tions of available online content. Automatic anal-
ysis of online content for ADR detection remains a
huge challenge, in particular when applied to Twit-
ter, due to the messy and ‘un-language-like’ nature
of tweets, and it remains a small field.

Last year, Lardon et al. (2015) reported the re-
sults of a very thorough scoping review of (i) man-
ual and computer-aided identification of ADRs,
and (ii) semi-automatic and automatic identifica-
tion of ADRs, from social media. The authors
found just 13 papers on the latter, of which just
one paper focused on Twitter data (the remainder
used content from online health forums).

That one paper (Bian et al., 2012), among the
very earliest on this precise topic, reported the cre-
ation and annotation of a corpus of drug-related
tweets, and results for training SVM classifiers
to detect (a) whether the tweeter was reporting
their own experience, and (b) whether a given
own-experience tweet contained a mention of an
ADR. The study targeted five drugs that were
the subject of a pre-approval clinical study during
a known time window, and analysed tweets that
were posted during the same time window, on the
assumption that study participants were likely to
tweet about their experience. 489 tweets by 424
users were identified in this way, reduced to 239
users after removal of re-tweets and non-English
tweets. Tweets by the same user were concate-
nated and annotated manually. An SVM classifier
was trained to classify texts into (i) users report-

ing their own experience of taking the drug, and
(ii) user reporting someone else’s experience; the
classifier used 171 features, some based on key-
words and word types, hashtags and user names;
others based on a MetaMap (Aronson, 2001) anal-
ysis of the texts yielding UMLS meta codes. Clas-
sification into first-hand vs. second-hand reporting
achieved an average accuracy of 0.74, and classi-
fication of first-hand-reporting tweets into ADR-
mentioning and not ADR-mentioning was also re-
ported as achieving 0.74 accuracy.

Ginn et al. (2014) created a corpus of annotated
tweets and results for training classifiers to de-
tect ADR mentions. Two members of the project
team with “medical or biological science back-
ground” annotated 10,822 tweets related to 74
drugs for mentions of an ADR, indication or ben-
eficial effect, and each ADR/indication/beneficial
effect with corresponding UMLS concepts. The
74 drugs included some for which ADRs are
well established and some for which they are
not. Product names, common names and mis-
spellings were used for each drug; tweets with
URLs were removed (deemed to be mostly ad-
verts). Inter-annotator agreement (IAA) was
kappa = 0.69. Ginn et al. trained Naive Bayes
(NB) and SVM classifiers on the binary annota-
tions (presence/absence of effect mentions), using
bag-of-words feature vectors, text normalisation
and lemmatisation. Three versions of the corpus
were created with different levels of imbalance be-
tween positive and negative examples. Best Preci-
sion for detecting effects was 0.89 (Recall = 0.695;
F-Score=0.78; Accuracy = 0.746) for NB and the
exactly balanced version of the corpus; Accuracy
was around 0.75 for NB across the three differ-
ently balanced corpus versions.

Two members of the Ginn et al. team subse-
quently reported a larger set of results (Sarker and
Gonzalez, 2015), using the Twitter data above, but
also data from an online health forum, and an ex-
isting corpus of clinical reports. They describe the
earlier results as having been obtained by “classi-
fication via under-sampling, which yields higher
ADR F-scores at the expense of overall accuracy”
(Footnote 22). Sarker & Gonzalez decided not to
use under-sampling or balancing, and report ADR
F-Scores of 0.538 and Accuracy 86.2 for the Twit-
ter data with a different type of SVM than in the
earlier work, going up to 0.597 and 90.1, respec-
tively, when the Twitter data is supplemented by
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the data from the online health forum.
In summary, the tasks for which tools have so

far been built under the heading of automatic ADR
detection in tweets are all binary (note that the an-
notations in the data sets include a wider variety
of information):

• for a given tweet, decide whether it is in En-
glish or not (Bian et al., 2012);

• for a given set of tweets by the same Twitter
user and a given drug, decide whether or not
the user themself is taking (or has taken) the
drug (Bian et al., 2012);

• for a given tweet, decide whether or not it
contains a mention of an ADR (Bian et al.,
2012; Ginn et al., 2014; Sarker and Gonza-
lez, 2015).

In this paper, we address (i) the first task above
(Section 5), (ii) a more general case of the last task
above (mentions of all drug reactions, adverse or
not, Section 7), as well as two new, non-binary
tasks (for this domain): (iii) for a given tweet,
decide what its sentiment is (Section 6); and (iv)
for a tweet that has been identified as containing a
mention of a drug reaction (as in ii above), decide
whether the drug reaction is beneficial, adverse or
neither (Section 8).

3 Automatic Drug Effect Detection:
Task, Annotation, Tools

Automatic drug effect detection for Twitter is
something of a worst case scenario for NLP: not
only are tweets one of the messiest, most abbrevi-
ated forms of short text, for which standard NLP
tools do not tend to work well; but automatic ADR
detection is also extremely hard, even for very well
behaved types of text, due among other factors to
the large variety of ways in which the same drug
effects can be referred to, and to the complex rela-
tionships between drugs and effects.

The research reviewed in the previous section
focused on detecting adverse drug effects (the an-
notations in some cases also include other kinds
of effects, but the tools were for ADR detec-
tion). There are three reasons why we address
a wider set of effects: (a) the related research
area of automatic drug discovery/development, in-
cluding our industrial advisory partner, is inter-
ested in identifying all effects claimed for a given
drug/compound; (b) post-marketing drug monitor-
ing, especially by pharmaceutical companies, is

also interested in a wider set of effects; and (c) it
may make the detection task harder if one specific
subtype of drug effects is targeted only.

To elaborate on that last point, ADRs can be
seen as a special case of a more general binary
drug-effect relation has effect(drug, effect). Our
corpus (Section 4) contains diverse examples, in-
cluding the following:1

has effect(“glucosamine”, “got me feeling
some typa way”)
has effect(“azathioprine”, “think I’ve got
#shingles”)
has effect(“daunorubicin”,“made his wee
red”)

Reports of effects, whether positive, negative, or
neither, are likely to have similar patterns and cue
phrases (e.g. ‘I’ve got’, ‘got me feeling’). It may
be the case that it is easier to identify all reports of
effects, not just negative ones, and then classify
those into adverse, beneficial, mild, severe, and
other dimensions.

We construe drug-effect detection as a knowl-
edge extraction task, where the objective is to
identify mentions of drug effects and to fill relation
templates such as has effect(drug, effect). In this
general form such mentions can be incorporated
into knowledge graphs and combined with other
kinds of relations about drugs and health. Such
knowledge graphs can be easily visualised, and
are used for example in automatic drug discovery
research where mentions of drug effects from so-
cial media could provide a useful complementary
source of information.

In this paper, we report first results towards the
above knowledge extraction task. We use the term
‘drug effect’ to refer to both cases where the ef-
fect is specified and cases that might more intu-
itively be described as ‘properties’ where there
is no specified effect (see also Section 8 below).
Section 4 describes how we collected our set of
tweets, and the text cleaning and normalisation we
perform. Sections 5, 6, and 7 report results from
our experiments on language identification, senti-
ment analysis and drug effect detection in tweets,
respectively, while Section 8 reports results from
classifying drug effects into beneficial, adverse
and other.

1The text would be mapped to e.g. UMLS codes before
being incorporated into knowledge bases, as below.
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4 Data Collection

We compiled a list of drug names by extracting
all names of approved drugs from DrugBank,2

1,999 in total. Next, for each drug name we col-
lected the HTML files of all tweets returned for
the search “Drug Name” OR #DrugName (e.g.
“Acetic Acid” OR #AceticAcid), up to a maximum
of 100 tweets per drug name, and used Beautiful
Soup3 to extract the information we needed (tweet
text, tweet id, timestamp, etc.) from the HTML
files containing the search results (tweets).

The results was a corpus4 of 125,669 tweets,
with an average of 62.87 tweets collected for each
drug. Figure 1 gives a more detailed picture of
number of tweets per drug: most drugs have 70-
95 tweets, 19 have none, and 15 have 100 or
more. Note that we did not expand the set of drug
names with misspelt variants, generic or common
names as done in some related research (Ginn et
al., 2014).

We used three versions of the tweet texts: (i) in
their raw form; (ii) cleaned, with URLs and user
names replaced by tags, and hash tags with the ‘#’
removed; and (iii) with hashtags additionally con-
verted to likely strings of words, using a tool made
available on StackOverflow.5

5 Language Identification

In order to be able to analyse tweets in a meaning-
ful way, moreover using text analysis tools trained
for English, it is important that we can reliably fil-
ter out non-English tweets. Twitter tags tweets for
language, so part of our first set of experiments
was to test the reliability of the Twitter language
tags, as well as to see how it compared against
existing language identification tools. For the lat-
ter we chose the three tools that were, combined
as an ensemble method, identified by Lui & Bald-
win (2014) as the best language identification tools
for tweets: langid.py (Lui and Baldwin, 2012),
LangDetect,6 and CLD2.7

We randomly selected a subset of 300 tweets
(test set A) and manually annotated each for En-
glish vs. other. Table 5 shows results for each
of the methods tested, as well as for combining

2http://www.drugbank.ca/drugs
3https://www.crummy.com/software/BeautifulSoup
4We will publish the corpus along with this paper.
5By anonymous user Generic Human.
6Y. Nakatani: http://www.slideshare.net/shuyo/language-

detection-library-for-java
7Language identification in Google Chrome.
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P 0.995 0.991 0.986 0.973 0.995
R 0.861 0.889 0.877 0.898 0.861
F1 0.923 0.937 0.928 0.933 0.923

Table 1: Language identification results for Twit-
ter tags and three language identification tools on
test set A of 300 manually annotated tweets (Re-
call, Precision, F1-Score, for the English class).

langid.py, CLD2 and LangDetect in majority vot-
ing. langid.py outperforms the others, including
Twitter, slightly on the raw tweets (see end of Sec-
tion 4). First cleaning/normalising tweets led to a
slight improvement for CLD2, and a slight deteri-
oration for languid.py; additionally parsing hash-
tags led to slight improvement for languid.py, and
slight deteriorations for CLD2 and LangDetect.
The final best result is an F1-Score of 0.94 for
langid.py. This confirms (for this domain) previ-
ous results that good language identification tools
outperform Twitter language tags (Lui and Bald-
win, 2014).

6 Sentiment Analysis

Following the language identification experi-
ments, we filtered out the non-English tweets us-
ing langid.py, which left us with 93,697 tweets and
an average of 46.87 tweets per drug name. In the
experiments in this section, we aim to predict the
overall sentiment of an (English) tweet, indepen-
dently of whether a drug effect is being reported.

For this purpose we selected a different test set
of 300 random tweets (test set B) from our corpus
and annotated each tweet for positive, negative, or
neutral. We tested the 18 sentiment analysis (SA)
tools made available in the ifeel package:8 Afinn,
Emolex, Emoticons, EmoticonDS, HappinessIn-
dex, MPQAAdapter, NRCHashtagSentimentLex-
icon, OpinionLexicon, Panas-t, Sann, SASA,
SenticNet, Sentiment140Lexicon, SentiStrength-
Adapter, SentiWordNet, SoCal, UmigonAdapter,
Vader, and a majority vote by all methods. The
ifeel team have reported comparative results for
many of these tools (Nunes Ribeiro et al., 2010;
Ribeiro et al., 2016). For our task, the methods

8http://blackbird.dcc.ufmg.br:1210/ (accessed: 06/2016)
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Number of tweets

Figure 1: Number of drugs (y) that have a given number of tweets (x). E.g. there are 19 drugs with 0
tweets, and 51 drugs with 88 tweets.

achieved an average F-Score of 0.792, and Ac-
curacy of 0.753. The best three were, by a con-
siderable margin: Emoticons, Panas-t and SANN
SA, across all three variants of our corpus. Very
briefly, these use the following approaches.

Emoticons: Given lists of positive and neutral
emotions, if a text contains an emoticon it is as-
signed the polarity of the first one, else a text is
deemed neutral (Gonçalves et al., 2013a).

Panas-t: Provides association strengths between
words and eleven moods including surprise, fear,
guilt, joviality, attentiveness, fear, etc. (Gonçalves
et al., 2013b).

SANN SA: A dictionary-based rule-based senti-
ment classifier using the MPQA polarity lexicon
(Pappas et al., 2013).

Results for these three classifiers and the majority
vote by all 18 systems in ifeel are shown in Ta-
ble 2; we are only showing results for the raw ver-
sion of the corpus (see end of Section 4), because
results were identical over the three corpus ver-
sions, i.e. cleaning, normalising and parsing hash-
tags did not help with sentiment analysis.
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F1-measure 0.941 0.929 0.920 0.665
Accuracy 0.936 0.932 0.932 0.576

Table 2: Tweet-level sentiment analysis results for
3 best sentiment analysis tools on test set B of 300
manually annotated tweets (weighted-average F1-
score over POS, NEG and NEU labels; Accuracy).

Out of the 300 tweets in test set B, 259 were
annotated as neutral, 22 as positive, and 19 as neg-
ative. This gives a very high most-frequent-label
baseline of 0.863 Accuracy which the three best
classifiers, however, outperform comfortably.

7 Detection of Drug Effect Mentions

We additionally annotated test set B for drug ef-
fects with three mention labels: mention of an ef-
fect, mention of a property (without specified ef-
fect), and none. 81 of the 300 tweets contained
an effect mention (sometimes more than one), 10
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tweets a property mention, 4 tweets both an ef-
fect and a property mention, and 213 contained no
mentions.

The experiments in this section were aimed at
distinguishing tweets that mention drug effects
and properties from tweets that do not. As a
starting point we process each of our tweets with
MetaMap (Aronson, 2001), a tool for recognis-
ing UMLS9 concepts in text. For a given input
text (tweet in our case) MetaMap produces a set
of concept vectors as the output, each scored for
relevance.

One of the elements in concept vectors indi-
cates ‘semantic type’ (semtype); semtypes are a
set of broad subject categories over all concepts
represented in the UMLS metathesaurus. There
are 133 different semtypes which fall into six
major groupings corresponding to concepts re-
lated to organism, anatomical structure, biologi-
cal function, chemical object, physical object, and
idea/concept. For example, a semtype much more
commonly seen with tweets that do contain an ef-
fect mention is ‘Pathologic Function’ (83%); ex-
amples of semtypes much more commonly seen
with tweets that do not contain an effect men-
tion include ‘Plant’ (96%), ‘Receptor’ (95%), and
‘Laboratory Procedure’ (93%).

In this first experiment aimed at detecting effect
mentions, we use all 133 semtypes, resulting in bi-
nary feature vectors of length 133. We used these
paired with the corresponding effect/property la-
bels (+ME = mention of an effect/property, and
-ME = none) as training data to train classifiers
for this task, using 10-fold cross-validation in test-
ing. The most-frequent-label (-ME) baseline for
this task is 0.71 Accuracy.

Table 3 shows results for the three classifiers we
tested (Multinomial Naive Bayes, SVM, and Lo-
gistic Regression) in terms of overall as well as
per-class Recall, Precision and F1-Score. For all
classes, SVM performed best with a weighted av-
erage F1-Score of 0.873. For the +ME class, the
logistic regression classifier did best, with an F1-
Score of 0.914. On the -ME class, SVM was best
with F1=0.823. Results in Table 3 are for the raw
version of the corpus (see end of Section 4); results
were identical for the raw and cleaned versions,
while additionally parsing hashtags worsened re-

9The Unified Medical Language System (UMLS)
“integrates and distributes key terminology, classifica-
tion and coding standards, and associated resources”
(https://www.nlm.nih.gov/research/umls/).

sults very slightly for the NB classifier only.
Looking at the Precision scores for +ME, which

is arguably the most important measure from
the perspective of incorporating information into
knowledge graphs, all three classifiers performed
extremely well. Especially considering we had a
tiny training set, this indicates that the MetaMap
semtypes form a highly reliable basis for identify-
ing tweets that mention drug effects/properties.

8 Adverse vs. Beneficial Effects

In test set B, we also annotated those tweets with
mentions of an effect or property with a further la-
bel encoding whether the effect/property was ad-
verse, beneficial or neutral. 23 tweets were la-
beled as having an effect/property that is adverse,
57 tweets having a beneficial one, and 11 a neutral
one, with 5 tweets having more than one of these.

In the experiments in this section, for the sub-
set of tweets which were identified as contain-
ing a drug effect/property mention, we wanted to
see whether any of the sentiment analysers would
be able to predict whether the effect/property
mentioned was an adverse, beneficial or neutral
one. We tested the same 18 sentiment analy-
sers against the effect sentiment labels (setting ad-
verse=negative, beneficial=positive, and neutral).
Some of the sentiment analysers, despite not be-
ing designed for this task, did reasonably well at
it; the four best ones were the following:

EmoticonsDS: Uses a large sentiment-scored
word list based on the co-occurrence of each to-
ken with emoticons in a corpus of over 1.5 billion
messages (Hannak et al., 2012).

SenticNet: A semantic and affective resource
for concept-level sentiment analysis, modelling
the polarities of common-sense concepts and re-
lations between them (Cambria et al., 2014).

SentiWordNet: Lexical SA tool based on Word-
Net using polarity scores associated with WordNet
synsets (Baccianella et al., 2010).

AFINN: Twitter based sentiment lexicon pro-
viding emotion ratings for words (Nielsen, 2011).

Table 4 shows the results for these four tools. In-
terestingly, there is no overlap with the three tools
that did best at the standard SA task (Table 2), in
fact those three methods were the three worst ones
at this task.

99



Both classes +ME class -ME class
Classifier R P F1 R P F1 R P F1
Multinomial NB 0.847 0.852 0.849 0.848 0.981 0.909 0.961 0.688 0.794
Logistic Regression 0.85 0.851 0.850 0.855 0.984 0.914 0.969 0.689 0.799
SVM 0.855 0.892 0.873 0.8 1.0 0.887 1.0 0.71 0.823

Table 3: Results for detection of effect mentions (ME) on test set B of 300 manually annotated tweets
with 10-fold cross-validation (Recall, Precision, F1-scores for all classes, ME class, and not ME class).
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F1 0.638 0.621 0.616 0.615 0.627
Acc 0.592 0.595 0.592 0.597 0.604

Table 4: Effect-level sentiment analysis results for
4 best sentiment analysis tools on test set B of 300
manually annotated tweets (weighted-average F1-
score over ADV, BEN and NEU labels; Accuracy).

9 Conclusions and Further Work

In this paper we described our new corpus of
125,669 tweets for 1,999 drug names. The cor-
pus includes one randomly selected subset (A) of
300 tweets which is annotated for language, and
another set (B) of 300 random tweets which is
annotated for overall sentiment and drug effect
mentions. The corpus represents many more drug
names than in comparable existing corpora, but so
far has only a small number of annotated tweets.

We reported results for language identification
and sentiment analysis. One of the language iden-
tification tools tested (langid.py) outperforms the
Twitter language tags in this domain. Tweet-level
sentiment analysis achieved a best result of 0.94
weighted average F1-Score (Emoticons method).

Perhaps the most surprising result we report is
that a straightforward approach to training a clas-
sifier to distinguish tweets that mention drug ef-
fects from those that do not, achieves an overall
F1-Score of 0.873 and perfect precision for the
positive class (+ME). This indicates that MetaMap
semtypes are a strong basis for predicting drug ef-
fect mentions. However, using sentiment analy-
sis tools for the new task of predicting the polar-
ity of an effect (adverse vs. beneficial vs. neutral)
achieved best results of just 0.64 weighted average
F1-Score (EmoticonsDS).

In future work, we are planning to expand our

annotations to allow more effective training of
classifiers in particular to address the latter task,
as well as generally to expand our corpus to in-
clude tweets containing common, colloquial and
generic names and common misspellings of our
drug names. In terms of methodology, we are cur-
rently working on drug effect extraction, i.e. iden-
tifying the span of words in a tweet that describes
the effect.
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Gonçalves, Fabrı́cio Benevenuto, and Marcos
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Abstract

In social networks services like Twitter, users are overwhelmed with huge amount of social data,
most of which are short, unstructured and highly noisy. Identifying accurate information from
this huge amount of data is indeed a hard task. Classification of tweets into organized form will
help the user to easily access these required information. Our first contribution relates to filtering
parts of speech and preprocessing this kind of highly noisy and short data. Our second contri-
bution concerns the named entity recognition (NER) in tweets. Thus, the adaptation of existing
language tools for natural languages, noisy and not accurate language tweets, is necessary. Our
third contribution involves segmentation of hashtags and a semantic enrichment using a com-
bination of relations from WordNet, which helps the performance of our classification system,
including disambiguation of named entities, abbreviations and acronyms. Graph theory is used
to cluster the words extracted from WordNet and tweets, based on the idea of connected compo-
nents. We test our automatic classification system with four categories: politics, economy, sports
and the medical field. We evaluate and compare several automatic classification systems using
part or all of the items described in our contributions and found that filtering by part of speech
and named entity recognition dramatically increase the classification precision to 77.3 %. More-
over, a classification system incorporating segmentation of hashtags and semantic enrichment by
two relations from WordNet, synonymy and hyperonymy, increase classification precision up to
83.4 %.

1 Introduction

The automatic classification of text and the approaches for the extraction of hidden subjects have good
performance when there is enough meta-information, the context is extended using knowledge from big
collections, like Wikipedia (Sriram et al., 2010) or it uses meta-information from external sources such
as Wikipedia (Genc et al., 2011) and include the use of lexical ontologies, like DBPedia (Cano et al.,
2013). However, those approaches need online queries, what makes their performance decrease, and the
extraction of knowledge from those external collections demand complex algorithms. Moreover, the use
of those approaches makes the classification algorithms less general.

We present a classification method that uses offline knowledge extracted from WordNet to disam-
biguate and enrich information in tweets and also to group semantically connected words of tweets in
order to decrease the size of our training matrix.

In Section 2 we present a review of some works on the classification of tweets and short texts in
general. In Section 3 we detail the main steps in the pre-processing: tweet normalization, hashtag de-
composition and named entity recognition. Section 4 presents our methodology: how WordNet is used

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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to disambiguate words in tweets, how we build a graph using the words in tweets and semantic relations
extracted from WordNet and how connected components extracted from this graph is used to decrease
the number of dimensions in our training matrix. In Section 5 we present the experiments and results
obtained in the classification of tweets, in terms of precision. And in Section 6 and Section 7 we present
the evaluation and conclusion, respectively.

2 Related Work

Recent works based on machine learning deal with the classification of tweets. Sriram et al. (2010) clas-
sify tweets into pre-defined generic classes, e.g. "news", "events", "advertising", etc., using information
about the authors and some characteristics, such as abbreviations, words used to express opinion, etc.

Sahami and Heilman (2006) use short texts from tweets in search engines queries in order to increase
the information in each tweet. However, those techniques need additional entity disambiguation ap-
proaches. For example, even though "jaguar" and "car" are close semantically, a disambiguation in the
query results is needed to differentiate the results from "jaguar" as a car and as an animal. Therefore, the
intervention of the user is necessary in order to guide the process of tweet expansion.

Genc et al. (2011) propose a method for the classification of tweets using Wikipedia, which calculates
the semantic distance between words in a tweet and words in the description of Wikipedia pages to find
the most similar page and category. Kinsella et al. (2011) analyze meta-data from objects (Amazon
products, YouTube videos, etc.) to which links in tweets are pointing to determine their subjects.

Lee et al. (2011) classify tweets into 18 general categories, such as "sport", "politics", etc. They use
two methods: bag of words and a classification based on a network, identifying the most influential users
for each category. The number of influential users in common between already classified tweets and a
tweet yet to be classified define the category of the new tweet.

Sankaranarayanan et al. (2009) build a news processing system called "TwitterStand" that identifies
tweets corresponding to last news. Their objective is to reduce noise and identify tweets classes and
groups of interest.

Saif et al. (2012) introduce a method based on the disambiguation of named entities. They add seman-
tic information to the named entity identified (for example, adding "Apple" to "IPhone") and then asso-
ciate negative/positive sentiment extracted from tweets. Michelson and Macskassy (2010) use Wikipedia
to disambiguate, classify named entities found in tweets and identify the subjects of interest to the users
and the most frequent categories related to named entities.

Since hashtags are essentials in understanding the subject of a tweet, most systems of analyze of
opinions try to incorporate them in their calculations. Asur and Huberman (2010) show how to improve
standard techniques of supervised classification by integration of polarity from most frequent hashtags.

Brun and Roux (2014a) show how to extract words from hashtags and use them to improve the detec-
tion of polarity in tweets. Their system represents each opinion according to the model proposed by Liu
(2010) and compare a system that uses hashtag decomposition with a system that does not use it.

Almeida et al. (2016) present a supervised learning approach dedicated to the biomedical domain for
supporting the production of literature on HIV using thesaurus MeSH (Medical Subject Headings).

3 Pre-processing

Our system for the classification of tweets is based on Weka1 and uses the Twitter API to extract tweets2.
We use Twitter API3 to build our training and testing corpus. A language detector (Shuyo, 2010) is

used to keep only tweets in English4. All tweets containing less than 80% of words in English, only
URLs and empty tweets were deleted from the corpus.

Despite the existence of many pre-processing tools for short texts and tweets (e.g. TweetNLP5), we

1. http://www.cs.waikato.ac.nz/ml/weka
2. https://bitbucket.org/LyesBillal/twitterclassifier/overview
3. https://dev.twitter.com
4. https://github.com/shuyo/language-detection
5. http://www.cs.cmu.edu/ ark/TweetNLP/
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have chosen Standford NLP6 for its robustness.
In the next sections we explain the main pre-processing steps: tweet normalization, hashtag decompo-

sition and named entity recognition.

3.1 Tweet Normalization

Tweet normalization consists in rewriting text in a standard language. It is based on the most common
lexical mistakes made in social media and is divided in the following sub-tasks (Han et al., 2013):

1. Suppression of extra letters, e.g. "gooood". We use an English dictionary 7 and regular expressions
to detect the closest possible correct word;

2. Minimal orthographic correction for most common mistakes, e.g. substitution of "scoll" for "scroll";

3. Substitution of common words used in social media, e.g. "2day" for "today". We use a dictionary8

dedicated to this kind of problem.

3.2 Hashtag Decomposition

A hashtag always starts by the character "#", making easy its identification. They are usually composed
words created by users and cause a problem for the linguistic analyzes because they are considered
unknown words. In a tweet having only 140 characters ignoring the hashtags may cause an enormous
loss of information (Brun and Roux, 2014b).

Usually, different hashtags are used for the same subject. For example, for Newsmax_Media we found:

#News_Media, #VanRE, #Vancouver. . .

Those three hashtags are related to the words "Newsmax", "Media", "Vancouver", "VanRE".
Our objective is to extract all words in hashtags and increase their frequency. For example:

#Newsmax_Media→ (Newsmax,Media)
#News_Media→ (News,Media)
#Vancouver→ (Vancouver)
#VanRE→ (Van,RE)

We propose a recursive algorithm that processes hashtags from left to right and separates the problem
in three sub-tasks:

1. When each word in a hashtag start by an uppercase letter, we use a function to separate those words.
Example: #ParisClimateConference

2. When the words are separated by special characters or by numbers, we use another function.
Examples: #3Novices, #Newsmax_Media

3. When each word starts by a lowercase letter, we use a third function combined with an English
dictionary9. This function tries to separate a hashtag in the fewest possible number of words, from
left to right. For example, the hashtag #renewableenergy can be separated as:
#renewableenergy→ (renew, able, energy)
#renewableenergy→ (renewable, energy)
and we chose (renewable, energy), following the human tendency of choosing the longest possible
sequence when decodifying a sequence of characters.

6. http://nlp.stanford.edu/software/
7. http://gdt.oqlf.gouv.qc.ca/
8. https://github.com/coastalcph/cs_sst/blob/master/data/res/emnlp_dict.txt
9. https://github.com/dwyl/english-words
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3.3 Named Entity Recognition

Different users write dates, names of places or people in different ways. For example: "2016-03-10"
and "March 10th 2016", "John Kennedy" and "JFK", etc. Named Entity Recognition (NER), a set of
techniques to deal with this problem, is used in different projects, such as the Gene/Protein Named
Entity Recognition and Normalization Software(GNAT) (Wermter et al., 2009).

Unities of time, distance, currency can be normalized using the Stanford NLP API. A sequence of
words that appear with high frequency is kept because they probably represent a unique entity. For the
names of location and organization we search in Wordnet for the closest synonyms.

After NER, we remove the stop words, i.e. functional words carrying no meaning10 and make the
lemmatization, i.e. transformation of words into their canonical forms (e.g. nouns from plural to singular,
verbs from a conjugated to a infinitive form, etc.), using Standford NLP lemmatizer11.

4 Methodology

Figure 1 shows the main process in our methodology.

Tweets/Bag of words WordNet Disambiguation Graph Building

Connected ComponentsLSAClassification

Figure 1: The main processes for building the matrix of connected components.

In the next sections we present the main steps in our methodology. Section 4.1 shows how we use
WordNet to disambiguate terms. Section 4.2 presents our method for the construction of a graph of
terms in tweets and how we extract connected components from this graph. In Section 4.3, we explain
how we use connected components to lower the ranking in our classification matrix. Finally, Section 4.4
shows the classification algorithms used in this work.

4.1 Disambiguation of Tweets Using WordNet

Since we use Wordnet12 for the tweets expansion, we decided to also use it for the task of disambiguation.
For each word, WordNet suggests many senses, each one containing a synset, i.e. a group of almost

synonyms words. We adopt a structural method based on the semantic distance between concepts to
choose the correct sense, according to the formula (Navigli, 2009):

Ŝ = argmaxS∈Sense(wi)

∑
wj∈T :wi 6=wj

maxS′∈Sense(wj)Score(S, S
′). (1)

Where T is the set of terms in a tweet, wi is the term we want to disambiguate, Sense(wi) is the set
of candidates concepts for the term wi, what in WordNet corresponds to the synsets containing this term,
and Score(S, S′) is the function used to measure the similarity between two concepts S and S′.

There are many methods for measuring the similarity between concepts S and S′. After many com-
parisons, we have chosen an approach based on a path formed by the arcs of the graph (Wu and Palmer,
1994), which supposes that the similarity between two concepts depends on the distance between the
nodes concerned and their common ancestor (Least Common Concept) in comparison to the distance to
a root node in the graph.

To enrich the tweets, we use the technique introduced by (Audeh et al., 2013) from information search
for the expansion of queries. The first option is to search for synonyms in the synset selected in the
previous step. The second one is to use the synsets of the hypernym of the term.

10. http://members.unine.ch/jacques.savoy/clef/englishST.txt
11. http://nlp.stanford.edu/software/
12. http://wordnetcode.princeton.edu/wn3.1.dict.tar.gz
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4.2 Graph Building
Once the synset having the closest sense to the context of the tweet is selected, we group the words w
extracted from the tweets with their synsets in a graph G = (V,E), defined as follows:

V = {∀w ∈ Etweet/ {w} ∪ Synsetw}

E = {Synonym, Hyperonym · · · }
(2)

In this graph, each word from the corpus and each word in the synsets, as selected by the previous step,
is represented by a node V and each relation (synonymy, hyperonymy) between those words, extracted
from WordNet, is represented by an arc E. This creates a weakly connected graph that is used to the
extraction of connected components.

The next step is to search for the connected components in the graph G. Each component is formed
by nodes, corresponding to words, connected by arcs representing the semantic relations. The idea is to
cluster the words w1 and w2 connected by an arc to another word w ∈ {w1} ∪ Synsetw1 , having this
word w a relation w ∈ {w2} ∪ Synsetw2 . Mathematically:

G′
(
V ′, E′

)
a connected component in G(V,E) /V ′ ⊂ V ∧ {w1, w2} ∈ V ′

Then we have:
{{w1} ∪ Synsetw1} ∩ {{w2} ∪ Synsetw2} 6= φ (3)

A word, called the "representative", is selected to represent each component. The matrix of bag of
words becomes a matrix of bags of representatives, or bag of connected components. For example, in
Figure 2 the word "football" is the representative of the component:

football ->[football, football game, soccer/sports, association football, soccer]

football

football game

soccer/sportsassociation football

soccer representative

nodes of the graph

CONNECTED COMPONENT "football"

Figure 2: Example of a connected component represented by the word "football" in the vectorial space

Every time we find a word that belongs to this component in a tweet, we increment the frequency of the
word "football", which is the representative of this component, leading to a matrix of fewer dimensions.

4.3 Rank Lowering Using Latent Semantic Analysis
Latent Semantic Analysis (LSA) (Bestgen, 2004) is a technique for analyzing the relation between terms
and between terms and documents. Each term is represented as a column in a matrix and each document
as a row. To represent a corpus of tweets, for example, row1 represents tweet1, row2 represents tweet2,
etc. Each column represents the frequency or the tf-idf of a term in a tweet. Since tweets are short, most
of the columns for a specific tweet are zeros since most of the words present in the entire corpus are not
present in each specific tweet. And even in a big corpus, most of the words are rare, appearing only once
and their rarity makes them sensible to aleatory variations (Bestgen, 2004).

In this work, we deal with the sparsity of such a matrix by representing the frequency of terms in
connected components instead of the frequency or the tf-idf of single terms since we are more interested
in the relation of tweets with concepts, represented by the connected components, than the relation of
tweets with isolated terms.
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Vectors of
tweets

Dimension of
components

Component1 · · · Componenti · · · Componentn

Tweet1 f1,1 · · · f1,i · · · f1,n

...
...

...
...

...
...

Tweetj fj,1 · · · fj,i · · · fj,n

...
...

...
...

...
...

Tweetm fm,1 · · · fm,i · · · fm,n

Table 1: A matrix representing the frequency of each connected component in each tweet.

Table 1 shows the representation of a matrix of m tweets with the frequencies fj,i of words found in
the connected components Componenti.

4.4 The Classifier

Liblinear (Fan et al., 2008) is a fast and simple linear classifier and has become one of the most promising
machine learning technique for big data.

We use the library LIBLINEAR13, which is based on the L2-regularized logistic regression (LR), L2-
loss and L1-loss SVM linear vectors (Boser et al., 1992). It inherits many characteristics from the SVM
library LIBSVM (Chang and Lin, 2011), like a rich documentation and free license (BSD license14).

LIBLINEAR is very efficient for training large scale problems: it takes some seconds for a text clas-
sification problem. For the same task, a SVM classifier like LIBSVM takes many hours. Furthermore,
LIBLINEAR competes with the fastest linear classifiers like Pegasos (Shalev-Shwartz et al., 2007).

5 Experiments and Analysis of Results

We use the Twitter API to build our corpus, passing as queries words related to the chosen domains
(sport, politics, economics and medicine). Table 2 presents the number of tweets, terms and lemmas in
the corpus for each domain.

Economy Medicine Sport Politics
Simple Terms 13870 14784 16112 15346
Lemmas 7938 12138 12773 11976
Tweets 2504 2415 2493 2497

Table 2: Number of terms, lemmas and tweets for each category

To test our method we evaluate different criteria in the classification of tweets:

1. Corpus filtered by part-of-speech (POS) vs not filtered by POS. In the corpus filtered by POS, in
addition to deleting a regular list of stop words (article, prepositions, etc.), we also delete adverbs
and we keep only nouns, verbs and adjectives;

2. Applying vs not applying hashtags segmentation;

3. Using Wordnet relations (synonymy, hyperonymy and synonymy + hyperonymy) for clustering
similar words in a graph for the construction of connected components;

4. Applying NER (and using WordNet to disambiguate them) vs not Applying NER.

13. http://www.csie.ntu.edu.tw/ cjlin/liblinear
14. The new BSD license (Berkeley Software Distribution License) approved by the Open Source initiative.
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Table 3 presents a comparison of the classification results and the gain we obtain when NER is applied.

Filter type Hashtag
segmenta-
tion

WordNet relation Precision
w/o -NER
(%)

Precision
with
+NER (%)

Gain(p.p.)

All words No Synonymy 38.3 36.2 -2.1
Only N, V and ADJ No Synonymy 68.2 69.7 +1.5

All words Yes Synonymy 42.1 41.7 -0.4
Only N, V and ADJ Yes Synonymy 73.4 74.8 +1.4

All words No Hyperonymy 41.7 40.6 -1.1
Only N, V and ADJ No Hyperonymy 70.9 71.3 +0.4

All words Yes Hyperonymy 43.2 42.4 -0.8
Only N, V and ADJ Yes Hyperonymy 76.4 77.3 +0.9

All words No Syn&Hyper 46.8 45.3 -1.5
Only N, V and ADJ No Syn&Hyper 72.3 73.2 +0.9

All words Yes Syn&Hyper 51.3 50.6 -0.7
Only N, V and ADJ Yes Syn&Hyper 81.2 83.4 +1.2

Table 3: Comparison of the precision for different classifications and the gain when named entity recog-
nition is applied.
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Figure 4: Precisions obtained when applying named
entity recognition (NER).

When NER is not applied and we keep only nouns, verbs and adjectives, combined with synonymy,
we have a gain of 29.9 p.p. in precision (from 38.3% to 68.2%), which grows to 81.2% when combined
with synonymy and hyperonymy. This can be explained by the fact that the words removed, like adverbs,
do not contribute for the identification of a tweet subject.

The hashtags segmentation improves the result in 3.8 p.p., when using all the words and 5.2 p.p. when
the POS filtering is applied. This is explained by the fact that usually hashtags carries the most significant
words for the identification of the subject of a tweet.
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The use of hyperonyms gives a better result than the use of synonyms. For example, the precision is
73.4% when we use hashtag segmentation, POS filter and synonyms and it increases to 76.4% when we
use hyperonyms instead of synonyms. This can be explained by the fact that hyperonyms by themselves
are a better indication of a word group since they represent relations of the type "part-of". Moreover,
adding synonyms and hyperonyms together gives the best precision, 81.2%, when using hashtag seg-
mentation and POS filter.

The application of NER increases the precision in the corpus having only nouns, verbs and adjectives,
and decreases when the corpus have all words (except stop words).

The histogram in Figure 3 compares the precision in the classification of each category using NER,
hashtag segmentation and POS filter.

The histogram in Figure 4 is a graphic representation of the results shown by the column "Precision
with NER" in Table 3. We note a progressive increment in precision when segmentation of hashtags and
then POS filtering are applied.

6 Evaluation

The hashtags carry important information about the tweets subjects. Moreover, words extracted from
them enrich the connected components that contain those words. For example, a tweet that contains the
hashtag #ParisClimateConference does not share any word with the following connected component:
climate→ environmental condition, clime, climate. However, after the hashtag segmentation, the word
climate appears in the vector representing the tweet that contains this hashtag:

#ParisClimateConference→ (paris, climate, conference)

The tweets containing the word climate in their texts or in their hashtags will share the same connected
component.

Keeping only verbs, adjectives and adverbs (POS filter) helps improving the classification precision
since the sense of the text is usually given by words in those grammatical categories.

Despite the existence of polysemic words, the disambiguation using WordNet, as explained in section
4.1, helps us find the correct sense of a word.

Not all named entities can be detected by WordNet. However, the most common names of people,
places and organizations used in tweets can be successfully identified. The application of NER helps
increase the precision. For example, in tweets we find "United States of America", "United States"
and "USA". Identifying that the three expressions are a unique entity helps understand the connection
between the tweets that contain them.

We show how NER can affect the identification of the subject of a text. Without NER, we could have
the following connected components:

United→ unite, unify
States→ government, authorities, regime

However, NER gives:

United States→ United States, United States of America, America,
the States, US, U.S., USA, U.S.A

Moreover, the detection of the sense of some acronyms using WordNet, for example:

FBI→ Federal Bureau of Investigation, FBI; or
UN→ United Nations, UN

helps to connect the sense of a tweet containing «UN» with tweets containing «United Nations». Finally,
we have a reduction in the number of dimensions in our training matrix.

7 Conclusion

Before discussing results, it is important to stress some limits of this research. First, we use a local
WordNet, instead of an online one, due to performance. Second, not all terms or named entities found in
our corpus are present in WordNet.
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The idea of connected components, based on graph theory, reduces the training matrix based on bag of
words, increasing the performance of our classification. Our POS filter improves the precision. And the
hashtag segmentation helps us extract more information from tweets and also helps increase the precision
of the classification.

NER improves the precision when we keep only nouns, verbs and adjectives. When all words are
used, the precision decreases.

In this work we do not consider multiword expressions (MWEs). Finally, the hashtag segmentation
does not take into account hashtags written in more than one language, even if one of the languages is
English, like, for example, the hashtag #Japanにほん, which is composed by a word in English and
another in Japanese.
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Abstract

Text normalization techniques based on rules, lexicons or supervised training requiring large
corpora are not scalable nor domain interchangeable, and this makes them unsuitable for normal-
izing user-generated content (UGC). Current tools available for Brazilian Portuguese make use
of such techniques. In this work we propose a technique based on distributed representation of
words (or word embeddings). It generates continuous numeric vectors of high-dimensionality to
represent words. The vectors explicitly encode many linguistic regularities and patterns, as well
as syntactic and semantic word relationships. Words that share semantic similarity are repre-
sented by similar vectors. Based on these features, we present a totally unsupervised, expandable
and language and domain independent method for learning normalization lexicons from word
embeddings. Our approach obtains high correction rate of orthographic errors and internet slang
in product reviews, outperforming the current available tools for Brazilian Portuguese.

1 Introduction

The huge amount of data currently available on the Web allows computer-based knowledge discovery
to thrive. The growth in recent years of user-generated content (UGC) – especially the one created by
ordinary people – brings forth a new niche of promising practical applications (Krumm et al., 2008).
Textual UGC, such as product reviews, blogs, and social network posts, often serves as a base for natural
language processing (NLP) tasks. This type of content may be used for business intelligence, targeted
marketing, prediction of political election results, analysis of sociolinguistic phenomena, among many
other possibilities. Despite its wide range of application, UGC is hard for NLP to handle.

Most of the natural language processing tools and techniques are developed from and for texts of stan-
dard language (Duran et al., 2015). From basic components of a NLP-based system, such as taggers, to
complex tools aiming to tackle more significant problems, there is a reliance on well structured textual
information in order to achieve a proper behavior. However, user generated content does not necessarily
follow the structured form of standard language. This type of text is often full of idiosyncrasies, which
represent noise for NLP purposes. Beyond the context of NLP, textual UGC may also represent an ob-
stacle for end-users. Specially on social networks, where a domain-specific and context reliant language
is used, users not familiar to its particularities may have difficulties to fully grasp the expressed content.
Considering the aforementioned problems, it is relevant to identify noises in UGC for purposes which
include a simple identification of the noise, its typification, eventually its substitution for another word
or expression. These actions aim to both enhance NLP tools performance and facilitate end-user text
comprehension, besides to provide an overview of the linguistics practices on the web.

The process of identifying noise and suggesting possible substitutions is known as text normalization.
Non-standard words (NSWs) are often regarded as noise, but the precise definition of what constitutes
them depends on the application domain. Some examples that might be seen as deviations from stan-
dard language and that should be normalized include spelling errors, abbreviations, mixed case words,
acronyms, internet slang, hashtags, and emoticons. In general, NSWs are words which properties and
meaning cannot be derived directly from a lexicon (Sproat et al., 2001). The term "lexicon" in this con-
text does not necessarily mean the list of words that are formally recognized in a language, but rather
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a set of words that are considered treatable by the specific application. Therefore, it is not possible to
clearly state what is noise and what should be normalized.

In contrast to standardized language, UGC is often informal, with less adherence to conventions re-
garding punctuation, spelling, and style (Ling et al., 2013). Therefore, it is considerably noisy, containing
ad-hoc abbreviations, phonetic substitutions, customized abbreviations, and slang language (Hassan and
Menezes, 2013). Considering the specificity of such content, traditional techniques – such as lexicon-
based substitution – are not capable to properly handle with many types of noise. Thus, in order to
achieve satisfactory results, it is necessary to deeply analyze UGC and develop specific methods aimed
at normalizing it.

Conventional string similarity measures (such as edit distance) are not, by themselves, capable of
accurately correcting many errors found in UGC. Abbreviations and shorthands found in informal texts,
specially on social networks, may contain a large number of edits often resulting in low string similarity
– discouraging the use of traditional techniques.

More recently, the interest in techniques based on distributed representations of words (also called
word embeddings) has increased. These representations are able to generate continuous numeric vectors
of high-dimensionality to represent words. The vectors explicitly encode many linguistic regularities and
patterns, as well as syntactic and semantic word relationships (Mikolov et al., 2013a). Words that share
semantic similarity are represented by similar vectors. For example, the result of a vector calculation
vec(“King”) - vec(“Man”) + vec(“Woman”) is closer to vec(“Queen”) than to any other word vector.
Another strong characteristic of distributed representations is their capability of capturing the notion
of contextual similarity – which is essential for textual normalization. The models used for learning
these vectors, such as Skip-grams, are totally unsupervised and can be implemented efficiently. In this
work, we exploit this set of advantages, combined with lexical similarity measures, in order to capture
contextual similarity and learn normalization lexicons based on word embeddings.

2 Related work

Early work handled text normalization as a noisy channel model. This model consists of two components:
a source model and a channel model (Shannon, 1948). It assumes that a signal is transferred through
a medium and gets corrupted. The source model indicates the canonical form of the signal, and the
channel model represents how the signal gets corrupted. (Brill and Moore, 2000) defined the spelling
correction problem as finding argmaxwP (w|s), being s the canonical word, which was sent by the
source model, and w the received corrupted word. Applying Bayes’ Theorem, the noisy channel model
is obtained as argmaxwP (s|w)P (w). This model presented significant performance improvements
compared to previously proposed models, achieving up to 98% correction accuracy on well-behaved
noisy text. However, this approach requires supervised training data for both canonical and corrupted
words.

Log-linear models also have been applied as unsupervised statistical models for text normalization.
(Yang and Eisenstein, 2013) proposed a model in which the relationship between standard and non-
standard words may be characterized by a log-linear model with arbitrary features. The weights of these
features can then be trained in maximum-likelihood frameworks. The use of this type of model requires a
study of the problem to get the most significant features. From the definition of the features, the training
process in conducted to optimize the weights. The advantage of these models is the easy incorporation of
new features and the optimization is performed according to an objective function. Although not being
highly dependent of resources and context-driven, the log-linear approach requires well-defined features
– which are not easily identifiable in UGC. Another disadvantage is the total reliance on statistical obser-
vations on the corpus. Hence, the model does not satisfactorily represents the highly semantic specificity
of the noise found in UGC, which can occur with low frequency thus not having a significant statistical
impact. Considering these issues, this type of model is not enough to deal with generic domain and high
context and semantic dependency found is UGC noise.

More recently, social media text normalization was tackled by using contextual graph random walks.
(Hassan and Menezes, 2013) proposed a method that uses random walks on a contextual similarity bi-
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partite graph constructed from n-gram sequences on large unlabeled text corpus to build a normalization
lexicon. They obtained a precision of 92.43% and, using the method as a preprocessing step, improved
translation quality of social media text by 6%. (Han et al., 2012) also presented an approach for un-
supervised construction of normalization lexicons based on context information. Instead of a graph
representation, this approach uses string similarity measures between word within a given context. (Ling
et al., 2013) proposed a supervised learning technique for learning normalization rules from machine
translations of a parallel corpus of microblog messages. They built two models that learn generalizations
of the normalization process – one on the phrase level and the other on the character level. The approach
was shown able to improve multiple machine translation systems.

Our technique is most similar to (Sridhard, 2015), since we implement an adaptation of the method
presented in the mentioned work. The method proposed by (Sridhard, 2015) aims to learn distributed rep-
resentations of words to capture the notion of contextual similarity and subsequently learn normalization
lexicons from these representations in a completely unsupervised manner. The lexicons are represented
as finite-state machines (FSMs) and the process of normalization is performed by transducing the noisy
words from the FSMs. Our work makes use of different distributed representation of words, different
scoring function for candidate generation and hash structures (dictionaries) instead of FSMs. We also
introduce a method for automatically expanding the learned lexicons.

Regarding Brazilian Portuguese, some studies have been performed considering noises in specific do-
mains, such as reviews of products (Duran et al., 2014), and some tools have been developed specifically
for that same domain. The normalizer described in (Duran et al., 2015) is, as far as we know, the only
tool for text normalization available for Brazilian Portuguese. The proposed lexicon-based normalizer
considers that errors found in UGC are divided into six categories: Common misspellings: context-free
orthographic errors, often phonetically-motivated. Real-word misspellings: contextual orthographic
errors. Words that are contained in the language lexicon, but are wrong considering the context they
appear. Internet slang: abbreviations and expressions often used informally by internet users. Case use
(proper names and acronyms): proper names and acronyms wrongly or not at all capitalized. Case use
(start of sentence): sentences starting with a lower case word. Glued words: agglutinated words that
should be split. Punctuation: wrong use of sentence delimiters.

Since a large part of misspellings found in UGC is phonetically-motivated, (Duran et al., 2015) pro-
posed a phonetic-based speller for correcting such errors. The speller combines edit distance and several
specific phonetic rules for Portuguese in order to generate correction candidates. The correction of in-
ternet slang and proper name and acronyms capitalization is based on a set of lexicons. Each lexicon
contains many pairs of wrong–correct form of words. The correction is performed by looking up the
noisy word in the lexicon and substituting it by the correct version. Despite this technique achieving
good results in the product review domain, it is not scalable and is too restricted, since there is no form
of automatic lexicon-learning. Therefore, it is not suitable for a generic, domain-free normalizer. The re-
sults obtained by (Duran et al., 2015) will be further discussed, as they are the main source of comparison
for our work.

Another technique specially designed for Brazilian Portuguese is the one proposed by (de Men-
donça Almeida et al., 2016). The work presents two approaches for dealing with spelling correction
of UGC. The first approach makes use of three phonetic modules, composed by the Soundex algorithm,
a grapheme-to-phoneme converter and a set of language-specific phonetic rules. The second one com-
bines grapheme-to-phoneme conversion and a decision tree classifier. The classifier is trained on a corpus
of noisy text and employs 14 features (including string and phonetic similarity measures) to identify and
correct different classes of orthographic errors. The approach achieves average correction accuracy of
78%, however requires training on an annotated corpus and feature extraction – making it less scalable
than an unsupervised technique.

3 Distributed Representation of Words

Distributed representations of words in a vector space, also known as word embeddings, are able to
capture lexical, semantic, syntactic, and even contextual similarity between words. This idea has been
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recently applied to a wide range of NLP tasks with surprising results (Sridhard, 2015). The Skip-gram
model, introduced by (Mikolov et al., 2013a), brought forth an efficient method for learning high-quality
vector representations of words from large amounts of unstructured text data. This model, unlike previous
ones, does not involve dense matrix multiplications – making the training optimized and efficient.

Figure 1: The Skip-gram model architecture (Mikolov et al., 2013a).

The Skip-gram model, graphically represented in Figure 1, tries to maximize classification of a word
based on another word in the same sentence. Each current word is used as input to a log-linear classifier
and predicts words in a windows before and after the current one. More formally, the goal of the Skip-
gram model is to maximize the average log probability given by:

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (1)

where c is the size of the training context, centered on word wt (Mikolov et al., 2013b). In practice, word
embeddings can be trained using many frameworks that already implement the training process. We used
the Gensim 1 framework for Python. The process and parameters we used to train the embeddings will
be explained in the next section.

For training distributed representations of words, two sources of data were used in our work. One is
a large corpus of product reviews containing both noisy and correct texts. A complete description of the
corpus can be found in (Hartmann et al., 2014). The other one is a corpus of Twitter posts (tweets) written
in Portuguese. The tweets were extracted using a crawler developed by the authors and the data cannot
be distributed due to license restrictions. Most of that content is noisy, considering that the tweets are
limited by a maximum of 140 characters and that Twitter is, in general, an informal medium of content
generation.

Both corpora had to be preprocessed in order to improve the text quality. First, the Twitter corpus was
tokenized using Twokenizer 2, a specific tokenizer for tweets. User names, hashtags and hyperlinks were
removed. The product review corpus was tokenized using a simple word tokenizer and predefined tags
contained in the reviews (such as "What I liked about this product:") were removed. Next, the sentences
were segmented by using the tool provided by (Duran et al., 2015). After segmentation, we obtained 6.8
million sentences from the Twitter corpus and 20 million from the product reviews corpus.

4 Similarity Measures

In order to find candidates for normalizing noisy words, some similarity measures were employed. The
cosine distance between two D-dimensional vectors u and v can be used to determine how similar are
two word embeddings. It is defined as:

cosine similarity =

D∑
i=1

ui × vi√
D∑

i=1
(ui)2 ×

D∑
i=1

(vi)2
(2)

1https://radimrehurek.com/gensim/index.html
2http://www.cs.cmu.edu/~ark/TweetNLP/#pos
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To illustrate the representation power of word embeddings, the following image shows the 25 nearest
neighbors (closest cosine similarity) of word ’você’ (you) obtained from our word embedding model:

Figure 2: 25 nearest neighbors for word ’você’ (you) found in our word embedding model.
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In Figure 2, the canonical form of the word (bold) is located at the center. Around it, there are many
noisy variations found in the embedding model. In order to find the canonical form parting from a noisy
word, it is also necessary to consider the lexical similarity. We compute its value using an adaptation of
the definition presented in (Hassan and Menezes, 2013), as:

lexical similarity(w1, w2) =

{
LCSR(w1,w2)
MED(w1,w2) , ifMED(w1, w2) > 0

LCSR(w1, w2), otherwise
(3)

where w1 and w2 are two given words and MED(w1, w2) is the modified edit distance between them,
calculated as MED(w1, w2) = ED(w1, w2) − DS(w1, w2). DS(w1, w2) is the diacritical symmetry
between w1 and w2 – i.e, the number of characters from a word that are aligned with versions of itself
with diacritical marks in the other word. For instance, the diacritical symmetry between maçã (apple)
and maca (stretcher) is 2. This measure is employed due to the fact that many misspellings in Portuguese
happen because of a single diacritic, thus this modification improves the correction of such errors. LCSR
refers to Longest Common Subsequence Ratio and is calculated, in our modified version, as:

LCSR(w1, w2) =
LCS(w1, w2) + DS(w1, w2)

max length(w1, w2)
(4)

where LCS refers to Longest Common Subsequence, being usually obtained through a dynamic pro-
gramming approach. The lexical similarity measure indicates how similar two words are, ranging from
0 (no similarity) to 1 (identical).

5 Learning Normalization Lexicons

Having obtained the set of word embeddings, the method requires a list of canonical words as input.
This list may be a lexicon of words recognized by a language, but may also be a list of words considered
treatable by the application. We used the UNITEX-PB 3 lexicon for Brazilian Portuguese, removing
words with frequency below 100 on Corpus Brasileiro 4 frequency list. This pruning step removes words
that probably do not appear in UGC, reducing the lexicon size and improving performance. The next
step obtains the K-nearest neighbors, excluding words contained in the lexicon, in the vector space for

3http://www.nilc.icmc.usp.br/nilc/projects/unitex-pb/web/dicionarios.html
4http://corpusbrasileiro.pucsp.br/cb/Acesso.html
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each canonical word contained in the lexicon. We used K = 25, following (Sridhard, 2015) experiments.
This step creates a list of possible corruptions (noisy versions) for every canonical word wc. Considering
the vector space V , the lexicon L and wc every word ∈ L, the list of noisy versions is obtained as:

noisy versions[wc] = ∀w∈V,V /∈L max
k

cosine similarity(wc, w) (5)

After obtaining the list of noisy versions, it is necessary to invert it, because we must find the canonical
version given a noisy word – therefore, the noisy version must index a list of correction candidates to it.
In order to do so, we loop through every noisy versions list. We create a new structure to store each noisy
word wn as index to a list of canonical words that contain wn in its noisy versions list. We then store a
tuple (wc, score(wn, wc)) as a candidate to correct wn. The score is calculated as:

score(wn, wc) = n× lexical similarity(wn, wc) + (1− n)× cosine similarity(wn, wc) (6)

Different from (Sridhard, 2015), our approach considers the cosine similarity at the score function,
because some corrections have low lexical similarity but appear in the same context, specially for abbre-
viations – for instance, d+ as abbreviation for demais (too much). The term n is a value between 0 and 1
that indicates the weight (or importance) given to the lexical similarity. In our experiments, n was set as
0.8. The learned lexicon is stored as a hash structure, indexed by wn, where each entry contains the list
of candidate corrections for the respective noisy word. To determine the best candidate to correct wn, we
simply compute max(score(wn, wc)). Algorithm 1 summarizes the lexicon learning process.

Input: list of canonical words L, word embedding model V , number of K nearest neighbors
Output: learned lexicon T where T [wn] is the list of candidates for correcting noisy word wn

for each w ∈ L do
for each v ∈ V do

if v /∈ L then
compute cosine similarity(w, v)

end
store top K neighbors in C(w)

end
end
for each w ∈ C do

for each w′ ∈ C[w] do
T [w′]⇐ (w, score(w′, w))

end
end

Algorithm 1: Unsupervised Lexicon Learning

5.1 Expanding the Learned Lexicon
Given that only the K-nearest neighbors of a canonical word are added to the lexicon, some very infre-
quent noisy words may not be a top neighbor of any canonical word. In this case, the approach presented
above cannot find any correction candidates. In order to solve this issue, we added an expansion step to
the method. If a given noisy wn is not in the learned lexicon, that is, wn /∈ T , then we find the canonical
word from L which is most similar to wn, and add it as a correction candidate. Thus, the expansion step
can be defined as:

If wn /∈ T : T [wn]⇐ max
wc∈L

lexical similarity(wn, wc) (7)

Despite its simplicity, the expansion step improved the overall correction recall.

5.2 Representing Context
Thus far, our framework has scored candidates deterministically, based solely on lexical information. In
this case, correction candidates will always be the same for a given noisy word, independent from the
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context it appears. This idea might be enough for correcting internet slang, since equal abbreviations are
seldom used for different words. However, ignoring contextual information makes it impossible to handle
contextual orthographic errors (also called real-word errors or RWEs). This type of error occurs when a
given word is in the recognized lexicon (so it is not per se a noisy word) but is incorrect due to the context
it appears. In Portuguese, cases of real-word errors caused by missing a single diacritic are frequent and
can only be corrected by considering the context. In order to do so, we used a language model (LM)
(with trigrams) trained on a Wikipedia sample consisting of 3841834 sentences. We trained our LM
using the KenLM framework, which employs modified Kneser-Ney smoothing for estimation (Heafield,
2013). The estimated trigram probabilities were normalized to fit the range of the other measures and
then added to the scoring function. The correction of RWEs relies only on similarity measures and on the
language model, because it maps a canonical (but inadequate to the context) word to another canonical
word – therefore the learned lexicon based on word embeddings does not include it.

6 Evaluation

In order to evaluate the proposed method and compare it to already existing tools for Brazilian Por-
tuguese, two annotated samples of product reviews written by users were used. Each sample contains 60
reviews, with every error manually annotated by a specialist. The annotation considers the six categories
of noise proposed by (Duran et al., 2015), but our technique can only be applied to the correction of
orthographic errors and internet slang.

First, we conducted experiments in order to determine the best word embedding model. We trained
both Skip-gram and Continuous bag-of-words (Cbow) models, implemented in Gensim, to learn the
embeddings. We used a context window of size 5, i.e 2 words before and 2 after the center, and used
hierarchical sampling for reducing the vocabulary size during training, considering only words with a
minimum count of 10 occurrences. We generated embeddings with 100, 300 and 500 dimensions. For
each dimension size, we trained the embeddings on two different sets of data: the first one, referred as
Noisy, is exactly as described in Section 3, and the second one, referred as Hybrid, includes an additional
dataset containing 38 million sentences from Wikipedia. Table 1 shows the recall measure obtained for
the correction of orthographic errors (O) (without the LM probabilities) and internet slang (I) (with the
best setup) using each embedding model trained.

Table 1: Results for error correction obtained from each word embedding model

Dimensions
Model 100 300 500

O I O I O I

Cbow Hybrid 67.2% 64.5% 72.3% 64.5% 72.1% 64.5%

Cbow Noisy 70.7% 54.8% 74.7% 64.5% 76.0% 64.5%

Skip-gram Hybrid 63.8% 77.4% 74.2% 71.0% 76.0% 71.0%

Skip-gram Noisy 77.3% 64.5% 78.6% 67.7% 78.6% 77.4%

The Skip-gram model with 500 dimensions showed the best results. Therefore, further experiments
were conducted using these embeddings. In order to better evaluate the framework, we performed ex-
periments using three different learned lexicons models. The only difference between them is the word
embedding model employed. The first one, referred as Noisy, uses embeddings trained on data prepro-
cessed exactly as described in Section 3. The second model, referred as Clean, uses embedding trained
on data with an additional preprocessing step: every symbol that is not either a letter or a number is
removed. Both are Skip-gram models with 500 dimensions. The third model is an Ensemble contain-
ing the previous ones. Its output is defined as max(output(Clean), output(Noisy)). We have found
empirically that the Noisy model is better for internet slang correction, the Clean model is better for
orthographic errors and the Ensemble joins the best of both. In Tables 2 and 3 we compare the three lex-
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icon models with UGCNormal, the tool proposed by (Duran et al., 2015). The tables follow the format
X/Y = Z, being X the total of corrections performed by each model, Y the total of annotated errors in
the sample and Z the obtained recall measure.

Table 2: Results for orthographic errors correction

Model Corrections

Noisy 129/164 = 78.6%

Clean 135/164 = 82.3%

Ensemble 137/164 = 83.5%

Ensemble+Expansion Step 149/164 = 90.9%

Ensemble+Expansion Step+LM 151/164 = 92.1%

Expansion Step+LM (RWEs) 84/115 = 73.0%

UGCNormal 137/164 = 83.5%

UGCNormal (RWEs) 39/115 = 33.9%

Table 3: Results for internet slang correction

Model Corrections

Noisy 20/31 = 64.5%

Clean 17/31 = 54.8%

Ensemble 22/31 = 71.0%

Ensemble+Expansion Step 23/31 = 74.2%

Ensemble+Expansion Step+LM 24/31 = 77.4%

UGCNormal 19/31 = 61.3%

The results show that the ensemble model with expansion step and context representation (LM) out-
performs every other model, including UGCNormal. For RWEs, the combination of expansion step and
language model outperforms UGCNormal by a large margin.

7 Conclusion

We presented an unsupervised method for learning normalization lexicons based on similarity measures
and distributed representation of words. Our approach does not require sets of rules or domain-specific
lexicons, but only a lexicon containing a list of canonical words. Therefore, it can be easily expanded
and adapted according to the needs of each specific application. We trained distributed representations
using the Skip-gram model on a large corpus of both Twitter posts and product reviews. The results
indicate that the method for both internet slang and orthographic error correction surpasses the results
obtained from already existing tools for Brazilian Portuguese. The expansion step, despite being simple,
improved the correction significantly. As future work, different methods of context representation must
be explored. Methods for dealing with multiword expressions, such as acronyms for internet slang, must
be added to our framework. Despite being rare in Brazilian Portuguese, such language constructs are
commonly find on internet slang, mainly derived from English. Correcting more categories of noise,
either by expanding this technique or investigating new approaches, is the following step for this project.
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Abstract

The SemEval-2010 benchmark dataset has brought renewed attention to the task of automatic
keyphrase extraction. This dataset is made up of scientific articles that were automatically con-
verted from PDF format to plain text and thus require careful preprocessing so that irrevelant
spans of text do not negatively affect keyphrase extraction performance. In previous work, a
wide range of document preprocessing techniques were described but their impact on the overall
performance of keyphrase extraction models is still unexplored. Here, we re-assess the perfor-
mance of several keyphrase extraction models and measure their robustness against increasingly
sophisticated levels of document preprocessing.

1 Introduction

Recent years have seen a surge of interest in automatic keyphrase extraction, thanks to the availability
of the SemEval-2010 benchmark dataset (Kim et al., 2010). This dataset is composed of documents
(scientific articles) that were automatically converted from PDF format to plain text. As a result, most
documents contain irrelevant pieces of text (e.g. muddled sentences, tables, equations, footnotes) that re-
quire special handling, so as to not hinder the performance of keyphrase extraction systems. In previous
work, these are usually removed at the preprocessing step, but using a variety of techniques ranging from
simple heuristics (Wang and Li, 2010; Treeratpituk et al., 2010; Zervanou, 2010) to sophisticated docu-
ment logical structure detection on richly-formatted documents recovered from Google Scholar (Nguyen
and Luong, 2010). Under such conditions, it may prove difficult to draw firm conclusions about which
keyphrase extraction model performs best, as the impact of preprocessing on overall performance cannot
be properly quantified.

While previous work clearly states that efficient document preprocessing is a prerequisite for the ex-
traction of high quality keyphrases, there is, to our best knowledge, no empirical evidence of how prepro-
cessing affects keyphrase extraction performance. In this paper, we re-assess the performance of several
state-of-the-art keyphrase extraction models at increasingly sophisticated levels of preprocessing. Three
incremental levels of document preprocessing are experimented with: raw text, text cleaning through
document logical structure detection, and removal of keyphrase sparse sections of the document. In
doing so, we present the first consistent comparison of different keyphrase extraction models and study
their robustness over noisy text. More precisely, our contributions are:

• We show that performance variation across keyphrase extraction systems is, at least in part, a func-
tion of the (often unstated) effectiveness of document preprocessing.

• We empirically show that supervised models are more resilient to noise, and point out that the
performance gap between baselines and top performing systems is narrowing with the increase in
preprocessing effort.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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• We compare the previously reported results of several keyphrase extraction models with that of
our re-implementation, and observe that baseline performance is underestimated because of the
inconsistence in document preprocessing.

• We release both a new version of the SemEval-2010 dataset1 with preprocessed documents and our
implementation of the state-of-the-art keyphrase extraction models2 using the pke toolkit (Boudin,
2016) for use by the community.

2 Dataset and Preprocessing

The SemEval-2010 benchmark dataset (Kim et al., 2010) is composed of 244 scientific articles collected
from the ACM Digital Library (conference and workshop papers). The input papers ranged from 6
to 8 pages and were converted from PDF format to plain text using an off-the-shelf tool3. The only
preprocessing applied is a systematic dehyphenation at line breaks4 and removal of author-assigned
keyphrases. Scientific articles were selected from four different research areas as defined in the ACM
classification, and were equally distributed into training (144 articles) and test (100 articles) sets. Gold
standard keyphrases are composed of both author-assigned keyphrases collected from the original PDF
files and reader-assigned keyphrases provided by student annotators.

Long documents such as those in the SemEval-2010 benchmark dataset are notoriously difficult to
handle due to the large number of keyphrase candidates (i.e. phrases that are eligible to be keyphrases)
that the systems have to cope with (Hasan and Ng, 2014). Furthermore, noisy textual content, whether
due to format conversion errors or to unusable elements (e.g. equations), yield many spurious keyphrase
candidates that negatively affect keyphrase extraction performance. This is particularly true for systems
that make use of core NLP tools to select candidates, that in turn exhibit poor performance on degraded
text. Filtering out irrelevant text is therefore needed for addressing these issues.

In this study, we concentrate our effort on re-assessing keyphrase extraction performance on three
increasingly sophisticated levels of document preprocessing described below.

Level 1: We process each input file with the Stanford CoreNLP suite (Manning et al., 2014)5. We use
the default parameters and perform tokenization, sentence splitting and Part-Of-Speech (POS) tagging.

Level 2: Similarly to (Nguyen and Luong, 2010; Lopez and Romary, 2010), we retrieve6 the original
PDF files from the ACM Digital Library. We then extract the enriched7 textual content of the PDF
files using an Optical Character Recognition (OCR) system8, and perform document logical structure
detection using ParsCit (Kan et al., 2010)9. We use the detected logical structure to remove author-
assigned keyphrases and select only relevant elements: title, headers, abstract, introduction, related
work, body text10 and conclusion. We finally apply a systematic dehyphenation at line breaks and run
the Stanford CoreNLP suite.

Level 3: As pointed out by (Treeratpituk et al., 2010; Nguyen and Luong, 2010; Wang and Li, 2010;
Eichler and Neumann, 2010; El-Beltagy and Rafea, 2010), considering only the keyphrase dense parts
of the scientific articles allows to improve keyphrase extraction performance. Accordingly we follow
previous work and further abridge the input text from level 2 preprocessed documents to the following:
title, headers, abstract, introduction, related work, background and conclusion. Here, the idea is to
achieve the best compromise between search space (number of candidates) and maximum performance
(recall).

1https://github.com/boudinfl/semeval-2010-pre
2https://github.com/boudinfl/pke
3pdftotext, http://www.foolabs.com/xpdf/
4Valid hyphenated forms may have their hyphen removed by this process.
5Use use Stanford CoreNLP v3.6.0.
6To ensure consistency, articles were manually collected.
7Additional information such as font format or spacial layout is also extracted.
8We use Omnipage v18, http://www.nuance.com/omnipage
9We use ParsCit v110505.

10We further filter out tables, figures, captions, equations, notes, copyright and references.
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Table 1 shows the average number of sentences and words along with the maximum possible recall
for each level of preprocessing. The maximum recall is obtained by computing the fraction of the ref-
erence keyphrases that occur in the documents. We observe that the level 2 preprocessing succeeds in
eliminating irrelevant text by significantly reducing the number of words (-19%) while maintaining a
high maximum recall (-2%). Level 3 preprocessing drastically reduce the number of words to less than
a quarter of the original amount while interestingly still preserving high recall.

Lvl 1 Lvl 2 Lvl 3

Avg. sentences 399 347 101
Avg. words 9 772 7 874 1 922
Max. recall 83.9% 81.8% 70.9%

Table 1: Statistics computed at the different levels of document preprocessing on the training set.

3 Keyphrase Extraction Models

We re-implemented five keyphrase extraction models : the first two are commonly used as baselines, the
third is a resource-lean unsupervised graph-based ranking approach, and the last two were among the top
performing systems in the SemEval-2010 keyphrase extraction task (Kim et al., 2010). We note that two
of the systems are supervised and rely on the training set to build their classification models. Document
frequency counts are also computed on the training set11. Stemming12 is applied to allow more robust
matching. The different keyphrase extraction models are briefly described below:

TF×IDF: we re-implemented the TF×IDF n-gram based baseline computed by the task organizers.
We use 1, 2, 3-grams as keyphrase candidates and filter out those shorter than 3 characters, containing
words made of only punctuation marks or one character long13.

Kea (Witten et al., 1999): keyphrase candidates are 1, 2, 3-grams that do not begin or end with a stop-
word14. Keyphrases are selected using a naı̈ve bayes classifier15 with two features: TF×IDF and the
relative position of first occurrence.

TopicRank (Bougouin et al., 2013): keyphrase candidates are the longest sequences of adjacent nouns
and adjectives. Lexically similar candidates are clustered into topics and ranked using TextRank (Mi-
halcea and Tarau, 2004). Keyphrases are produced by extracting the first occurring candidate of the
highest ranked topics.

KP-Miner (El-Beltagy and Rafea, 2010): keyphrase candidates are sequences of words that do not
contain punctuation marks or stopwords. Candidates that appear less than three times or that first occur
beyond a certain position are removed16. Candidates are then weighted using a modified TF×IDF
formula that account for document length.

WINGNUS (Nguyen and Luong, 2010): keyphrase candidates are simplex nouns and noun phrases
detected using a set of rules described in (Kim and Kan, 2009). Keyphrases are then selected using
a naı̈ve bayes classifier with the optimal set of features found on the training set17: TF×IDF, relative
position of first occurrence and candidate length in words.
11For more reliable estimates, we rely on level 2 counts when experimenting with level 3.
12We use the Porter stemmer in nltk.
13This filtering process is also applied to the other models.
14We use the stoplist in nltk, http://www.nltk.org
15We use the Multinomial Naive Bayes classifier from scikit-learn with default parameters, http://scikit-learn.

org
16To better see the impact of preprocessing, we do not consider the cutoff parameter in our experiments. The least allowable

seen frequency parameter is set to 2 which is the optimal value found on the training set.
17The optimal set of features in (Nguyen and Luong, 2010) also include the term frequency of substrings, but we observed a

significant drop in performance when this feature is included.
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Each model uses a distinct keyphrase candidate selection method that provides a trade-off between the
highest attainable recall and the size of set of candidates. Table 2 summarizes these numbers for each
model. Syntax-based selection heuristics, as used by TopicRank and WINGNUS, are better suited to
prune candidates that are unlikely to be keyphrases. As for KP-miner, removing infrequent candidates
may seem rather blunt, but it turns out to be a simple yet effective pruning method when dealing with
long documents. For details on how candidate selection methods affect keyphrase extraction, please refer
to (Wang et al., 2014).

Model Lvl 1 Lvl 2 Lvl 3

TF×IDF 80.2% 7 837 78.2% 6 958 67.8% 2 270
Kea 80.2% 3 026 78.2% 2 502 67.8% 912
TopicRank 70.9% 742 69.2% 627 57.8% 241
KP-Miner 64.0% 724 61.8% 599 48.7% 212
WINGNUS 75.2% 1 355 73.0% 1 007 63.0% 403

Table 2: Maximum recall and average number of keyphrase candidates for each model.

Apart from TopicRank that groups similar candidates into topics, the other models do not have any
redundancy control mechanism. Yet, recent work has shown that up to 12% of the overall error made
by state-of-the-art keyphrase extraction systems were due to redundancy (Hasan and Ng, 2014; Boudin,
2015). Therefore as a post-ranking step, we remove redundant keyphrases from the ranked lists generated
by all models. A keyphrase is considered redundant if it is included in another keyphrase that is ranked
higher in the list.

4 Experiments

4.1 Experimental settings
We follow the evaluation procedure used in the SemEval-2010 competition and evaluate the perfor-
mance of each model in terms of f-measure (F) at the top N keyphrases18. We use the set of combined
author- and reader-assigned keyphrases as reference keyphrases. Extracted and reference keyphrases are
stemmed to reduce the number of mismatches.

4.2 Results
The performances of the keyphrase extraction models at each preprocessing level are shown in Table 3.
Overall, we observe a significant increase of performance for all models at levels 3, confirming that
document preprocessing plays an important role in keyphrase extraction performance. Also, the differ-
ence of f-score between the models, as measured by the standard deviation σ1, gradually decreases with
the increasing level of preprocessing. This result strengthens the assumption made in this paper, that
performance variation across models is partly a function of the effectiveness of document preprocessing.

Somewhat surprisingly, the ordering of the two best models reverses at level 3. This showcases that
rankings are heavily influenced by the preprocessing stage, despite the common lack of details and
analysis it suffers from in explanatory papers. We also remark that the top performing model, namely
KP-Miner, is unsupervised which supports the findings of (Hasan and Ng, 2014) indicating that recent
unsupervised approaches have rivaled their supervised counterparts in performance.

In an attempt to quantify the performance variation across preprocessing levels, we compute the stan-
dard deviation σ2 for each model. Here we see that unsupervised models are more sensitive to noisy
input, as revealed by higher standard deviations. We found two main reasons for this. First, using multi-
ple discriminative features to rank keyphrase candidates adds inherent robustness to the models. Second,
the supervision signal helps models to disregard noise.

In Table 4, we compare the outputs of the five models by measuring the percentage of valid keyphrases
that are retrieved by all models at once for each preprocessing level. By these additional results, we aim

18Scores are computed using the evaluation script provided by the SemEval-2010 organizers.
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Model Lvl 1 Lvl 2 Lvl 3 σ2

TopicRank 12.2 12.5 14.5α,β 1.25
TF×IDF 16.0 16.4 19.3α,β 1.80

U
ns

up
.

KP-Miner 20.2 19.8 22.5α,β 1.46

Kea 19.2 19.3 21.2α 1.13

Su
p.

WINGNUS 20.5 20.3 21.8β 0.82

σ1 3.51 3.26 3.22

Table 3: F-scores computed at the top 10 extracted keyphrases for the unsupervised (Unsup.) and super-
vised (Sup.) models at each preprocessing level. We also report the standard deviation across the five
models for each level (σ1) and the standard deviation across the three levels for each model (σ2). α and
β indicate significance at the 0.05 level using Student’s t-test against level 1 and level 2 respectively.

to assess whether document preprocessing smoothes differences between models. We observe that the
overlap between the outputs of the different models increases along with the level of preprocessing. This
suggests that document preprocessing reduces the effect that the keyphrase extraction model in itself has
on overall performance. In other words, the singularity of each model fades away gradually with increase
in preprocessing effort.

Lvl 1 Lvl 2 Lvl 3

% valid keyphrases 19.9% 23.1% 25.1%

Table 4: Percentage of valid keyphrases found by all five keyphrase extraction models at each prepro-
cessing level.

4.3 Reproducibility

Being able to reproduce experimental results is a central aspect of the scientific method. While assessing
the importance of the preprocessing stage for five approaches, we found that several results were not
reproducible, as shown in Table 5.

Model Ori. Lvl 1 Lvl 2 Lvl 3

TopicRank 12.1 +0.1 +0.4 +2.4
TF×IDF 14.4 +1.6 +2.0 +4.9
KP-Miner 23.2 −3.2 −3.4 −0.7
WINGNUS 24.7 −4.2 −4.4 −2.8

Table 5: Difference in f-score between our re-implementation and the original scores reported in (Hasan
and Ng, 2014; Bougouin et al., 2013).

We note that the trends for baselines and high ranking systems are opposite: compared to the published
results, our reproduction of top systems under-performs and our reproduction of baselines over-performs.
We hypothesise that this stems from a difference in hyperparameter tuning, including the ones that the
preprocessing stage makes implicit. Competitors have strong incentives to correctly optimize hyperpa-
rameters, to achieve a high ranking and get more publicity for their work while competition organizers
might have the opposite incentive: too strong a baseline might not be considered a baseline anymore.

We also observe that with this leveled preprocessing, the gap between baselines and top systems is
much smaller, lessening again the importance of raw scores and rankings to interpret the shared task
results and emphasizing the importance of understanding correctly the preprocessing stage.
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5 Additional experiments

In the previous sections, we provided empirical evidence that document preprocessing weighs heavily on
the outcome of keyphrase extraction models. This raises the question of whether further improvement
might be gained from a more aggressive preprocessing. To answer this question, we take another step
beyond content filtering and further abridge the input text from level 3 preprocessed documents using
an unsupervised summarization technique. More specifically, we keep the title and abstract intact, as
they are the two most keyphrase dense parts within scientific articles (Nguyen and Luong, 2010), and
select only the most content bearing sentences from the remaining contents. To do this, sentences are
ordered using TextRank (Mihalcea and Tarau, 2004) and the less informative ones, as determined by
their TextRank scores normalized by their lengths in words, are filtered out.

Finding the optimal subset of sentences from already shortened documents is however no trivial task
as maximum recall linearly decreases with the number of sentences discarded. Here, we simply set the
reduction ratio to 0.865 so that the average maximum recall on the training set does not lose more than
5%. Table 6 shows the reduction in the average number of sentences and words compared to level 3
preprocessing.

Lvl 4 ∆ Lvl 3

Avg. sentences 71 −30.0%
Avg. words 1 470 −23.5%
Max. recall 65.9% −7.0%

Table 6: Statistics computed at level 4 of document preprocessing on the training set. We also report the
relative difference with respect to level 3 preprocessing.

The performances of the keyphrase extraction models at level 4 preprocessing are shown in Table 7.
We note that two models, namely TopicRank and TF×IDF, lose on performance. These two models
mainly rely on frequency counts to rank keyphrase candidates, which in turn become less reliable at level
4 because of the very short length of the documents. Other models however have their f-scores once
again increased, thus indicating that further improvement is possible from more reductive document
preprocessing strategies.

Model Lvl 4 ∆ Lvl 3

TopicRank 13.7 −0.8
TF×IDF 18.5 −0.8

U
ns

up
.

KP-Miner 23.2 +0.7

Kea 21.7 +0.5

Su
p.

WINGNUS 22.5 +0.7

Table 7: F-scores computed at the top 10 extracted keyphrases for the unsupervised (Unsup.) and su-
pervised (Sup.) models at level 4 preprocessing. We also report the difference in f-score with level 3
preprocessing.

6 Conclusion

In this study, we re-assessed the performance of several keyphrase extraction models and showed that
performance variation across models is partly a function of the effectiveness of the document prepro-
cessing. Our results also suggest that supervised keyphrase extraction models are more robust to noisy
input.

Given our findings, we recommend that future works use a common preprocessing to evaluate the
interest of keyphrase extraction approaches. For this reason we make the four levels of preprocessing
used in this study available for the community.
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Abstract

Text normalization is the task of transforming lexical variants to their canonical forms. We model
the problem of text normalization as a character-level sequence to sequence learning problem
and present a neural encoder-decoder model for solving it. To train the encoder-decoder model,
many sentences pairs are generally required. However, Japanese non-standard canonical pairs
are scarce in the form of parallel corpora. To address this issue, we propose a method of data
augmentation to increase data size by converting existing resources into synthesized non-standard
forms using handcrafted rules. We conducted an experiment to demonstrate that the synthesized
corpus contributes to stably train an encoder-decoder model and improve the performance of
Japanese text normalization.

1 Introduction

With the rapid spread of the social media, many texts have been uploaded to the internet. As such, social
media texts are considered important language resources owing to an increasing demand for informa-
tion extraction and text mining (Lau et al., 2012; Aramaki et al., 2011). However, these texts include
lexical variants such as insertions, phonetic substitutions and internet slangs. These non-standard forms
adversely affect language analysis tools that are trained on a clean corpus. Since Japanese has no ex-
plicit boundaries between words, word segmentation and part-of-speech (POS) tagging are extremely
important in Japanese language processing. For example, the output obtained using the Japanese mor-
phological analyzer: MeCab 1 for a non-standard sentence: “このあぷりすげえええ！” is as follows:

Input:このあぷりすげえええ！ (kono apuri sugeee; This app is greeeat!)
Output:この (This, Prenominal adjective) /あ (a, Filler) /ぷりすげえええ (UNK) /！(Symbol)

where the slashes indicate word boundaries. Although “アプリ” (apuri; app) is originally written in
Katakana form, it is written in Hiragana form “あぷり” (apuri; app) in this example. Japanese has several
writing scripts: Kanji, Hiragana and Katakana. Such interchanging between scripts in social media texts
often occurs. Furthermore, “すげえええ” (sugeeee; greeeat) is derived from “すごい” (sugoi; great) by
changing some vowels from /oi/ to /eee/. These non-standard forms such as “あぷり” and “すげえええ”
are not registered in the morphological analysis dictionary. For this reason, if a word does not exist in the
morphological analysis dictionary, the traditional system cannot predict the correct word segmentation
or POS tags. If we could normalize all non-standard forms, then the canonical sentence is considerd as
“このアプリすごい！”. As a result, we can obtain the correct result of morphological analysis for this
normalized sentence as follows:

Input:このアプリすごい！(kono apuri sugoi; This app is great!)
Output:この (This, Prenominal adjective) /アプリ (app, Noun) /すごい (great, Adjective) /！(Symbol)

As the above example shows, we would expect improvement in the result of the morphological analysis
by transforming non-standard forms into their standard ones.

In this work, we adopt the character-level encoder-decoder model as a method of Japanese text nor-
malization. Since the encoder-decoder model was proposed in the field of machine translation, it has
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://taku910.github.io/mecab/
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achieved good results in morphological inflection generation and error correction (Bahdanau et al., 2015;
Luong et al., 2015; Sutskever et al., 2015; Cho et al., 2014; Manaal et al., 2016; Barret et al., 2016). As
these models are capable of capturing sequential patterns, it is possible to apply the encoder-decoder
model to Japanese text normalization. As mentioned previously, Japanese has no explicit boundaries
between words. Thus, Japanese text normalization is naturally posed to a character-level sequence to
sequence learning.

Although the encoder-decoder model has been shown its effectiveness in large datasets, it is much less
effective for small datasets such as low-resource languages (Barret et al., 2016). Unfortunately, contrary
to machine translation, Japanese non-standard canonical pairs are scarce in the form of parallel corpora.
To address this issue, we propose a method of data augmentation to increase the data size by converting
existing resources into synthesized non-standard forms using handcrafted rules. We conducted an exper-
iment to demonstrate that the synthesized corpus provides stable training of the encoder-decoder model
and improves the performance of Japanese text normalization.

The contributions of this research can be summarized by citing two points. First, the proposed data
augmentation methods can provide stable training of the encoder-decoder model. Second, it can improve
the performance of Japanese text normalization by adding the synthesized corpus. The rest of this paper
is organized as follows. Section 2 describes the related work to our research including Japanese text
normalization and the neural encoder-decoder model. Section 3 introduces the model architecture in this
research. Section 4 describes how to construct a synthesized corpus. Section 5 discusses experiments
that we have performed and our corresponding analyses of the experimental results. Section 6 concludes
the paper with a brief summary and a mention of future work.

2 Related Work

In this section, we mainly describe text normalization for Japanese. Furthermore, we explain some
related works with regard to the encoder-decoder model in the field of machine translation.

2.1 Text Normalization

Several studies for joint modeling of morphological analysis and text normalization have been conducted
(Saito et al., 2014; Kaji and Kitsuregawa, 2014; Sasano et al., 2013). Saito et al. (2014) extracted non-
standard tokens from Twitter and blog texts, and manually annotated their standard forms. They auto-
matically generated derivational patterns based on the character-level alignment between non-standard
tokens and their standard forms, then included these patterns to a morphological lattice. Kaji et al. (2014)
similarly proposed a joint modeling for morphological analysis and text normalization via their construc-
tion of a normalization dictionary using handcrafted rules that were similar to those used in (Sasano et
al., 2013) to derive non-standard forms from the entries already registered in a dictionary. Sasaki et al.
(2013) solved Japanese text normalization as a character-level sequential labeling problem. Specifically,
they extracted one-to-one character alignment from non-standard canonical pairs. Then, they performed
character-level Conditional Random Fields (CRF) to normalize a non-standard sentence by assigning
a tag to each character. In their work, the sequence labeler specifies the class of rules such as delete,
replace and no edit. While these methods need feature engineering, our approach uses character vectors
as features instead of discrete features of a surface character sequence. In our approach, a canonical
text is generated as a sequence of characters from all character vocabularies, which is different from the
approaches that assign tags from a fixed tag set.

2.2 The Encoder-Decoder Model

In this work, we normalize non-standard sentences using the neural encoder-decoder model. The
encoder-decoder model has been shown effective in the field of machine translation (Bahdanau et al.,
2015; Luong et al., 2015; Sutskever et al., 2015; Cho et al., 2014). It consists of two neural networks: the
encoder network and the decoder network. The encoder maps the input sentence to a fixed-dimensional
vector and the decoder generates the output sentence. Although the encoder-decoder model has been
shown effective with large datasets, it is much less effective in small datasets of low-resource lan-
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Figure 1: The encode-decoder architecture for Japanese text normalization

guages (Barret et al., 2016). As a solution to this issue, we propose a method of data augmentation
to increase data size. Our approach converts existing resources into synthesized non-standard forms with
handcrafted rules.

Our model is also inspired by character-level models of error correction and morphological inflection
(Manaal et al., 2016; Ziang et al., 2016). However, the character set used in Japanese is numerous much
larger than that in English, which makes the encoder-decoder model challenging. For example, there are
about 3,500 Kanji character types used in a Japanese newspaper corpus. On the contrary, the character
set used in English includes at most 100 characters; lower alphabet, upper alphabet, numerals and special
symbols.

3 The Model Architecture

In this section, we briefly describe the architecture of our model. Our neural network model consists of
the encoder and decoder networks. The encoder maps the input sentence to a fixed-dimensional vector
with bidirectional recurrent neural network. The decoder is also a recurrent neural network (RNN) that
uses a content-based attention mechanism (Bahdanau et al., 2015) to attend to the encoded representa-
tion, and generate the output sentence one character at a time. Figure 1 shows our text normalization
architecture. Our model performs at a character-level process in the encoder as well as the decoder. The
encoder reads the input x = (x1, x2, . . . , xN ), where xi ∈ RV is an input vector of length V . The length
V is equal to the vocabulary size of all characters in the training data. xi is represented as a one-hot
vector that corresponds to a character. N is the length of the input sentence. The decoder generates the
output y = (y1, y2, . . . , yM ), where yi ∈ RV is an output vector of length V . yi is represented as a
one-hot vector that corresponds to a character. M is the length of the output sentence. Then, the task of
text normalization is formularized as follows:

P (y|x; θ) =
M∏
t=1

p(yt|y1, y2, . . . , yt−1, x) (1)

To summarize, we map a non-standard sentence x to a canonical sentence y with the encoder-decoder
model.

3.1 The Encoder Network
The encoder maps the input sentence to a fixed-dimensional vector h with a bidirectional RNN. The bidi-
rectional RNN has two parallel layers in two directions, and these two layers memorize the information
of the sentences from both forward and backward direction (Schusteret al., 1997). More specifically,
given the input vector x, the forward and backward hidden vectors are computed by using an RNN as
follows: −→

h t = GRU(xt,
−→
h t−1) (2)
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←−
h t = GRU(xt,

←−
h t+1) (3)

where
−→
h t ∈ Rl is a forward hidden vector at time t and GRU denotes the gated recurrent unit function

that is similar to long short-term memory units (LSTMs), which have shown to improve the performance
of RNN (Cho et al., 2014). GRU allows the retention of information from time steps in the distant past.
GRU has two gates: the update gate and the reset gate. These gates control how much each hidden
unit remembers or forgets the information while reading a sequence. Finally, in the encoder we get
ht = [−→h t,

←−
h t] by concatenating the forward hidden state

−→
h t and the backward one

←−
h t for each time.

3.2 The Decoder Network
The decoder network is also GRU based on a recurrent neural network. The decoder is trained to predict
the next output yt, given the encoded h = [h1, h2, . . . , hN ] and all the previously predicted outputs
y1, y2, . . . , yt−1.

yt = Decoder(y1, y2, . . . , yt−1, h) (4)

Specifically, the decoder is conditioned on the encoded representation ct which is the weighted sum of
the encoded hidden states ht by an attention mechanism. The attention mechanism is computed as:

ct =
N∑

j=1

αtjhj (5)

αtj =
exp(etj)∑N

k=1 exp(etk)
(6)

etj = vt
a tanh(Wast−1 + Uahj + ba) (7)

The attention mechanism decides which parts of the input characters to be paid attention. Then, a hidden
state of the decoder st is computed as:

st = GRU(st−1, yt−1, ct) (8)

In the decoder, we compute the hidden layer st at time t and feed this into a softmax layer to obtain the
conditional probability of the output character yt as:

ot = softmax(Wsst + bs) (9)

Finally, we obtain the max probability of ot as the output character yt at time t.

3.3 Training
We use the cross-entropy per time step summed over the output sequence y as a loss function. Given
the training data of the non-standard sentence x and the canonical sentence y, the goal is to optimize the
parameters set θ by minimizing the loss function E(θ).

E(θ) = −
∑

(x,y)∈D

log P (y|x; θ) (10)

We minimize the loss function E(θ) using stochastic gradient-based optimization techniques.

4 Construction of Synthesized Corpus

To address the problem of a small dataset, a method of data augmentation to increase data size is pro-
posed. To achieve the increase in data size, our approach focuses on converting existing resources into
synthesized non-standard forms using handcrafted rules. Specifically, we convert a morpheme in the
canonical form from the newswire portion of Balanced Corpus of Contemporary Written Japanese (BC-
CWJ) (Maekawa et al., 2014) into a non-standard form with handcrafted rules. We use some rules from
the work of (Sasano et al., 2013). Our proposed synthesized rules are explained below in detail.
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rules part-of-speech vowel original canonical form transformed non-standard form
(1) adjective i かわいい (kawaii; cute) かわいー (kawaii)
(2) auxiliary verb i たい (tai; want) てええ (teee)
(3) adjective i 美味しい (oishii; delicious) 美味しぃ(oishii)
(4) sentence-end particle a な (na) なぁ(naa)
(5) auxiliary verb a です (desu) で～す (deesu)
(6) interjection u ありがとう (arigatou; Thank you) ありがと (arigato)

Table 1: Examples of transforming canonical forms into their non-standard forms

Rule 1: Substitution of vowel characters with long sound symbols
Japanese vowel characters “あ”(a), “い”(i), “う”(u), “え”(e) and “お”(o) are substituted by long
sound symbols “ー” or “～”. For example, a vowel character “う” in the morpheme “どう” (dou;
how) is substituted by “ー” and this morpheme is transformed as “どー” (doo).

Rule 2: Substitution of an end of the word with a common non-standard form
For example, “すげえええ” (sugeeee; greeeat) is derived from “すごい” (sugoi; great) by changing
the vowels from /oi/ to /eee/, where changing vowels are observed in Japanese social media texts.
Thus, we substitute the end of the word of canonical forms with common non-standard form such
as changing vowels.

Rule 3: Substitution with lowercases
Some hiragana characters, such as “あ”(a), “い”(i), “う”(u), “え”(e), “お”(o) and “わ”(wa) are
substituted by their lowercases: “ぁ”, “ぃ”, “ぅ”, “ぇ”, “ぉ” and “ゎ”.

Rule 4: Insertion of vowel characters or double consonants
Japanese vowel characters (their lowercases) or double consonants “っ” are inserted into a mor-
pheme.

Rule 5: Insertion of long sound symbols
Long sound symbols “ー” or “～” are inserted into a morpheme.

Rule 6: Abbreviation
Abbreviate some characters from a morpheme. For example, we drop “い” from this canonical
form“している”(shiteiru; to be doing), which results in “してる”(shiteru) as the non-standard form.

Table 1 shows examples of the application of our rules to the newswire portion of BCCWJ. To apply
our rules, we would first check the POS, surface form and vowel of a morpheme from a sentence in
BCCWJ; Then, we would employ the appropriate rules to the morpheme. Note that the rules are not
applicable to some sentences in the corpus.

5 Experiments

To evaluate the effectiveness of our normalization method, we conducted experiments on a microblog
data to confirm the effectiveness of our model. For the experiments, we used the Microblog corpus and
the Synthesized corpus for training. Both corpora consist of canonical and non-standard sentence pairs.
The Synthesized corpus comprised 213,618 non-standard and canonical sentences pairs. The Microblog
corpus was constructed from Japanese Twitter data by Kaji and Kitsuregawa (2014). They collected
17,386 Japanese tweets using the Twitter Api. Among these, 1000 tweets were randomly selected, and
they annotated the 1831 sentences with canonical forms and morphological information. In our work,
we extracted 506 sentences that included at least one non-standard form from the Microblog corpus.
These extracted sentences comprised 697 non-standard canonical pairs. In the preprocessing, repetitions
of more than one character of long sound symbols, namely “ー”, “～” and the double consonant “っ”
are reduced back to one character, whereas the others are reduced to three characters. We used these
sentences as the Microblog corpus.
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method test CER(%)
No-operation 17.15
Rule-based 15.07
CRF (Microblog corpus) 13.71
CRF (Synthesized corpus) 13.63
CRF (Combined corpus) 13.43
EncDec (Microblog corpus) 87.07
EncDec (Synthesized corpus) 13.54
EncDec (Combined corpus) 13.43

Table 2: Results for test sets on CER

Figure 2: Scatter plot of the relationship between Test CER and the training data size

5.1 Compared Methods

We compared our method with two baseline methods listed in Table 2. Rule-based is a method of
applying simple rules to a non-standard sentence in order to normalize it. In particular, we use the
following rules: “Substitution of long sound symbols with vowel characters” and “Deletion of long
sound symbols or lowercases”. CRF is a method of tagging each character with normalization rules
proposed by (Sasaki et al., 2013). Specifically, we extracted one-to-many character alignments from
non-standard canonical pairs of the training data. Then, we assigned each character the class of rules
such as “delete”, “replace with arbitrary characters” and “no edit”. The features we used in CRF were
“the current characters including window size of 2” and “the binary value indicating whether the current
character is a vowel character or not”.

EncDec is our proposed method. Across all the encoder-decoder models described in this paper,
we used the following hyperparameters. We used the Adam optimizer with a learning rate of 0.0002
(Diederik Kingma and Jimmy Ba, 2014). In both the encoder and decoder models, we used a single
layer GRU with the hidden vector of size 500. The size of the character embedding vector was 250. The
minibatch size was 32. While models are trained for 50 epochs, the parameters set was selected with
the lowest character error rate on the development set. All results were obtained by using a beam search
with a beam width of 10. Our models were implemented using Theano (Theano Development Team,
2016). In decoding, characters with the exception of Hiragana, Katakana, Kanji and long sound symbols
are directly to the output.

We explain how to use the training datasets on each method in Table 2. In the case of Rule-based,
the training data is not used at all. In the case of CRF (Microblog corpus) and EncDec (Microblog
corpus), we used only the Microblog corpus as the training data. In the case of CRF (Synthesized corpus)
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sentences
input sentence ラルクって海外でも人気すげーな☆ (L’Arc is greeatly popular in the world☆)
target sentence ラルクって海外でも人気すごいな☆ (L’Arc is greatly popular in the world☆)
EncDec (Microblog) 一近と一ー中ちゃんとうらみたとう☆ (This sentence doesn’t make sense.)
EncDec (Synthesized) ラルクって海外でも人気すごいな☆ (L’Arc is greatly popular in the world☆)

Table 3: System output examples: The training of EncDec on the different training data sets

sentences
input sentence (1) おごりっすか？ (isit your treat?)
target sentence (1) おごりですか？ (Is it your treat?)
Rule-based おごりっすか？ (isit your treat?)
CRF (Microblog) おごりっすか？ (isit your treat?)
EncDec (Combined) おごりですか？ (Is it your treat?)
input sentence (2) 久々にＴｗｉｔｔｅｒ浮上したなぁ。(I’ve not been on twitter for a long time.)
target sentence (2) 久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long time.)
Rule-based 久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long time.)
CRF (Microblog) 久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long time)
EncDec (Combined) 久久々にＴｗｉｔｔｅｒ浮上したな。(I’ve not been on twitter for a long long time.)
input sentence (3) 車離れが捗りますなーｗ (It makes people turning away from driving.)
target sentence (3) 車離れが捗りますなｗ (It makes people turning away from driving.)
Rule-based 車離れが捗りますなｗ (It makes people turning away from driving.)
CRF (Microblog) 車離れが捗りますなｗ (It makes people turning away from driving.)
EncDec (Combined) 車離れが暇りますなｗ (It makes free turning away from driving.)

Table 4: System output examples: Comparison between our method and the baselines

and EncDec (Synthesized corpus), we used only the Synthesized corpus as the training data, while the
Microblog corpus is only used as the development data. In the case of EncDec (Combined corpus) and
CRF (Combined corpus), we used the Microblog corpus and the Synthesized corpus together as the
training data and then termed both as the Combined corpus.

5.2 Evaluation

As our evaluation metric, we used a character error rate (CER), which is defined as the Levenshtein edit
distance between the predicted character sequence x and the target character sequence y, normalized
by the total number of characters in the target. CER indicates the closeness of the normalized sentence
toward the target sentence.

In the experiments, we performed 5-fold cross validation. By dividing the Microblog corpus into the
test data, development data and training data, we tested on only the Microblog corpus to evaluate the
effectiveness of each method on all the microblog data.

5.3 Results and Discussion

Table 2 shows the results of our experiments on test CER. No-operation indicates a baseline that leaves
the input sentence unchanged. This demonstrates that the input sentence has about two non-standard
characters in itself. As shown in Table 2, the Rule-based method reduces errors by 2.08％, as compared
with No-operation. CRF trained on only the Microblog corpus: CRF (Microblog corpus) reduces er-
rors by 3.44％, as compared with No-operation. With these results, when the encoder-decoder model
trained on only the Microblog corpus, we found that the EncDec (Microblog corpus) is worse than
No-operation, then the results in CER from 17.15％ to 87.07％. As Table 3 shows, it generated en-
tirely different strings of the input sentence. This indicates that the Microblog corpus is too small for
training the encoder-decoder model; however, the Synthesized corpus contributes to the stable train-
ing of the encoder-decoder model. Additionally, EncDec (Synthesized corpus) is able to normalize the
non-standard form “すげー” (sugee; greeat) into the canonical form “すごい” (sugoi; great) without
generating different strings of the input sentence. Figure 2 shows the relation between test CER and
the training data size for the encoder-decoder model. The first dotted line indicates that it needs more
than 10,000 sentences to reduce the error rate than No-operation. The second dotted line represents that
about 200,000 sentences reach CER on CRF (Microblog corpus). As we have combined the Microblog
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corpus and the Synthesized corpus, the Combined corpus contributes to improving the performance of
Japanese text normalization in CRF and EncDec. Both methods are able to reduce errors by 3.72％,
as compared with No-operation. Other examples of our normalization system output are illustrated in
Table 4. Example (1) shows that our method is able to normalize the spoken form “っす” (ssu; is) into
its canonical form “です” (desu; is). Examples (2) and (3) demonstrate that our method is inability to
generate correct normalization sentence. Example (2) shows an incorrect example of over-translation,
which generates the same character repeatedly: The Kanji character “久” was generated twice. Example
(3) shows an incorrect example of the low frequency of a character: The Kanji character “捗” appears
once in the training data. Thus, the wrong character “暇” was generated instead of “捗” in this example.

6 Conclusions and Future Work

In this work, we modeled the problem of text normalization as a character-level sequence to sequence
learning problem. To address the problem of a small dataset, we proposed a method of data augmentation
to increase data size, which converts existing resources into synthesized non-standard forms using hand-
crafted rules. We found that the proposed data augmentation methods could provide a stable training of
the encoder-decoder model, and it improved the performance of Japanese text normalization by adding
the synthesized corpus. For our future work, we plan to extend the encoder-decoder model by incorpo-
rating a copy mechanism (Gu et al., 2016; Miltiadis et al., 2016) to address the issues of over-translation
and low frequency of a character.
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Abstract

This paper presents the results of the Twitter Named Entity Recognition shared task associated
with W-NUT 2016: a named entity tagging task with 10 teams participating. We outline the
shared task, annotation process and dataset statistics, and provide a high-level overview of the
participating systems for each shared task.

1 Introduction

The increasing flood of user-generated text on social media has created an enormous opportunity for new
data analysis techniques to extract and aggregate information about breaking news (Ritter et al., 2012),
disease outbreaks (Paul and Dredze, 2011), natural disasters (Neubig et al., 2011), cyber-attacks (Ritter
et al., 2015) and more. Named entity recognition is an important first step in most information extraction
pipelines. However, performance of state-of-the-art NER on social media still lags behind well edited
text genres. This motivates the need for continued research, in addition to new datasets and tools adapted
to this noisy text genre.

In this paper, we present the development and evaluation of a shared task on named entity recognition
in Twitter, which was held at the 2nd Workshop on Noisy User-generated Text (W-NUT 2016) and
attracted 10 participating teams, 7 of which described their approach in peer-reviewed papers. This is
a re-run of the NER task from W-NUT 2015, with an updated test set. The new test set consists of
tweets annotated with named entities from a later time period than the data from 2015. The new test set
developed for the 2016 iteration of the task consists of 3,856 tweets; this roughly doubles the amount
of annotated data available for Twitter named entity recognition. We hope this new data will help to
advance research on named entity recognition in noisy text.

A major development as compared to 2015 is the increased use of neural network methods by partic-
ipants. Several teams, including the winning team, CambridgeLTL, used bidirectional LSTMs. Other
teams achieved competitive performance by integrating a broad range of linguistic and knowledge-based
features using conditional random fields (e.g., NTNU) or learning to search methods (Talos).

Another new development for 2016 was the inclusion of small amounts of domain-specific data into
the test set. The motivation was to test whether Twitter named entity taggers targeting general-domain
suffer a drop in performance when applied to tweets on specific types of events. For this purpose we
annotated 350 tweets related to cyber-attacks and 500 related to mass shooting events. Note that no data
from these domains was specifically included in the training or development data.

In the following sections, we describe details of the task including training and development datasets
in addition to the newly annotated test data for 2016. We briefly summarize the systems developed by
selected teams, and conclude with results.

2 Named Entity Recognition over Twitter

Named entity recognition is a crucial component in many information extraction pipelines. However,
the majority of available NER tools were developed for newswire text and these tools perform poorly
on informal text genres such as Twitter. While performance on named entity recognition in newswire is
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quite high1 (Tjong Kim Sang and De Meulder, 2003), state-of-the-art performance on Twitter data lags
far behind.

The diverse and noisy style of user-generated content presents serious challenges. For instance tweets,
unlike edited newswire text, contain numerous nonstandard spellings, abbreviations, unreliable capital-
ization, etc. Because of these issues, off-the-shelf named entity recognition tools tuned for newswire
suffer a severe performance degradation when applied to noisy Twitter data. But tweets often contain
more up-to-date information than news, in addition the increased volume of text offers opportunities to
exploit redundancy of information which is very beneficial for information extraction (Downey et al.,
2005). To exploit the opportunities for information extraction on top of social media, there is a crucial
need for in-domain annotated data to train and evaluate named entity recognition systems on this noisy
style of text.

Twitter processing has the additional challenge that the language people use on Twitter changes over
time (Dredze et al., 2010; Fromreide et al., 2014). The previous edition of this task (Baldwin et al., 2015)
addressed this issue by evaluating on a test set collected from a later time period then the training and
development data. This year we take a similar approach, providing a new test dataset of tweets gathered
from 2016. In addition to enabling research on adapting named entity recognition to new language
over time, we hope this new dataset will be useful for adapting future Twitter named entity recognition
systems, improving their performance on up-to-date data.

Additionally, this year we address the issue of topic distribution by including evaluation data from
two specific domains (cybersecurity events and mass shootings) along with general domain data. Both
the time period and topic selection of the evaluation data were not announced to participants until the
(unannotated) test data was released at the beginning of the evaluation period. Teams had 7 days to
submit their results on the test data, which were subsequently scored and gold annotations were released
to participants. Evaluating the NER systems on these domains specific Twitter data provides information
about possible system weakness.

2.1 Training and Development Data
The training and development data for our task was taken from prior work on Twitter NER (Ritter et al.,
2011; Baldwin et al., 2015), which distinguishes 10 different named entity types (see Table 1 for the set
of types). The training data was created from the union of the training and development data from the
2015 task (Baldwin et al., 2015).

The data was split into 2,394 annotated tweets for training and 1,000 as a development set. We also
provided an additional 425 annotated tweets from the 2015 development data set (Baldwin et al., 2015).

2.2 Test Data Annotation
The data set we created for testing is new for this shared task. We collected general Twitter data and
domain specific Twitter data. In real world situations people want to run taggers on a specific subset
of the twitter stream. To simulate these situations we collected and tested on two example domains.
The domain specific data sets are mass shooting events and cybersecurity events. General domain test
data was randomly sampled from December 2014 through February 2015. Shooting domain data was
collected by searching for tweets that are referring to a shooting event. To collect tweets from the
mass shooting domain used www.gunviolencearchive.org’s mass shooting event database for information
about shooting events; including date, location, victim, and perpetrators of shooting events. Using this
information, we searched for tweets that occur on the same day as a mass shooting and include the key
word “shooting” and the location of the shooting event. The shooting domain contains 8,963 tokens
with 751 phrases. Computer hacking events were found by searching for tweets including the keyword
“breach”. The breach domain contains 5,537 tokens with 603 phrases.

The additional data annotated this year was completed by a single annotator instructed to follow the
annotation guidelines of the prior annotations. The annotator was presented with a set of simple guide-
lines2 that cover common ambiguous cases and was also instructed to refer to the September 2010 data

1For example, the Stanford named entity tagger (Finkel et al., 2005) achieves an F1 score of 0.86 on the CoNLL data set.
2http://bit.ly/1FSP6i2
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for reference (Ritter et al., 2011). The BRAT tool3 was used for annotation. Figure 1 is a screenshot of
the interface presented to the annotators. To ensure that the new annotations were consistent with the
earlier annotations, 100 tweets were annotated in both tasks to calculate agreement. The new annotator
proved a high agreement with the old data set with a F1 score of 67.67.

Table 1 presents the count of each of the 10 named entity types labeled by the annotators in the training,
development and test sets created for this shared task.

Train Dev Test

company 171 39 621
facility 104 38 253
geo-loc 276 116 882
movie 34 15 34
musicartist 55 41 191
other 225 132 584
person 449 171 482
product 97 37 246
sportsteam 51 70 147
tvshow 34 2 33

Total 1496 661 3473

Table 1: Named entity type counts in the train, development and test sets.

Figure 1: Annotation interface.

3http://brat.nlplab.org/
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Team ID Affiliation

CambridgeLTL University of Cambridge
Talos Viseo R&D
akora University of Manchester
NTNU Indian Institute of Technology Patna
ASU Ain Shams University, Cairo, Egypt
DeepNNNER Honda Research Institute Japan
DeepER University of Illinois at Urbana-Champaign
hjpwhu Wuhan University
UQAM-NTL Université du Québec à Montréal
LIOX The Hong Kong Polytechnic University

Table 2: Team ID and affiliation of the named entity recognition shared task participants.

POS Orthographic Gazetteers Brown clustering Word embedding ML

BASELINE – X X – – CRFsuite
CambridgeLTL – – – – – LSTM
akora – – – – – LSTM
NTNU X X X – – CRF
Talos X X X X GloVe L2S
DeepNNNER – – – – Multiple LSTM-CNN
ASU – – X X – LSTM
UQAM-NTL X X X – – CRF

Table 3: Features and machine learning approach taken by each team.

2.3 System Descriptions

This section briefly describes the approach taken by each team. Overall we noticed different trends be-
tween the types of systems submitted this year and last year. The most notable change is the use of
LSTM-based systems. Four of the seven submissions were LSTM-based as opposed to zero submis-
sions last year. The previous year Conditional Random Fields was the most popular ML technique for
extracting named entities.

CambridgeLTL (Limsopatham and Collier, 2016) The system uses bidirectional LSTM to automati-
cally induce and leverage orthographic features for performing Named Entity Recognition in Twitter
messages.

akora (Kurt Junshean Espinosa and Ananiadou, 2016) This system uses bidirectional LSTM net-
works and exploits weakly annotated data to bootstrap sparse entity types.

NTNU (Sikdar and Gambäck, 2016) This system is based on classification using Conditional Random
Fields, a supervised machine learning approach. The system utilizes a large feature set developed
specifically for the task, with eight types of features based on actual characters and token internal
data, five types of features built through context and chunk information, and five types of features
based on lexicon-type information such as stop word matching, word frequencies, and entries in the
shared task lexicon and Babelfy (Moro et al., 2014).

Talos (Ioannis Partalas and Kalitvianski, 2016) The system uses three types of features: lexical and
morpho-syntactic features, contextual enrichment features using Linked Open Data, and features
based on distributed representation of words. The system also exploits words clustering to enhance
performance. The learning algorithm was solved by using Learning to search (L2S) that resembles
a reinforcement learning algorithm.

DeepNNNER (Dugas and Nichols, 2016) The system uses a bidirectional LSTM-CNN model with
word embedding trained on a large scale Web corpus. Additionally, the system uses automati-
cally constructed lexicons with a partial matching algorithm and text normalization to handle the
large vocabulary problem in Web texts.
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Precision Recall F1

CambridgeLTL 60.77 46.07 52.41
Talos 58.51 38.12 46.16
akora 51.70 39.48 44.77
NTNU 53.19 32.13 40.06
ASU 40.58 37.58 39.02
DeepNNNER 54.97 28.16 37.24
DeepER 45.40 31.15 36.95
hjpwhu 48.90 28.76 36.22
UQAM-NTL 40.73 23.52 29.82
LIOX 40.15 12.69 19.26

Table 4: Results segmenting and categorizing enti-
ties into 10 types.

Precision Recall F1

CambridgeLTL 73.49 59.72 65.89
NTNU 64.18 62.28 63.22
Talos 70.53 52.58 60.24
akora 64.75 54.28 59.05
ASU 57.55 52.98 55.17
DeepER 63.17 43.31 51.38
DeepNNNER 70.66 36.14 47.82
hjpwhu 63.00 37.06 46.66
UQAM-NTL 53.21 37.95 44.30
LIOX 58.18 31.33 40.73

Table 5: Results on segmentation only (no types)

Acc P R F1

CambridgeLTL 90.57 69.75 51.24 59.08
Talos 89.36 60.49 41.13 48.96
akora 88.42 54.21 36.32 43.50
hjpwhu 88.21 59.79 28.86 38.93
ASU 87.76 42.22 32.84 36.94
NTNU 87.72 51.89 27.36 35.83
DeepNNNER 87.66 62.88 23.88 34.62
DeepER 84.32 40.23 22.89 29.18
UQAM-NTL 85.64 37.97 16.75 23.25
LIOX 84.41 30.08 6.63 10.87

Table 6: Results for the Cyber domain data on seg-
menting and categorizing entities into 10 types.

Acc P R F1

CambridgeLTL 93.00 66.25 56.72 61.12
Talos 92.03 68.53 49.00 57.14
DeepER 91.96 64.01 51.40 57.02
akora 91.54 58.89 49.40 53.73
NTNU 91.14 61.36 42.08 49.92
DeepNNNER 91.22 59.88 41.15 48.78
hjpwhu 90.83 53.71 41.41 46.77
ASU 90.74 45.40 47.94 46.63
UQAM-NTL 89.38 45.80 33.42 38.65
LIOX 88.35 55.77 23.17 32.74

Table 7: Results for the Shooting domain on seg-
menting and categorizing entities into 10 types.

ASU (Michel Naim Gerguis and Gerguis, 2016) The system shows an experimental study on using
word embeddings, Brown clusters, part-of-speech tags, shape features, gazetteers, and local con-
text to create a feature representation along with a set of experiments for the network design. A
Wikipedia-based classifier framework was adopted to extract lists of fine-grained entities out of
few input examples to be used as gazetteers. The model uses the LSTM algorithm to learn a NE
classifier from the feature representation.

UQAM-NTL (Ngoc Tan LE and Sadat, 2016) The system is based on supervised machine learning
and trained with a sequential labeling algorithm, using Conditional Random Fields to learn a clas-
sifier for Twitter NE extraction. The model uses 6 different categories of features including (1)
orthographic, (2) lexical and (3) syntactic features as well as (4) part-of-speech tags, (5) polysemy
count and (6) longest n-gram length in order to create a feature representation.

3 Summary

In this paper, we presented a shared task for Named Entity Recognition in Twitter data. We detailed the
task setup and datasets used in the respective shared tasks, and also outlined the approach taken by the
participating systems. The shared task included larger data sets than prior shared task (Baldwin et al.,
2015). The evaluation data included new tweets collected from 2016. First, we are able to draw stronger
conclusions about the true potential of different approaches in the latest Twitter data. Second, through
analyzing the results of the participating systems, we are able to suggest potential research directions for
both future shared tasks and noisy text processing in general.
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Abstract

In this paper, we present our approach for named entity recognition in Twitter messages that we
used in our participation in the Named Entity Recognition in Twitter shared task at the COL-
ING 2016 Workshop on Noisy User-generated text (WNUT). The main challenge that we aim
to tackle in our participation is the short, noisy and colloquial nature of tweets, which makes
named entity recognition in Twitter messages a challenging task. In particular, we investigate
an approach for dealing with this problem by enabling bidirectional long short-term memory
(LSTM) to automatically learn orthographic features without requiring feature engineering. In
comparison with other systems participating in the shared task, our system achieved the most
effective performance on both the ‘segmentation and categorisation’ and the ‘segmentation only’
sub-tasks.

1 Introduction

Named entity recognition (NER), which is one of the first and important stages in a natural language
processing (NLP) pipeline, is to identify mentions of entities (e.g. persons, locations and organisations)
within unstructured text. Traditionally, most of the effective NER approaches are based on machine
learning techniques, such as conditional random field (CRF), support vector machine (SVM) and per-
ceptrons (Lafferty et al., 2001; McCallum and Li, 2003; Settles, 2004; Luo et al., 2015; Ju et al., 2011;
Ratinov and Roth, 2009; Segura-Bedmar et al., 2015). For instance, Ratinov and Roth (2009) effec-
tively learned a perceptron model using features, including word classes induced using Brown cluster-
ing (Liang, 2005), and gazetteer extracted from Wikipedia.

Twitter NER is an NER task that aims to identify mentions of entities in Twitter messages (i.e.
tweets) (Baldwin et al., 2015; Ritter et al., 2011). Twitter NER is particularly challenging because of the
unique characteristics of tweets. For instance, tweets are typically short as the number of characters in a
particular tweet is restricted to 140; hence, the contextual information is limited. In addition, the use of
colloquial language makes it difficult for existing NER approaches a general domain, such as newswire
to be reused (Baldwin et al., 2015). Consequently, state-of-the-art NER software (e.g. Standford NER)
is less effective on Twitter NER tasks (Derczynski et al., 2015).

For our participation in the Named Entity Recognition in Twitter shared task at the COLING 2016
Workshop on Noisy User-generated text (WNUT) (Strauss et al., 2016), we aim to investigate a novel
approach that allows neural network to explicitly learn and leverage orthographic features. We focus on
orthographic features as they have shown to be effective and widely used in several NER systems. Impor-
tantly, orthographic features are used by majority of the systems (including the best system) participating
in the Twitter NER shared task at the 2015 WNUT workshop (Baldwin et al., 2015).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/
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Social Media Sentence Orthographic Sentence
14th MENA FOREX EXPO announced!! nncc CCCC CCCCC CCCC cccccccccpp
Nintendo 3DS released in north America Cccccccc nCC cccccccc cc cccc Ccccccc
END!! Cowboys 28, Eagles 24 CCCpp Ccccccc nnp Cccccc nn
@NutLims c u 2mor pCccCccc c c nccc
The Hobbit is on TV now!! Ccc Cccccc cc cc CC cccpp

Table 1: Examples of social media sentences and their corresponding orthographic sentence.

2 Related Work

Conditional random field (CRF) is one of the most effective approaches (Lafferty et al., 2001; McCallum
and Li, 2003; Settles, 2004) for NER, as it achieved state-of-the-art performances on several NER tasks,
such as CoNLL03 (Tjong Kim Sang and De Meulder, 2003) or Twitter NER (Baldwin et al., 2015). In
particular, CRF learns latent structures of an input sequence by using a undirected statistical graphical
model. Nevertheless, the performance of CRF mainly depends on hand-crafted features designed specif-
ically for a particular task or domain. Consequently, these hand-crafted features are difficult to develop
and maintain. Examples of hand-crafted features are orthographic features (Bikel et al., 1999), which
are based on patterns of characters contained in a given word. In this work, we investigate an approach
for could automatically inducing and leveraging orthographic features for named entity recognition for
Twitter messages.

Neural networks have recently shown to be effective for several NLP tasks, such as NER (Chiu and
Nichols, 2015), POS tagging (Huang et al., 2015), sentiment analysis (Limsopatham and Collier, 2016b)
and grounding (Limsopatham and Collier, 2016c; Limsopatham and Collier, 2015). For example, Col-
lobert et al. (2011) designed a feed-forward neural network that learned to identify entities in a sentence
by using contexts within a fixed number of surrounding words. Chiu and Nichols (2015) showed that
modelling both character and word embeddings within a neural network for NER further improve the
performance. Huang et al. (2015) introduced a more complex model based on bidirectional LSTM could
also take into account hand-crafted features. In this work, we investigate an application of our novel
approach (Limsopatham and Collier, 2016a) that enables bidirectional LSTM to automatically induce
orthographic features rather than feeding hand-crafted features into the model, when performing Twitter
NER.

3 Bidirectional LSTM for Twitter NER

In this section, we describe our end-to-end neural network approach for Twitter NER. In particular, our
approach consists of three main components: (1) orthographic sentence generator, (2) word representa-
tions as input vectors, (3) bidirectional LSTM.

3.1 Orthographic Sentence Generator

Our orthographic sentence generator creates an orthographic sentence, which contains orthographic pat-
tern of words in each input sentence. In particular, for a given social media sentence (e.g. ‘14th MENA
FOREX EXPO announced!!’), we generate an orthographic sentence (e.g. ‘nncc CCCC CCCCC CCCC
cccccccccpp’) by using a set of rules, where each of the upper-case characters, lower-case characters,
numbers and punctuations, are replaced with C, c, n and p, respectively. Examples of orthographic sen-
tences generated from social media sentences are shown in Table 1. This orthographic sentence allows
bidirectional LSTM to explicitly induce and leverage orthographic features automatically.

3.2 Input Vectors for Bidirectional LSTM

Our approach uses word representations extracted from both character and word levels. To do so, we
create vectors of character-based word representation (Section 3.2.1) and word representation (Sec-
tion 3.2.2) for both social media sentence and its orthographic sentence, as follows:
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Figure 1: Our CNN architecture for inducing word representation from a character level.

3.2.1 Character-based Word Representation

We use CNN to induce word representation from character embeddings of a given word, as shown in
Figure 1. Specifically, for a given word of length l characters, we create a word matrix M ∈ Rd×l as:

M =

 | | | |
x1 x2 x3 ... xl

| | | |

 (1)

where each column of M is the d-dimensional vector (i.e. character embedding) xi ∈ Rd of each char-
acter in the given word, which are initialised randomly.

To learn patterns of characters in a given word, a convolution operation with a filter w ∈ Rd×h is
applied to a window of h characters. In particular, a filter w is convolved over the sequence of characters
in the word matrix M, which results in a feature matrix C. Specifically, each feature ci in feature matrix
C is extracted from a window of words xi:i+h−1, as follows:

ci = f(w · xi:i+h−1 + b) (2)

where f is an activation function, e.g. sigmoid and tanh, and b ∈ R is a bias. In this work, we use 200
different filters with window size h = 3.

Then, we follow Collobert et al. (2011) and apply max pooling to capture the most important feature
from each filter. Indeed, max pooling takes the maximum value of each row in the matrix C:

cmax =

max(C1,:)
...

max(Cd,:)

 (3)

We use cmax vector as a character-based word representation in bidirectional LSTM (Section 3.3), as
it captures important features of a given word induced from a character level.

3.2.2 Word Representation

Existing studies, e.g. (Mikolov et al., 2013; Pennington et al., 2014), have shown that word embed-
dings induced from a large corpus could effectively capture semantic and syntactic information of words.
Hence, we also use pre-trained word embeddings as word representation. However, any randomly gen-
erated word embeddings can also be used.
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Figure 2: Our bidirectional LSTM for Twitter NER.

3.3 Bidirectional LSTM

In this work, we use bidirectional LSTM for modelling social media sentences, as existing work
(e.g. (Huang et al., 2015; Dyer et al., 2015; Dyer et al., 2015; Bengio et al., 1994)) has shown that
bidirectional LSTM could effectively deal with the variable lengths of sentences. In addition, it could
capture past (from the previous words) and future (from the next words) information effectively (Huang
et al., 2015; Dyer et al., 2015).

Our bidirectional LSTM for Twitter NER is shown in Figure 2. For a given a social media sentence and
its orthographic sentence, we firstly extract both character-based word representation and word vector
representation corresponding to each word in the social media sentence and the orthographic sentence, by
using the approaches previously described in Sections 3.2.1 and 3.2.2.1 Word representations associated
to the same words are then concatenated and sequentially fed into bidirectional LSTM to learn contextual
information of words in the sentence. At the output layer, we optimise the CRF log-likelihood, which
is the likelihood of labelling the whole sentence correctly by modelling the interactions between two
successive labels using the Viterbi algorithm, as suggested by Huang et al. (2015).

4 Experimental Setup

4.1 Datasets

The Twitter NER shared task datasets consist of training set (i.e. ‘2015 train’+‘2015 dev’), development
set (i.e. ‘2015 test’), additional set (i.e. additional ‘dev 2015’) and test set, respectively. The numbers
of tweets and tokens of each set are shown in Table 2. The shared task focuses on finding 10 types
of target entities, including company, facility, geo-location, movie, music-artist, other, person, product,
sport team and TV show. In particular, the shared task can be divided to to sub-tasks: ‘segmentation only’
and ‘segmentation and categorisation’. The former focuses only on finding the boundaries of entities;
meanwhile, the latter requires both the boundaries of entities and the correct categories of entity types.

4.2 Training Regime

To learn bidirectional LSTM, we use only the four datasets (see Table 2) provided by the workshop
organisers. In particular, we use the combination of training set and development set as training data, and
use additional set as validation data, when generating the test models. Note that we train two different
models for the two sub-tasks, i.e. ‘segmentation and categorisation’ (10-type) and ‘segmentation only’
(no-type).

1Note that we use separated set of word and character embeddings for the input sentence and the orthographic sentence.
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Training Set Development Set Additional Set Test Set
# tweets 2,349 1,000 419 3,850
# tokens 46,469 16,261 6,789 61,908
# entity tokens 2,462 1,128 439 5,955
# Company entity tokens 207 49 64 886
# Facility entity tokens 209 77 13 619
# Geo-loc entity tokens 325 158 62 1,101
# Movie entity tokens 80 30 5 82
# MusicArtist entity tokens 116 76 22 331
# Other entity tokens 545 229 91 1,140
# Person entity tokens 664 266 113 782
# Product entity tokens 177 158 15 746
# SportsTeam entity tokens 74 83 46 195
# TvShow entity tokens 65 2 8 73

Table 2: Statistics of the WNUT 2016 NER shared task datasets.

To tune hyper-parameters of the model, we optimise the performance on the development set when
training on the training set.

4.3 Embeddings

4.3.1 Word Embeddings
As discussed in Section 3.2.2, our approach uses word embeddings as inputs when learning an NER
model. For input sentences, we use pre-trained word embeddings of Godin et al. (2015)2, which consists
400-dimensional vectors of 3.04 million unique words induced from 400 million Twitter messages using
the Skip-gram model from the word2vec tool (Mikolov et al., 2013). For the words that do not exist in

the pre-trained embeddings, we use a vector of random values sampled from [−
√

3
dim , +

√
3

dim ] where
dim is the dimension of embeddings as suggested by He et al. (2015).

For orthographic sentences, we represent each word using a 200-dimensional randomly generated

vector, where each dimension is also uniformly sampled from [−
√

3
dim , +

√
3

dim ].

4.3.2 Character Embeddings
We use 30-dimensional character embeddings for representing each character when inducing the
character-based word representation (Equation (1) in Section 3.2.1) from both social media and ortho-
graphic sentences. The 30-dimensional character embeddings are initialised using uniform samples from

[−
√

3
dim , +

√
3

dim ]. Note that we have a separated embedding for each set of characters in the social
media and orthographic sentences.

4.4 Parameter Optimisation

We implement our bidirectional LSTM using the Theano library (Bergstra et al., 2010). Parameter opti-
misation is done by mini-batch stochastic gradient descent (SGD) where back-propagation is performed
using Adadelta update rule (Zeiler, 2012). The mini-batch size is 50. In addition, we allow the learner
to fine-tune both word and character embeddings when performing gradient updates during training.
Moreover, we follow Pascanu et al. (2013) and use a gradient clipping of 5.0, in order to reduce gradient
exploding.

To avoid overfitting, we apply L2 regularisation on the weight vectors and dropout (Srivastava et
al., 2014) on hidden units in all layers in our models. Dropout rate is set to 0.5. We also use early
stopping (Giles, 2001) based on the performance achieved on the development sets.

2Downloaded from http://www.fredericgodin.com/software.
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Approach
Segmentation and Categorisation Segmentation Only

(10-Type) (No-Type)
F1 Precision Recall F1 Precision Recall

Our approach 52.41 60.77 46.07 65.89 73.49 59.72
Talos 46.16 58.51 38.12 60.24 70.53 52.58
akora 44.77 51.70 39.48 59.05 64.75 54.28
NTNU 40.06 53.19 32.13 63.22 64.18 62.28
ASU 39.02 40.58 37.58 55.17 57.55 52.98
DeepNNNER 37.24 54.97 28.16 47.82 70.66 36.14
DeepER 36.95 45.40 31.15 51.38 63.17 43.31
hjpwhu 36.22 48.90 28.76 46.66 63.00 37.06
UQAM-NTL 29.82 40.73 23.52 44.30 53.21 37.95
LIOX 19.26 40.15 12.69 40.73 58.18 31.33

Table 3: Performances in terms of F1, precision and recall of our approach and the participating systems
on the ‘segmention and categorisation’ (10-type) and the ‘segmentation only’ (no-type) sub-tasks.

Type F1 Precision Recall
company 57.22 69.84 48.47
facility 42.42 51.70 35.97
geo-loc 72.61 75.21 70.18
movie 10.91 14.29 8.82
musicartist 9.48 26.83 5.76
other 31.66 49.45 23.29
person 58.99 52.06 68.05
product 20.12 36.96 13.82
sportsteam 52.41 53.15 51.70
tvshow 5.88 100.00 3.03
Overall 52.41 60.77 46.07

Table 4: Performances of our approach broken down by entity types.

5 Experimental Results

Next, we discuss the performance of our proposed approach. Table 3 compares the performances of
our approach with the other systems participating in the Twitter NER shared task at the 2016 WNUT
workshop, in terms of F1, precision and recall measures, on both the ‘segmentation and categorisation’
and ‘segmentation only’ sub-tasks.

From Table 3, we observed that our approach achieved the best F1 score for both sub-tasks. In par-
ticular, our approach attains F1 scores of 52.41 and 65.89 for the ‘segmentation and categorisation’ and
‘segmentation only’ sub-tasks, respectively. Importantly, for the ‘segmentation and categorisation’ sub-
task, our approach significantly outperformed the second best system (namely, Talos) by 6.2 F1 score.
Table 4 showed the performance of our approach broken down into entity types. Our approach performed
effectively on entities related to geo-location, person and company. Meanwhile, it was less effective on
the entity types tvshow, musicartist and movie.

6 Conclusions

In this paper, we describe our novel approach used in the Twitter NER shared task at the WNUT 2016
workshop. Our approach deals with the noisy and colloquial of tweets by leveraging word represen-
tations of input sentence and orthographic sentence in bidirectional LTSM. In particular, our approach
automatically induce and leverage orthographic features when performing NER. Importantly, we show
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that without requiring hand-crafted features, our approach is highly effective for the Twitter NER tasks,
as it achieves the best performance among all of the participating systems. For future work, we aim to
investigate approaches for enabling neural networks to automatically induce other hand-crafted features,
such as gazetteers.
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Abstract

Named entity recognition (NER) in social media (e.g., Twitter) is a challenging task due to the
noisy nature of text. As part of our participation in the W-NUT 2016 Named Entity Recognition
Shared Task, we proposed an unsupervised learning approach using deep neural networks and
leverage a knowledge base (i.e., DBpedia) to bootstrap sparse entity types with weakly labelled
data. To further boost the performance, we employed a more sophisticated tagging scheme and
applied dropout as a regularisation technique in order to reduce overfitting. Even without hand-
crafting linguistic features nor leveraging any of the W-NUT-provided gazetteers, we obtained
robust performance with our approach, which ranked third amongst all shared task participants
according to the official evaluation on a gold standard named entity-annotated corpus of 3,856
tweets.

1 Introduction

Named entity recognition (NER) is one of the most fundamental natural language processing (NLP)
tasks that is central to understanding unstructured, textual data. Popular approaches (Chieu and Ng,
2002; Florian et al., 2003; Ratinov and Roth, 2009; Luo et al., 2015) mainly rely on hand-crafted fea-
tures and gazetteers which require knowledge about the domain. Recently, there has been a surge in terms
of interest in applying deep learning techniques to NLP tasks. These methods, together with substantial
amount of annotated data, can learn features automatically and have been reported to outperform tradi-
tional methods on certain NLP tasks (Ma and Hovy, 2016; Lample et al., 2016; Chiu and Nichols, 2016).
However, in spite of the perceived success of deep learning methods particularly in NER in newswire
(Ma and Hovy, 2016), performance on social media content, particularly that from Twitter, has been
lagging behind (Baldwin et al., 2015).

There are two state-of-the-art deep learning methods for newswire NER, namely, those proposed by
Chiu and Nichols (2016) and Ma and Hovy (2016). Considering that the former requires hand-crafted
features (e.g., word matches against gazetteers) and yet obtains only a small boost in performance over
the latter which does not rely on any such features, we took the approach of Ma and Hovy (2016) and
applied it on microblog posts from the Twitter platform, i.e., tweets. Based on the results of our initial
experiments, we observed suboptimal performance relative to that on newswire. Informed by the error
analysis that we carried out, we employed a distant supervision method exploiting an external lexical
resource, i.e., DBpedia (Daiber et al., 2013), in order to generate weakly labelled data for low-frequency
named entity types. We also investigated the effect of using different token-level tagging schemes and
confirmed that improved performance can be obtained by applying the finer-grained BIOES scheme
rather than the more popularly used BIO convention. Furthermore, we explored the use of generic
placeholders to address out-of-embedding-vocabulary (OOEV) words, although this approach did not
lead to better performance.

2 Related Work

Named entity recognition—the automatic demarcation of named mentions within text and their classifi-
cation according to predefined semantic types—is a fundamental NLP task that has attracted the attention
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of many researchers. Several efforts (Chieu and Ng, 2002; Florian et al., 2003; Ratinov and Roth, 2009),
tackle this problem by hand-crafting linguistic features and presenting them to a machine learning al-
gorithm, which will then discriminate between various semantic types based on those features. This
particular approach, however, is usually done ad hoc making it very tedious to adapt features to other do-
mains. Recently, extensions to this approach have been introduced (Godin et al., 2015; Cherry and Guo,
2015; Toh et al., 2015) by considering word embeddings as sources of features for classification. Other
studies (Luo et al., 2015; Yamada123 et al., 2015) combined this machine learning-based approach with
entity linking methods which exploit knowledge bases (e.g., Wikipedia) to detect named mentions. With
the NLP research community’s continuously surging interest in deep learning, approaches based on deep
neural networks have also been applied to NER. While they take away the burden that comes with hand-
crafting linguistic features, they require huge amounts of data. Nevertheless, they have been proven to be
effective for the NER task (Godin et al., 2015; Chiu and Nichols, 2016; Ma and Hovy, 2016; Lample et
al., 2016). For instance, state-of-the-art NER systems for newswire were built upon deep learning-based
approaches (Ma and Hovy, 2016; Chiu and Nichols, 2016). It has been shown, however, that even such
state-of-the-art methods tend to underperform when applied to other domains, particularly on social me-
dia content, e.g., tweets (Baldwin et al., 2015). Challenges in this domain include noise inherent in the
data, the many new terms—neologisms—introduced in social media over time, and changes in linguistic
conventions in general, also known as language drift (Dredze et al., 2010; Ritter et al., 2011; Eisenstein,
2013; Fromreide et al., 2014).

In this paper, we describe our methods addressing the above-mentioned challenges in the context
of the 2016 Named Entity Recognition in Twitter Task (Strauss et al., 2016) organised as part of the
Second Workshop on Noisy User-generated Text (W-NUT). For our contribution to the said shared task,
we combined deep learning-based approaches with distant supervision methods for generating weakly
labelled data, and further optimised performance by exploring the use of different tagging schemes and
word embeddings.

3 Methodology

We cast the NER task as a sequence labelling problem: every tweet is a sequence of tokens, each of
which is automatically assigned a label (or tag) that is indicative of its membership to a semantic type
or category. In learning and applying token labels, two different tagging schemes were compared in
order to confirm previously reported observations that employing more sophisticated tagging schemes
leads to better predictions (Ratinov and Roth, 2009; Dai et al., 2015). According to the popular begin-
inside-outside (BIO) scheme, each token is tagged as any of ‘B’, ‘I’ or ‘O’ depending on whether it is
at the beginning, inside or outside a named entity, respectively. The more fine-grained BIOES scheme,
however, additionally makes use of ‘E’ and ‘S’ to also distinguish tokens at the end and those comprising
single-token entities.

Approaches to sequence labelling based on the conditional random fields (CRF) algorithm are known
to demonstrate strong performance (McCallum and Li, 2003; Leaman et al., 2008; Finkel and Man-
ning, 2009). CRFs find the most probable label sequence given a sequence of tokens encoded using
features, e.g., surface forms, lemma, part-of-speech tags, surrounding tokens, morphology (Sang and
Veenstra, 1999). Meanwhile, convolutional neural networks (CNNs) are sparse feed-forward neural net-
works which have been shown to effectively extract morphological features such as word prefixes and
suffixes (Chiu and Nichols, 2016). One can thus explore the combination of the ability of CRFs to model
relations between labels of tokens in a tweet, and the effectiveness of CNNs to extract morphological
features of words. CNNs, however, suffer from one drawback, i.e., failure to capture the contextual in-
formation surrounding a word. To alleviate this issue, we instead employed recurrent neural networks
(RNNs) (Rumelhart et al., 1988). RNN models make use of the sequential information found in struc-
tured input (e.g., in a sentence). It is called recurrent because it performs the same computation for
every element in a sequence with inputs as the only difference. RNN models use the backpropagation
algorithm throughout all of the time steps (i.e., from the current word to the nth preceding word). During
backpropagation, the gradient is computed, which is the measure of how much the cost (i.e., the differ-
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ence between the expected and the actual value) changes with a change in weight or bias value. The
gradient is computed from the output layer (i.e., the current word) and is propagated back to the first
layer (i.e., the nth preceding word). Since the gradient at a particular point (e.g., current/output layer)
is a product of the gradients up to that point (e.g., from the first up to the current layer), the product
becomes much smaller or bigger depending on the gradient value. This is called the vanishing/exploding
gradient problem common in deep backpropagation investigated more deeply in Bengio et al. (1994) and
Pascanu et al. (2013). To remedy this problem, we use a variant of RNNs known as the Long-Short-Term
Memory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTM addresses the shortcomings of
vanilla RNNs by allowing the network to capture information for an extended number of time steps. Fur-
thermore, we incorporate the findings of Dyer et al. (2015) that bi-directional LSTM (BLSTM) provides
more benefits since it allows access to both the past and future contexts, i.e., m words to each of the left
and right sides of a given word, where m is the window size.

3.1 Neural Network Architecture
The input to the network is a concatenation of character representations of words extracted from a con-
volutional neural network and word embeddings, which will be described in Section 3.3. The inputs are
fed into a bi-directional LSTM (BLSTM) and the outputs are concatenated and fed into the CRF layer to
jointly decode the best label sequence. For a schematic diagram depicting this neural network architec-
ture, we refer the reader to the work by Ma and Hovy (2016), who first proposed this method for NER in
newswire. In our work, the same architecture is applied to the task of NER in tweets.

We also sought to tune the hyperparameters of the neural network, specifically, learning rate and
dropout. However, in the interest of time, only a local search within a small interval was carried out,
setting the other parameters to arbitrarily determined fixed values. Learning rate controls the step size in
gradient descent optimisation: a very small learning rate could lead to longer training time, and poten-
tially to being trapped in a local minimum. Meanwhile, choosing too big a learning rate could lead to
overshooting the global optimum. Hence, one way to determine the optimal learning rate is to observe
the performance based on a range of different learning rates and selecting the one yielding the maximum
performance. Meanwhile, tuning the other important hyperparameter, dropout, has been found to be
useful to prevent overfitting. Serving as a means for regularisation, dropout disables units in the network
(along with their connections) during training. It is based on a value p which indicates the probability
that a unit is retained, typically determined using a validation data set. Dropout thus reduces the problem
of overfitting and at the same time, provides a way for exploring an exponential number of different
neural network architectures efficiently (Srivastava et al., 2014).

3.2 Distant supervision for augmenting training data
We carried out an analysis of the corpus that was provided by the task organisers to participants con-
taining 2,394 and 1,000 tweets in the training and development sets, respectively. The training set is
composed of tweets collected in 2010 while those in the development set were collected between 2014
and 2015 (Baldwin et al., 2015). Examining the training set, we observed that whilst 3.6% of the tweets
are retweets, 74.2% of the tokens are unique. This same pattern was also observed in the development
set: it contains a similar proportion of unique tokens (74.6%), although with much fewer retweets (0.4%).
Prepositions, punctuations, articles and pronouns account for many of the repeated tokens in both data
sets.

In terms of named entity type distribution, around 96% in each data set correspond to non-named
entity tokens. The remaining 4% were distributed unevenly across the 10 entity categories. Based on
our frequency analysis, shown in Table 1, we observed that the person entity type is the most prevalent
in both the training set (449 out of 1,496 entities or 30%) and development set (171 out of 661 entities
or 26%) while both tvshow and movie entity types were consistently the most sparse entities in both the
training set (both 34 out of 1491 entities or 2%) and development set (2 out of 661 entities or 0.3%, 15
out of 661 entities or 2%), respectively.

To mitigate the data sparsity of some entity types as observed in the data set, we sought to increase
their number of annotated samples. To this end, we leveraged DBpedia Spotlight (Daiber et al., 2013), a

155



Training Set (1,496 entities) Development Set (661 entities)
Entity Type Count Percentage Entity Type Count Percentage
person 449 30.01 person 171 25.87
geo-loc 276 18.45 other 132 19.97
other 225 15.04 geo-loc 116 17.55
company 171 11.43 sportsteam 70 10.59
facility 104 6.95 musicartist 41 6.20
product 97 6.48 company 39 5.90
musicartist 55 3.68 facility 38 5.75
sportsteam 51 3.41 product 37 5.60
movie 34 2.27 movie 15 2.27
tvshow 34 2.27 tvshow 2 0.30

Table 1: Entity type distribution in training and development sets

Entity Type DBpedia Categories
company Website, Company, Software, BroadcastNetwork, RadioStation
facility EducationInstitution, InternationalOrganisation, PublicTransitSystem, Archi-

tecturalStructure, SportsClub
geo-loc PopulatedPlace, WorldHeritageSite
other Non-ProfitOrganisation, Event, SportsLeague, PoliticalParty, MilitaryUnit
movie Film
musicartist MusicArtist
person Person, Athlete, Celebrity, Cleric, Coach, BeautyQueen, BusinessPerson,

Criminal, Economist, Engineer, FictionalCharacter, Journalist, Judge, Lawyer,
Model, Monarch, MovieDirector, Noble, OrganisationMember, Politician,
PoliticianSpouse, Royalty, Scientist, SportsManager, TelevisionDirector, Tele-
visionPersonality, Writer, OfficeHolder

product VideoGame, Device, MeanOfTransportation, Food, LineOfFashion, Program-
mingLanguage

tvshow TelevisionShow, TelevisionSeason, TelevisionEpisode
sportsteam SportsTeam

Table 2: Proposed mapping between W-NUT entity types and DBpedia categories

tool for linking mentions in text to DBpedia entries, which in our case was employed to weakly annotate
our own collection of tweets, gathered between July and August 2016. The tool can be configured
in order to define the resulting entity matches. For example, there are configuration parameters, e.g.,
confidence and contextual score, which can be specified to control the quality of the output (Mendes et
al., 2011). Confidence is a parameter for disambiguation, ranging from 0 to 1, which takes into account
factors such as topical pertinence and contextual ambiguity. The confidence threshold setting instructs
the tool to exclude low-ranking annotations at the risk of losing potentially correct ones. For example, a
confidence level of 0.7 will eliminate 70% of low-ranking candidates. Meanwhile, contextual score is the
cosine similarity between term vectors weighted by the Term Frequency Inverse Candidate Frequency
(TF*ICF) measure introduced by Mendes et al. (2011). ICF is based on the idea that the discriminative
power of a word is inversely proportional to the number of DBpedia resources it is associated with. The
above parameters provide the tool with a way to rank the list of candidates.

In applying DBpedia Spotlight on our own collection of tweets, we initially set the confidence and
contextual score parameters to 0.7. Fuzzy string matching heuristics were also employed, to enable
the matching of lexical variants in tweets (e.g., those which differ in length by at most two characters)
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Pre-trained Word
Embeddings

Description Text Type

Twitter 2B tweets, 27B tokens, 1.2M vo-
cabulary words, uncased, 100 di-
mensions

Tweets

Common Crawl 840B tokens, 2.2M vocabulary
words, cased, 300 dimensions

Web Pages

Wikipedia 2014 +
Gigaword 5

6B tokens, 400K vocabulary
words, uncased, 100 dimensions

Wiki pages + newswire

Table 3: Description of word embeddings pre-trained using GloVe

against DBpedia entries. The tool assigns matched entities with semantic labels that come from DBpe-
dia’s ontology, which defines a hierarchy of types. In order to categorise these entities according to the
shared task’s categories of interest, we defined the mappings shown in Table 2, informed by the anno-
tation guidelines provided by the shared task organisers. For many entities, DBpedia Spotlight provides
multiple hierarchical labels. For example, the entity “Justin Bieber” is labelled by the tool as both Person
and MusicArtist, which map to W-NUT’s person and musicartist, respectively. In such cases, we take the
most specific entity type (e.g., musicartist) as the final label. Furthermore, if an entity match x is sub-
sumed by another match y, we disregard x and retain the longer matching entity y with its corresponding
type. For example, if a tweet contains three entity matches such as “New York USA”, “New York” and
“USA”, we disregard the two shorter entity matches (“New York”, “USA”) and choose the entity with
the longer span of tokens (“New York USA”).

The above techniques, however, did not result in better performance. With the threshold of 0.7, which
turned out to be too low, even named entities that DBpedia Spotlight was not very confident about were
included in the training set, thus introducing noise. This corresponds to token sequences which were
recognised as entities of a certain type when in reality they are actually non-entities or fall under a
different entity type. This noise is compounded as the bi-directional LSTM models we employed made
use of the context surrounding the wrongly recognised entities to learn the segmentation and classification
tasks. To resolve these issues, we increased the required level of confidence in weakly annotated named
entity types, from 0.7 to 0.9. Furthermore, we added weakly annotated data only to the entity types for
which our models have obtained poor performance based on our initial experiment, namely: product,
movie, musicartist, tvshow. In this way, we avoid adding unexpected noise with respect to the other
named entity types.

3.3 Exploiting different types of word embeddings

Word embeddings are n-dimensional continuous-valued representations of a word where n is an arbitrar-
ily chosen number of dimensions. In contrast to one-hot representations whose number of dimensions
would be equal to the vocabulary size V, distributed representations such as word embeddings represent a
word in n dimensions where n is much smaller than V (i.e., n� V). Aside from avoiding sparse represen-
tations, word embeddings are shown to capture a word’s semantic and syntactic information (Mikolov
et al., 2013). Specifically, since word embeddings are generated based on co-occurrence information,
co-occurring words share the same context and are thus expected to have similar values.

There are a number of implementations for generating word embeddings such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014). Pennington et al. (2014) have shown that GloVe
produces better results over word2vec (i.e., using CBOW and Skip-gram models) on word similarity
and named entity recognition tasks. They also provided pre-trained word embeddings generated based
on three different corpora: Common Crawl, Twitter, and Wikipedia 2014+Gigaword 5. Based on the
comparison presented in Table 3, it can be observed that Common Crawl has the largest vocabulary size.

Word embeddings have been employed as features for the NER task (Baldwin et al., 2015). As our
study is based on unsupervised learning, i.e., neural networks, in which the feature set is learned auto-
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Word Wikipedia+Gigaword Twitter Common Crawl
IV 64.66 (9,620) 65.88 (9,802) 70.65 (10,512)
OOEV 35.34 (5,258) 34.12 (5,076) 29.35 (4,366)

Table 4: Percentage distribution of IV and OOEV words in the pre-trained embeddings

Category Percentage
@username 39.31
http://url 21.19
words 19.87
#hashtags 12.15
punctuations 5.43
numbers 2.19

Table 5: OOEV word categories and their distribution

matically, we instead use word embeddings as representations of input words. In this paper, we observe
the effect on NER performance, of using each of the three different pre-trained word embeddings.

3.4 Representing Out-of-Embedding Vocabulary (OOEV) Words

Words for which there are no embeddings, i.e., out-of-embedding vocabulary (OOEV) words, commonly
occur in the given data set, accounting for around 30% of all words. Table 4 presents the frequency of
words with embeddings, i.e., in-vocabulary (IV) words, and OOEV words in the different pre-trained
embeddings. We analysed the most frequently occurring OOEV words and categorised them, as shown
in Table 5. We observed that the most prevalent type of OOEV words correspond to Twitter usernames
of the pattern “@username” as well as URLs, comprising around 60% of the words with no embedding
values. Out of the OOEV words, only 10% are named entities, with the rest accounting for context
words. Table 6 shows the percentage of named entities with word embeddings (i.e., IV words) and the
percentage OOEV words in the training and test sets, respectively.

One way of representing OOEV words is by randomly initialising embeddings with values uniformly
sampled from a specified range [−√

3/dim, +
√

3/dim] where dim is the dimension of embeddings (He
et al., 2015). In this work, we compare that method with the use of placeholder values to replace OOEV
words, e.g., by substituting rare words with ‘UNK’ (Nam et al., 2016). We applied this on the following
OOEV categories: usernames, URLs, punctuations, numbers and hashtags. Furthermore, to account
for OOEV words which are potentially lexical variants of IV words (e.g., ‘gud’ vs ‘good’, ‘#Twitter’
vs ‘Twitter’), we employed string similarity measures based on the edit distance metric (Contractor et
al., 2010) to find the IV word most similar to a given OOEV word. This technique was applied on
hashtags, punctuations and words. Whilst GloVe comes with its own script for normalisation1, we chose
to implement our own in order to incorporate string similarity measures.

4 Results and Discussion

In this section, we present the results of our evaluation of the methods described above. We investigated
the impact on performance of employing different tagging schemes and word embeddings, as well as the
substitution of OOEV words with placeholders. We then analysed the extent to which the use of different
hyperparameter values and weakly labelled named entities, contributed to NER performance.

As a first step, a decision was made on the data sets to be used for training our models and subsequently
evaluating performance. Noting that the shared task-provided training and development data came from
disjoint time periods, i.e., 2010 and 2014-2015 respectively, we were interested in determining whether
the use of a more temporally heterogeneous set of tweets for training our models could lead to better
results. To this end, we formed our own training and development data partitions out of the original data

1http://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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Data Set Total Named Entities IV OOEV
Training Set 80.83 (2,902) 93.34 (2,709) 6.06 (193)
Test Set 19.17 (688) 95.49 (657) 4.5 (31)

Table 6: Percentage distribution of named entities with IV and OOEV words

Tagging Scheme Precision Recall F-score
BIO 61.76 53.17 57.14
BIOES 60.99 57.25 59.06

Table 7: Comparison of performance when using different tagging schemes

sets. Firstly, we combined the tweets from the provided training and development sets. The resulting
collection was then partitioned into two: 80% of the tweets became part of a new training set while the
remaining 20% formed a new development set. We then ran an experiment to compare the performance
obtained when using this new partition, against using the original training and development sets. Our
results show that utilising our own data partition yields better performance. This confirms previous
observations by Fromreide et al. (2014) that language drift is prevalent in tweets: models trained on
relatively older tweets (i.e., from 2010) perform suboptimally on more recent ones (i.e., from 2014-
2015). Our own training and development data partitions were thus used in the rest of the experiments
described below, together with the following hyperparameter values for the neural network: dropout =
0.6, learning = 0.013 and number of epochs = 63. The value for each hyperparameter was determined by
comparing performance across a small number of options: {0.3, 0.4, 0.5, 0.6, 0.7} for dropout, {0.01,
0.013, 0.015, 0.017, 0.02} for learning rate and values within the interval [1, 1500] for number of epochs.

Table 7 compares the performance obtained by employing the BIO tagging convention versus that
using the finer-grained BIOES tagging scheme. As in previous studies (Ratinov and Roth, 2009; Dai et
al., 2015), our results show that adopting the BIOES scheme leads to better performance. This can be
attributed to the additional information obtained by distinguishing tokens at the end (‘E’) of entities and
those comprising single-token (‘S’) entities.

We next observed the differences in performance brought about by varying the set of word embeddings
(between pre-trained Common Crawl, Twitter and Wikipedia+Gigaword embeddings) used as input to
the neural network. It is slightly surprising that optimum performance was obtained with word embed-
dings learned based on Common Crawl rather than Twitter (Table 8). This, however, can be attributed
to Common Crawl’s much larger vocabulary (i.e., five times more than Wikipedia+Gigaword and twice
the size of the Twitter corpus). We plan to carry out more experiments (as part of future work) to further
investigate the effect of exploiting different pre-trained word embeddings.

Contrary to our expectations, embeddings generated by substituting OOEV words with placeholders
did not yield better performance compared to randomly initialised embeddings (see Table 9 below). It
is highly probable that replacing OOEV words with placeholders weakened the discriminative power
of CNNs, which take into consideration character-level features. Similarly, the string similarity-based
measures did not have a noticeable impact on performance as the affected words account for only a very
small percentage of the OOEV words.

We then evaluated the contribution of augmenting the sparse entity types in the training data with
weakly labelled named entities. As presented in Table 10, performance noticeably increased for all en-

GloVe Pretrained Vectors Precision Recall F-score
Twitter 59.83 51.22 55.19
Common Crawl 63.20 54.88 58.75
Wikipedia 2014 + Gigaword 5 58.46 46.34 51.70

Table 8: Comparison of performance based on different pre-trained word embeddings
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Embedding Strategy Precision Recall F-score
Randomly initialised embeddings (baseline) 63.20 54.88 58.75
Randomly initialised embeddings (words) + placeholder(all oth-
ers)

64.13 51.84 57.34

string sim (words, hashtags, punctuations) + placeholder(url,
@username, number)

62.28 51.11 56.14

string sim (words, hashtags) + placeholder(url, @username, num-
ber, punctuations)

62.92 50.86 56.25

Table 9: Performance of different embedding strategies for representing OOEV words

Entity Type Training Set only
Training Set + Weakly
Labelled entities for
sparse types

tvshow 44.44 44.44
product 40 41.38
musicartist 28.57 46.15
movie 0 16.67

Table 10: Effect on the F-scores after adding weakly labelled data to sparse entity types

tity types except in the case of tvshow, in which no improvement was obtained. The effect is especially
high for movie and musicartist—entity types for which the F-scores were previously zero. This demon-
strates that the incorporation of weakly labelled data in training the neural network can lead to significant
improvement with respect to sparse entity types.

Informed by the above results, we trained our final NER model on our training data partition aug-
mented with weakly labelled named entities, using: (1) the BIOES tagging scheme; (2) pre-trained
Common Crawl word embeddings; and (3) randomly initialised word embeddings for OOEV words.
Model training took two hours on an Nvidia M2050 GPU processor.

Underpinned by the final NER model, our system (“akora”) was applied on the shared task’s test data,
yielding an overall precision = 51.70, recall = 39.48, and F-score = 44.77. It ranked third amongst par-
ticipating systems (Strauss et al., 2016) as shown in Table 11. Details of the evaluation results according
to entity type are presented in Table 12.

Unfortunately, we have been unable to carry out a performance-wise comparison with the systems that
participated in the previous edition of the W-NUT NER task. Their performance results were reported
based on a data set that formed part of the development data set that we used to fine-tune our neural
network architecture’s hyperparameters and optimise our approach’s performance. Thus, reporting our
system’s results on the same data set would not have given a fair comparison.

A model for the W-NUT’s named entity segmentation task was trained in the same way as above, but
with the entity type labels removed from the training data. When applied on the official test data, this
model obtained an F-score of 59.05 (precision = 64.75, recall = 54.28).

System Name Precision Recall F-score
CambridgeLTL 60.77 46.07 52.41
Talos 58.51 38.12 46.16
akora 51.70 39.48 44.77
NTNU 53.19 32.13 40.06
ASU 40.58 37.58 39.02

Table 11: Performance of our NER system, akora, compared to other top-ranking W-NUT 2016 systems
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Entity Type Precision Recall F-score
company 67.11 32.53 43.82
facility 48.03 28.85 36.05
geo-loc 61.41 65.31 63.30
movie 10.00 2.94 4.55
musicartist 21.05 4.19 6.99
other 37.23 23.97 29.17
person 47.97 58.71 52.80
product 33.33 12.60 18.29
sportsteam 38.89 38.10 38.49
tvshow 10.00 3.03 4.65
Overall 51.70 39.48 44.77

Table 12: Named entity recognition performance on the official evaluation data set

5 Conclusion and Future Work

Our experiments have shown that taking advantage of weakly annotated data to alleviate data sparsity
of some named entity types resulted in increased performance in the respective entity types. In contrast,
mitigating OOEV words by using placeholders did not result in better performance. Future work includes
performing further error analysis by means of hidden layer visualisation to enable us to investigate repre-
sentations created at each layer. Moreover, Bayesian optimisation of parameters can be done as proposed
by Rasmussen (2006). Finally, considering the language drift inherent in social media content, looking
into word sense disambiguation may help improve performance.
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Abstract
Twitter named entity recognition is the process of identifying proper names and classifying them
into some predefined labels/categories. The paper introduces a Twitter named entity system
using a supervised machine learning approach, namely Conditional Random Fields. A large set
of different features was developed and the system was trained using these. The Twitter named
entity task can be divided into two parts: i) Named entity extraction from tweets and ii) Twitter
name classification into ten different types. For Twitter named entity recognition on unseen test
data, our system obtained the second highest F1 score in the shared task: 63.22%. The system
performance on the classification task was worse, with an F1 measure of 40.06% on unseen test
data, which was the fourth best of the ten systems participating in the shared task.

1 Introduction

Social media such as Twitter has become an everyday part of many people’s lives, and play a major role
in modern society. There are currently 1.65 billion monthly active users on Facebook (Facebook, 2016)
and 310 million on Twitter (Twitter, 2016). The number of people involved leads to a vast amount of data
being shared, with almost 500 million short messages, tweets, being produced daily on Twitter (Internet
Live Stats, 2016). Due to the ease and spontaneity of the message creation, and the restriction of a
maximum length of 140 characters on the tweets, the language used on Twitter is often very noisy, with
tweets containing many grammatical and spelling mistakes, short form of the words, multiple words
merged together, special symbols and characters inserted into the words, etc. Hence it is difficult to
analyse and monitor all types of tweets, and to sift through the vast number of tweets: specific tweets
may need to be filtered out from millions of tweets. Named entity extraction plays a vital role when
filtering out relevant tweets from a collection. It is also useful as a pre-processing step in many other
language processing tasks, such as machine translation and question-answering.

Several approaches to Twitter named entity extraction have already been tried, but it is still a challeng-
ing task due to noisiness of the texts. Liu et al. (2011) proposed a semi-supervised learning framework to
identify Twitter names. They used a k-Nearest Neighbors (kNN) approach to label the Twitter names and
gave these labels as an input feature to a Conditional Random Fields (CRF) classifier, achieving almost
80% accuracy on their own annotated data. A supervised model was proposed for Twitter named entity
recognition by Ritter et al. (2011) who applied Labeled LDA (Ramage et al., 2009) to recognize the pos-
sible types of Twitter names, and also showed that part-of-speech and chunk information are important
components in Twitter named identification. Li et al. (2012) introduced an unsupervised Twitter named
entity extraction strategy based on dynamic programming.

The present work addresses the second version of a Twitter named entity shared task that first was
organized at the ACL 2015 workshop on noisy user-generated text (Baldwin et al., 2015), with two sub-
tasks: Twitter named entity identification and classification of those named entities into ten different
types. Of the eight systems participating in the first workshop, the best (Yamada et al., 2015) achieved an
F1 score of 70.63% for Twitter name identification and 56.41% for classification, by combining super-
vised machine learning with high quality knowledge obtained from several open knowledge bases such
as Wikipedia. Another team, (Akhtar et al., 2015) used a strategy based on differential evolution, getting
F1 scores of 56.81% for Twitter name identification and 39.84% for the classification task.
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A related shared task on Twitter named entity recognition and linking to DBpedia was held in con-
junction with the 2016 WWW conference at #Microposts2016 (Cano et al., 2016). Five teams submitted
their systems to the workshop, with the best (Waitelonis and Sack, 2016) achieving recall, precision
and F-measure values of 49.4%, 45.3% and 47.3%. In that system, each token is mapped to gazetteers
developed from the DBpedia database. Tokens are discarded if they match stop words or are not nouns.

The present paper outlines a supervised machine learning approach to Twitter named entity identifi-
cation and classification. A Conditional Random Field (Lafferty et al., 2001) classifier was trained on a
rich set of features and used for identification of Twitter names from the tweets, giving an F1 score of
63.22%. In order to classify the named entities into ten different types, we developed two models and
combined their output, achieving an F-measure of 40.06%. The rest of the paper is organized as follows:
The Twitter name identification methodology and the different features used are introduced in Section 2.
Results are presented and discussed in Section 3, while Section 4 addresses future work and concludes.

2 Twitter Named Entity Recognition

The Twitter Named Entity Recognition shared task (Strauss et al., 2016) at W-NUT 2016, the COLING
workshop on noisy user-generated text, was divided into two subtasks: ‘notypes’ and ‘10types’. In the
‘notypes’ subtask, named entities should just be identified in the tweets, while in the ‘10types’ subtask
the aim was to identify and classify Twitter names into ten different categories: facility, geo-loc, movie,
musicartist, person, company, product, sportsteam, tvshow, and other. We hence first identify the Twitter
names from the tweets, and then in a second step classify the names according to the ten given labels.

2.1 Twitter Named Entity Identification for ‘notypes’
The Twitter named entities were first extracted from the tweets using a supervised machine learning
approach, namely Conditional Random Fields, CRFs (Lafferty et al., 2001). We used the C++ based
CRF++ package,1 a simple, customizable, and open source implementation of CRF for segmenting or
labelling sequential data. The ‘notypes’ system is shown at the top of Figure 1.

A range of different features were developed for identifying the Twitter names. These features are
described below. Note that some of the feature types are implemented as several different features and
that the first five types mainly are lexicon-based, while the last five types primarily relate to the context.
The eight feature types in the middle of the list are predominantly word internal and character-based.
The contributions of these three different groups of feature types will be compared to each other in the
experimental section (Section 3).

Lexicon-based features

Lexical data: This binary feature was extracted from the lexical data supplied by the shared task
organisers. The feature is set to 1 if the current word belongs to the lexical data, otherwise 0.

Babelfy named entities: Each tweet was passed to the Babelfy (Moro et al., 2014) named entity
recognition system for recognizing Twitter names. If the current word belongs to the Babelfy
named entities, this binary feature is set.

Part-of-speech (POS): The TweeboParser2 was used for generating part-of-speech tags for each
token in the tweets and the POS tag of the current word was used as a feature. The POS tags of
the previous two tokens and following two tokens were also used as features, so in total there
are five POS tag features for each token.

Stop word match: All tokens are checked against a stop word list collected from the web.3 The
binary feature is set if the current token matches one of these stop words.

Word frequency: Less frequent words were found to often belong to named entities. If the pre-
calculated frequency from the training data of the current word is less than a certain threshold,
this binary feature is set.

1http://crfpp.sourceforge.net
2http://www.cs.cmu.edu/˜ark/TweetNLP/
3http://www.ranks.nl/stopwords
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Figure 1: Twitter Named Entity Recognition system(s)

Character-based features

Numeric: Many Twitter names were found to contain numeric characters, so this binary feature
shows whether the current token contains numeric characters or not.

Initial capital: Proper nouns in general tend to start with capital letters, so this feature flags if the
current word has an initial capital letter.

Inner capital: This feature is set if the token contains any capital letter in a word-internal position.
Word normalisation: The word mapped to its equivalent class: each capital letter in the token is

mapped to ‘A’, all lower-case letters to ‘a’, and digits to ‘0’. Other characters are kept unaltered.
Special character followed by token: Many Twitter names follow certain special characters (e.g.,

‘@’ and ‘#’). The feature checks if the token is following any special character or not.
Word length: If the current word’s length is greater than some threshold, this binary feature is set.
Word suffix and prefix: A fixed maximum number of characters are stripped from the beginning

and the end of the current word, with the remainder parts being used as two features.

Context-based features

Local context: Local contexts play an important role in identifying Twitter names. Here we used
the three previous and the three next words as local contexts (so there are six context features).

Chunk information: Chunk information was collected using annotated chunk data from the OSU
Twitter NLP Tools.4 A CRF-based chunk model was developed using prefix, suffix and part-
of-speech information. Each tweet was passed to the chunk model and chunk labels generated
for that tweet. This information was then used as a feature for the current token. In addition,
the chunk information of the previous token and the following token were also used as features.

First word: This binary feature checks if the current token is at the beginning of a sentence or not.
Last word: This binary feature is set if the current token is the last word of a sentence, without

considering sentence ending symbols and punctuation marks (i.e., ‘.’, ‘?’, ‘!’, etc.).
Previous label: Finally, the previous token’s calculated named entity label was used as a feature.

4https://github.com/aritter/twitter_nlp/blob/master/data/annotated/chunk.txt
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Dataset Tweets Named
Entities

Training 2,814 1,768
Development 1,000 661
Test 3,850 3,473

Table 1: Number of tweets and named entities in the W-NUT 2016 datasets

For the actual named entity system, some of the limits used for the features were set based on testing on
the training data. Hence, the thresholds for the word frequency and word length features were empirically
set to ≥ 10 and ≥ 5, respectively, while the prefix and suffix strip lengths were fixed to four characters.

2.2 Twitter Named Entity Classification for ‘10types’

For the ‘10types’ subtask, the goal was to identify and classify Twitter names into ten given categories.
Two models were developed for the Twitter name classification, as follows:

Model-1: In Model-1, the tokens are classified into ten categories using CRF. The same features were
utilised as described in Section 2.1 above.

Model-2: This model was based on the lexical data given by the shared task organisers (Strauss et al.,
2016): the Twitter named entity classes are categorized into 10types based on the supplied file
‘dictionaries.conf’. In addition, Twitter names were extracted from the training data and
merged with the lexical data for each category. All tokens were passed to the lexical data and
classified into the ten categories.

The output of these two models was first merged and the merged output was later checked as to whether
it belonged to ‘notypes’ or not. When merging the output from the models, highest priority was given to
Model-2, if the two models generated different named entity classes for a particular token. For example,
‘Washington Navy Yard’ is recognized as belonging to the other category by the Model-1, but Model-2
recognizes it as facility. So the category actually assigned to this entity by the overall system will be
facility, as suggested by Model-2. If an entity matches more than one class in Model-2, we randomly
assign the class of the entity among the matched classes.

Next, the merged output was compared to the ‘notypes’ entities. If the merged output belongs to those
‘notypes’ entities (fully matched), the output entity is considered to be a Twitter name, otherwise it is
discarded. For example, the entity ‘Nobu Restaurant’ is classified as other, but this entity is not identified
by ‘notypes’, so it is not considered as a Twitter named entity. The ‘10types’ system is outlined in
Figure 1, and consists of processes shown mainly in the lower half of the figure, but thus also utilises the
‘notype’ subsystem (the upper part of the figure).

3 Experiments and Discussion

A range of experiments were conducted based on the datasets provided by the shared task organizers
(Strauss et al., 2016). The statistics of the datasets are given in Table 1.

3.1 The ‘notypes’ Named Entity Identification Task

For the ‘notypes’ task, the system was developed on the training data and evaluated on the development
data. The ‘notypes’ model was initially developed using all the training data, but that gave low recall in
relation to the precision. To increase the recall performance, the tweets that did not contain any named
entities were removed from the training data, and a new model was built using all the features described in
Section 2. This system achieved recall, precision and F-measure values of 68.68%, 65.14% and 66.86%,
respectively. This final F-measure value represents an increase by almost 7% compared to the model
which was built using all the training data, as can be seen in Table 2.
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Training Data Recall Precision F1

all training data 54.01 67.74 60.10
removing tweets without Twitter names 68.68 65.14 66.86

Table 2: Performance on the development data for Twitter Named Entity Identification (‘notypes’)

Features Recall Precision F1

Lexical 57.19 49.48 53.05
Word internal 44.18 49.32 46.61

Context 16.79 57.81 26.03

Table 3: Feature class contributions to Twitter Named Entity Identification (‘notypes’ development data)

Team Accuracy Recall Precision F1

CambridgeLTL 95.34 73.49 59.72 65.89
NTNU 94.38 64.18 62.28 63.22
Talos 94.54 70.53 52.58 60.24
akora 94.51 64.75 54.28 59.05
ASU 94.08 57.55 52.98 55.17

Table 4: Comparison of results (top five systems) for ‘notypes’ on the unseen test data

Table 3 looks at the feasibility of the different groups of features, that is, how much each feature group
actually contribute in isolation. In the table, the features are sorted into three different classes: ‘lexical’,
‘word internal’ and ‘context’. Referring to Section 2, the ‘lexical’ group consists of the features lexical
data, babelfy, POS, stopword and word frequency. The ‘word internal’ (character-based) feature group
contains the alphanumeric, initial/inner capital, normalisation, special character, word length and pre-
/suffix features, while the ‘context’ group is made up of the context window words features, chunk,
first/last words, and the previous token’s label.

As can be seen in Table 3, the context features do not contribute much at all to improving the recall,
but are the most helpful features for improving the precision. The lexical and word internal features
contribute roughly equally to the precision score, but the lexical features very clearly are the most useful
for achieving good recall.

The full-feature set ‘notypes’ model built only on the tweets with named entities was entered in the
shared task as the named entity extraction system ‘NTNU’. When applied to the unseen test data it
achieved state-of-the-art results by obtaining the second highest score in the task. The comparable test
data results (top five of the ten participating systems) are reported in Table 4. The NTNU system achieved
recall, precision and F1 values of respectively 64.18%, 62.28% and 63.22%, and thus scored over 2 points
less on F-measure than the best performing system, but on the other hand scored 3 points more than the
third ranked system.

3.2 The ‘10types’ Named Entity Classification Task

For the ‘10types’ classification task, we developed the two models described in Section 2.2 and also
merged their output. The results are shown in Table 5. When using all the feature classes (lexical, word
internal and context), Model-1 produced the best recall (28.74%) with an F-measure of 37.40%. Model-2
generated a better precision (85.16%), but due to bad recall still had a lower F1: 27.63%. Combining the
two models boosted the results on the development data on all measures, giving a 43.81% F-score.

Table 6 indicates the contribution from each of the three types of feature sets to the performance of
Model-1. Just as for the identification task, it is also for classification clear that the context features are
most helpful for boosting precision, while the lexical features help the recall most.
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Classification Model Recall Precision F1

Model-1 28.74 53.52 37.40
Model-2 16.49 85.16 27.63

Combined Model 35.10 58.29 43.81

Table 5: Results for Twitter Named Entity Classification (‘10types’) on the development data

Features Recall Precision F1

Lexical 22.39 34.58 27.18
Word internal 15.13 49.50 23.17

Context 6.20 95.35 11.65

Table 6: Feature contributions to Model-1 for Named Entity Classification (‘10types’ development data)

Team Test Data
Accuracy Recall Precision F1

CambridgeLTL 93.52 60.77 46.07 52.41
Talos 92.95 58.51 38.12 46.16
akora 92.73 51.70 39.48 44.77

NTNU 92.48 53.19 32.13 40.06
ASU 92.42 40.58 37.58 39.02

Table 7: Comparison of results (top five systems) for ‘10types’ on the unseen test data

Applying the NTNU ‘10types’ model to the previously unseen test data, it achieved recall, precision
and F-measure values of 53.19%, 32.13% and 40.06%, respectively. The system came in fourth place in
this subtask and the results of the top five systems are shown in Table 7. One of the main reasons why
our system is outperformed by the top systems is that not all the named entities identified by the system
were classified into any of the ten categories.

3.3 Error Analysis
The outputs were analysed in order to understand the nature of the errors encountered. In the ‘notypes’
Twitter named entity extraction subtask, several named entities were not identified by the system, while
many tokens were wrongly identified as names by the system. The probable reason for this is that the
system could not find enough relevant examples in the training data.

In the ‘10types’ classification task, very few of the entities were identified and classified into the ten
categories. In the development data, only 398 entities were identified out of the 661 named entities that
actually were in the data, and out of those 398, only 232 entities were correctly identified. Again, this
may be due to insufficient number of relevant training instances in the training data.

4 Conclusion

This paper has proposed a system for Twitter named entity identification and classification. A range of
different features were developed to extract Twitter names from the tweets. Two systems were built, one
for the ‘notypes’ named entity extraction task and the other for the ‘10types’ classification task. The
systems were built around a CRF-based classifier and lexical data, and both systems achieved state-of-
the-art results. In the future, we will analyse the errors in more detail and aim to use external resources
(e.g., DBpedia and Wikipedia) to reduce the misclassification of the tokens, as well as to identify more
entities from the tweets. We will also try to generate more models and later ensemble these model to
improve the system performance.
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croposts2016 — 6th workshop on ‘making sense of microposts’. In Proceedings of the 25th World Wide Web
Conference (WWW’16), volume Companion, pages 1041–1042, Montréal, Canada, April. Association for Com-
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Abstract

This paper describes our participation in the shared task Named Entity Recognition in Twitter
organized as part of the 2nd Workshop on Noisy User-generated Text. The shared task comprises
two sub-tasks, concerning a) the detection of the boundaries of entities and b) the classification of
the entities into one of 10 possible types. The proposed approach is based on Linked Open Data
for extracting rich features along with standard ones which are then used by a learning to search
algorithm in order to build the tagger. The submitted system scored 46.16 and 60.24 in terms of
F-measure and ranked 2nd and 3rd for the classification and segmentation tasks respectively.

1 Introduction

Named-Entity Recognition (NER) is a well-studied task for over two decades now with notable success
for noise-free and grammatically well-structured documents. The final goal of a NER system is to clas-
sify textual segments in a predefined set of categories, for example persons, organizations, and locations.
While current NER systems achieve very high performance for a narrow set of entities, in applications
like in Twitter1 where text is short, using an informal style and with an unreliable use of capitalization,
the recognition of entities becomes a challenging task (Marrero et al., 2013; Ritter et al., 2011; Der-
czynski et al., 2015). For example, in the 2015 NER in Twitter competition the best system achieved an
F-score of around 56% for ten entities (Baldwin et al., 2015).

In this context, the shared task for Named-Entity Recognition in Twitter has been organized in order to
provide standard benchmarks for this task. In this paper we describe our participation in the 2nd edition
of the Named-Entity Recognition in Twitter shared task which was organized in the framework of the
Workshop on Noisy User-generated Text.2 We cast the problem as a sequence labeling task and used a
learning to search approach for solving it. The proposed system, called Talos,3 combines an approach
based on Linked-Open Data for extracting rich contextual features along with standard ones that are
usually included in NER systems.

A total of 3,814 annotated tweets were provided by the organizers while the test set contained 3,850
examples. Our system ranked second in the classification and third in the segmentation (only detecting
the boundaries) sub-tasks achieving F-scores of 46.16 and 60.24 respectively. In the following sections
we present a description of the method we developed for tackling the tasks and provide evaluations of its
performance.

2 Approach

In this section we detail our approach for the NER task. More specifically, we provide the different
features that were extracted from the textual data as well as from external resources. Later, we present

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1For example, one would like to track certain entities as a step towards influence detection, see SOMA project
http://www.somaproject.eu/

2http://noisy-text.github.io/2016/
3In Greek mythology, Talos was a giant automaton constructed by the god Hepheastus and had as mission to protect Europa

in Crete. https://en.wikipedia.org/wiki/Talos
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the learning algorithm we used and finally an ensemble of rules that were applied on the predictions of
the learned model in order to correct inconsistencies in the tagging.

2.1 Feature Engineering

We divide the extracted features into three major categories: a) lexical and morphosyntactic features
for word units in the textual data, b) features using Linked Open Data (LOD) and c) features based on
distributed representations of words.

2.1.1 Lexical and Morphosyntactic Features
The word-level features that we employ are the following:

• Current token w in its original form and words around it, w[−n : n] for n = 2.

• Suffixes and prefixes of the current token of size 3 (empirically defined).

• Boolean features regarding the capitalization of the current token:

– The token starts with capital letter.
– All letters in the token are capital.
– Previous words are capitalized.
– The token contains a capitalized letter.

• Lexical features (is digit, is punctuation etc., starts with @, is hashtag, contains capital letter).

The presence of the current token in a standard English dictionary as well as in Wordnet are used as
features along with the probability of its bigram prefix in order to be able to distinguish entities with rare
n-grams (e.g. for XBOX the probability of encountering XB as a character bigram is zero). In the same
line, we also included the presence of each token in the gazetters provided by the organizers.

Finally, we use the Stanford taggers in order to obtain the part-of-speech (POS) tag of the current
and the previous tokens as well as the 3-class named-entity tag (location, person and organization) for
a window of one token around the word (Kristina Toutanova, 2003). Both POS and named-entity tags
have improved the performance of our system.

2.1.2 Contextual Enrichment Features
As tweets are limited to 140 characters, the context is often not sufficient to disambiguate the mentions
they contain. To overcome this constraint we propose to add context in a two fold manner: 1) using more
tweets that contain the same mention, 2) using external LOD resources.

Regarding the first point, we used the Twitter API4 and for each mention in the tweet we obtained a
maximum of 100 tweets which is the limit imposed by Twitter API. For each set of tweets, we compute
a score based on the presence of the immediate context (that is the two words before and after) in lexical
fields defined for each class of entities. For instance, fan, sing, dj and musician are words con-
tained in the musicartist lexical field. Such lexical fields were created manually from Wikipedia
pages. We called this feature enrichTweetsImmediateContext (ETIC). A variant of this feature is en-
richTweets (ET), that considers all the words in the tweet.

Concerning the second point, we generated features inspired from Entity Linking approaches. Indeed,
Yamada et al. (2015) obtained the best results in the last edition of the challenge considering entity linking
results as features dedicated to enhance the NER performance. For each tweet, whenever a mention is
not provided, we generated all the possible n-grams of words (with n ≤ 5). We directly use the DBpedia
SPARQL endpoint in order to request the presence of each n-gram as an entry of this knowledge base,
taking into account:

4We used the Twitter4J Java library: http : //twitter4j.org/en/
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• Exact Matching (EM). We search the type (rdf:type5) of the DBpedia ressource built ac-
cording to the standard URI format (http://dbpedia.org/resource/+Entity). For
instance, we obtain <http://dbpedia.org/resource/Olympique de Marseille>
rdf:type dbo:SportsTeam.

• Redirection (EM). In order to deal with common misspelling, abbreviation and acronym cases,
we also consider the dbo:wikiPageRedirects6 predicate. For instance, ”‘L’oheme”’ or
”‘Olympic de Marseille”’ refers to the same URI namely dbo:Olympique de Marseille.

• Disambiguation (D). As most of the mentions are ambiguous, we use the
dbo:wikiPageDisambiguates.7 For instance, “OM” could be the Russian river
dbo:Om River or a television show dbo:Om (2003 film).

In these three cases, the mention receives a boolean value according to each category in the classifi-
cation task (movie, geo-loc, person, etc.): 1 if a rdf:type corresponds to one of the 10 categories, 0
otherwise.

2.1.3 Word Clusters
We exploited unlabeled data using word representations which have been proved to enhance performance
for a variety of NLP tasks (Ritter et al., 2011; Owoputi et al., 2012; Cherry et al., 2015). In this line, we
used Brown clusters (Brown et al., 1992) as well as word clusters on top of GloVe word representations
from external resources and a set of tweets collected in several periods between July and September 2016
resulting to a corpus of around 39 million tweets. The collection has been biased to include tweets in the
context of each of the ten entity classes. For example, for the class musicartistwe used the following
keywords, {band, musicgroup, livemusic, concert, musician, musical}.

Regarding the external resources we used pre-trained Brown clusters from TweetNLP8(Owoputi et al.,
2012) and pre-trained GloVe word vectors of Wikipedia and Twitter collections9 which were grouped in
1,000 clusters using K-means (Pennington et al., 2014). Several dimensions for the word vectors were
tested, ranging from 50 to 200, and the best results were obtained with the 100 dimensional ones. For
the collected tweets, around 36 million English tweets were selected using langpid.py (Lui and Baldwin,
2012). Then, we trained Brown clusters to partition the words in 1,000 classes with a minimum frequency
of appearance in the collection of 10 times (Liang, 2005).

2.2 Learning Algorithm
The learning problem was cast as a sequence labeling one, and for solving it we used a learning to search
(L2S) approach, which represents a family of algorithms for structured prediction tasks (Daumé III et al.,
2014; Chang et al., 2015). These methods decompose the problem in a search space with states, actions
and policies and then learn a hypothesis controlling a policy over the state-action space. In this case,
each example in the training data is used as a reference policy (labels to be assigned at each token) and
the learning algorithm tries to approximate it. This technique resembles reinforcement learning methods,
with the difference that in the latter one is not provided with a reference policy but discovers it through
trial-and-error.

The L2S framework is highly modular as it reduces structured problems to cost-sensitive multi-class
classification ones. This allows us to use state-of-the-art algorithms for multi-class classification.

2.3 Post-application of Rules
The annotations produced by our system contained inconsistencies which we corrected with a post-
processing step. For instance, in the BIO encoding, a label “I” can not exist if the previous label is not a
“B”. In order to avoid such cases, we applied the following rules:

5http : //www.w3.org/1999/02/22− rdf − syntax− ns#type
6http : //dbpedia.org/ontology/wikiPageRedirects
7http : //dbpedia.org/ontology/wikiPageDisambiguates
8http://www.cs.cmu.edu/ ark/TweetNLP/
9http://nlp.stanford.edu/projects/glove/
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1. O − I⇒ O − B orB − I orB − I − I orB − I − I − I regarding the presence of capital letters in
previous words.

2. I − B⇒ I − I

3. B − B⇒ B − I

Concerning the last two rules, we take into account the fact that the phenomenon of composition (when
an entity is included in another entity) is not frequently present in the training set.

3 Experiments

3.1 Data
The organizers provided a training set with 2,814 tweets and a development set of 1,000 tweets which
corresponds to the test set of the 2015 edition of the challenge. Table 1 presents the distribution for each
entity type in the training and development sets. We observe that person, geo-loc and other are
the dominating classes in both sets.

type train dev test
company 204 39 621
facility 111 38 253
person 522 171 482
musicartist 68 41 191
geo-loc 322 116 882
movie 37 15 34
other 272 132 584
product 106 37 246
sportsteam 86 70 147
tvshow 40 2 33

Table 1: Size for each class of entities in the training, development and test sets.

Tweets were already tokenized and we applied normalization in order to reduce noise induced by
spelling errors or the use of abbreviations and slang. There are three kinds of token normalizations
(Baldwin et al., 2015):

• one-to-one normalization, when one out-of-vocabulary (OOV) token is replaced by one in-
vocabulary equivalent,

• one-to-many (OTM), when one token is replaced by several,

• many-to-one (MTO), when several tokens are replaced by one.

In this work we perform a simple one-to-one normalization, by substituting OOV terms for which a
normalized equivalent exists in the W-NUT normalization shared task corpus of 2015 by their normalized
counterparts (Baldwin et al., 2015). This has the advantage of not requiring to perform a token-level
alignment between the unnormalized tweet and the potentially longer (or shorter) tweet that would result
from an OTM or MTO normalization.

No further preprocessing has been applied to the data. Nevertheless, during an inspection of the data
we observed some inconsistencies in the annotation of some entities like for example “Justin Bieber”
which was annotated as person in the training data while in the test set as musicartist. During
development, we decided not to alter these annotations although it could have slightly improved the
performance of our system.

It is interesting to note here that the intersection of the unique entities between the train and dev
sets is around 14.6% while the corresponding ratio for train + dev and the test set is around
8.3%. This means that we should expect a harder prediction task than this of 2015 which will test the
generalization capabilities of our approach.
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Namespace Segmentation Classification
LM w−2:2, N−1:1, POS−1:0, Cap−1:0,

Lexical
w−2:2, N−1:1, POS−1:0, Cap−1:0,
α±3

0 , Lexical
LOD LODEM , LODR, LODD LODETIC LODET , LODR,

LODEM , LODR, LODD

WordClusters B0, Bindomain
0 , GV wiki

0 , GV tweets
0 B0, Bindomain

0 , GV wiki
0 , GV tweets

0

Table 2: Template features for the two tasks. w corresponds to the word, N to the 3-class NER tag, Cap
to the capitalization features and α to the affix.

3.2 Setup

We trained two different systems for the corresponding tasks, that is the detection of boundaries and
the classification of types of entities. Note, that we use the predictions of the system that detects the
boundaries in order to extract the Linked Open Data features discussed in Section 2.1.2. While this
approach can have a low recall rate, it has the advantage of being very fast and precise and thus not
injecting noise in the features. On the other hand, one could have generated all the n-grams from left to
right for each tweet, letting the system increase the coverage of the entities but with a high computational
cost and a low precision rate. Table 2 presents the templates we used for each of the two tasks where w,
N , Cap, Lexical and α refer to the form of word, named-entity obtained by the Stanford tagger, lexical
features and affixes of a word. For each feature, a subscript denotes the slice that has been used around
the current token. For the word clusters B and Bindomain refer to the pre-trained brown clusters and the
ones learned over our collection of tweets (see Section 2.1.3). Finally, GV clusters correspond to the
trained clusters for Wikipedia and tweets GloVe vectors respectively.

For both tasks, parameter tuning was performed through a random search with cross-validation for the
estimation of the performance. In order to evaluate the performance of our system with respect to the
results of the 2015 edition of the competition, we performed the tuning only on the training set and then
test on the development set. For our final submission the same procedure was repeated on the union of
the train and development sets.

We used the Vowpal Wabbit10 suite, which implements several L2S algorithms and provides a frame-
work for compiling structured learning tasks. We tune the following parameters for L2S: learning rate
∈ [0.05, 0.3], passes ∈ [2, 20] and history length ∈ {1, 2, 3}. The parameter for the hash function was
optimized beforehand and kept fixed to 29 bits throughout the experiments. Finally, we used the default
setting for solving the multi-class cost-sensitive classification problems.

3.3 Results

Tables 3 and 4 present the results for the segmentation and classification tasks respectively. As the
development set for 2016 corresponds to the test set of 2015 edition of the challenge, we include the best
two systems of 2015 for comparison, namely Ousia (Yamada et al., 2015) and NLANGP (Toh et al.,
2015). Our system, Talos, was ranked third and second respectively for the two tasks.

Regarding the segmentation task, Talos achieved a high precision score but with a lower recall in both
the development and the test sets.

Table 4 presents the results in the same fashion as previously for the entities classification task. We
include a version of our system without using the LOD features and a version without normalization in
order to assess their contribution. Talos achieved a high F-score in the test set and ranked second in this
task. We also observe that on the development set it outperformed the best system of the 2015 edition of
the challenge. However, noticeably we note the lower scores in the test set for the best systems with
respect to the results of 2015. This could come from the fact that many mentions never appear in the
training data and thus stressing the generalization capabilities of the systems. Also, as tweets come from
different periods of time one should account for concept-drift phenomena, which we did not consider in
our case.

10http://hunch.net/vw
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System dev 2016 test
P R F P R F

Talos 71.29 55.98 62.71 70.53 52.58 60.24
1st-2016 - - - 73.49 59.72 65.89
2nd-2016 - - - 64.18 62.28 63.22
Ousia 72.20 69.14 70.63 - - -
NLANGP 67.74 54.31 60.29 - - -

Table 3: Results for the no-types task in terms of Precision, Recall and F-score. The development test of
2016 corresponds to the test set of 2015 for which we present the best two systems.

Concerning LOD features, we note that they improve considerably the performance of the system
showing how rich contextual features can compensate for the lack of context. Finally, considering nor-
malization, we observe an increase in both the development test set F-scores. Nevertheless, one should
be careful as in some cases normalization may change semantics in the text and thus deteriorate the
performance.

System dev 2016 test
P R F P R F

Talos 63.64 51.89 57.17 58.51 38.12 46.16
Talos no LOD 62.90 44.63 52.21 54.32 36.37 43.57
Talos no norm 63.55 51.44 56.86 58.19 37.83 45.86
1st-2016 - - - 60.77 46.07 52.41
3rd-2016 - - - 51.70 39.48 44.77
Ousia 57.66 55.22 56.41 - - -
NLANGP 63.62 43.12 51.40 - - -

Table 4: Results for the no-entity task. The development test of 2016 corresponds to the test set of 2015
for which we present the best two systems.

Table 5 presents the results per entity class for Talos. As expected, the system performs well for the
person, company and geo-loc classes which are the most populated ones.

Type Precision Recall F
company 64.51 36.88 46.93
facility 60.67 21.34 31.58
geo-loc 71.31 65.65 68.36
movie 20.00 2.94 5.13
musicartist 45.00 4.71 8.53
other 50.94 18.49 27.14
person 46.12 59.13 51.82
product 33.33 6.91 11.45
sportsteam 42.42 28.57 34.15
tvshow 0.00 0.00 0.00

Table 5: Results per entity type for Talos.

4 Conclusion

We presented in this work our participation in the “2nd Named Entity Recognition for Twitter” shared
task. The task has been cast as a sequence labeling one and we employed a learning to search approach in
order to tackle it. We also leveraged LOD for extracting rich contextual features for the named-entities.
Our submission achieved F-scores of 46.16 and 60.24 for the classification and the segmentation tasks
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and ranked 2nd and 3rd respectively. The post-analysis showed that LOD features improved substantially
the performance of our system as they counter-balance the lack of context in tweets.

The shared task gave us the opportunity to test the performance of NER systems in short and noisy
textual data. The results of the participated systems shows that the task is far to be considered as a solved
one and methods with stellar performance in normal texts need to be revised.
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Hal Daumé III, John Langford, and Stéphane Ross. 2014. Efficient programmable learning to search. CoRR,
abs/1406.1837.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo, Marieke van Erp, Genevieve Gorrell, Raphal Troncy, Johann
Petrak, and Kalina Bontcheva. 2015. Analysis of named entity recognition and linking for tweets. Information
Processing & Management, 51(2):32 – 49.

Christopher D. Manning Yoram Singer Kristina Toutanova, Dan Klein. 2003. Feature-rich part-of-speech tagging
with a cyclic dependency network. In In Proceedings of NAACL.

Percy Liang. 2005. Semi-supervised learning for natural language. In PhD Thesis, MIT.

Marco Lui and Timothy Baldwin. 2012. Langid.py: An off-the-shelf language identification tool. In Proceedings
of the ACL 2012 System Demonstrations, ACL ’12, pages 25–30. Association for Computational Linguistics.

Mónica Marrero, Julián Urbano, Sonia Sánchez-Cuadrado, Jorge Morato, and Juan Miguel Gómez-Berbı́s.
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Abstract

In this paper, we describe the DeepNNNER entry to The 2nd Workshop on Noisy User-generated
Text (WNUT) Shared Task #2: Named Entity Recognition in Twitter. Our shared task submission
adopts the bidirectional LSTM-CNN model of Chiu and Nichols (2016), as it has been shown to
perform well on both newswire and Web texts. It uses word embeddings trained on large-scale
Web text collections together with text normalization to cope with the diversity in Web texts, and
lexicons for target named entity classes constructed from publicly-available sources. Extended
evaluation comparing the effectiveness of various word embeddings, text normalization, and
lexicon settings shows that our system achieves a maximum F1-score of 47.24, performance
surpassing that of the shared task’s second-ranked system.

1 Introduction

Named entity recognition (NER) is an important part of natural language processing. It is a challenging
task that requires robust recognition to detect common entities over a large variety of expressions and
vocabularies. These problems are intensified when targeting Web texts because of challenges such as
differences in spelling and punctuation conventions, neologisms, and Web markup (Baldwin et al., 2015).

Traditional approaches to NER on newswire texts has been dominated by machine learning methods
that rely heavily on manual feature engineering and external knowledge sources (Ratinov and Roth,
2009; Lin and Wu, 2009; Passos et al., 2014). Recently, neural network models – especially those that
use recursive models – have shown that state of the art performance can be achieved with little feature
engineering (Collobert et al., 2011; Santos et al., 2015; Chiu and Nichols, 2016). However, despite their
popularity for NER on newswire texts, neural networks have not been widely adopted for NER on Web
texts, with the exception of the feed-forward neural network (FFNN) model of Godin et al. (2015).

In this paper, we present the DeepNNNER entry to the WNUT 2016 Shared Task #2: Named Entity
Recognition in Twitter. Our shared task submission is based on the model of Chiu and Nichols (2016),
a hybrid model of bidirectional long short-term memory (BLSTM) networks and convolutional neural
networks (CNN) that automatically learns both character- and word-level features, and which holds the
current state-of-the-art on both newswire texts (CoNLL 2003) and diverse corpora including Web texts
(OntoNotes 5.0). In contrast to CRFs, FFNNs, and other windowed models, the BLSTM gives our
model effectively infinite context on both sides of a word during sequential labeling. The character-level
CNN allows our model to learn relevant features from the orthography of words, which is important in
task where unseen words are commonplace. Finally, it also encodes partial lexicon matches in neural
networks, allowing it to make effective use of lexical knowledge.

Our primary contribution is adapting the model of Chiu and Nichols (2016) to Twitter data by devel-
oping a text normalization method to effectively apply word embeddings to large vocabulary Web texts
and automatically constructing lexicons for the shared task’s target NE classes from publicly-available
sources. The rest of our paper is organized as follows. In Section 2, we describe the adaptations made to
Chiu and Nichols (2016)’s model. In Section 3, we describe the evaluation methodology. In Section 4,
we discuss the results and present an error analysis. In Section 5, we summarize related research. Finally,
in Section 6, we give concluding remarks.
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Figure 1: Our proposed system architecture for NER. Feature embeddings are constructed following
Section 2.1. The output from both the forward and the backward LSTM are fed through a linear and a
log-softmax layer before being added together (shown as ”Output layers”) to produce the tag scores.

2 Model

In this section, we describe the architecture of our shared task submission. An overview is given Figure 1.
Our system is based on the BLSTM-CNN model of Chiu and Nichols (2016), and, unless otherwise
noted, follows their training and tagging methodology, which the reader is referred to for more details.

2.1 Features
Feature embeddings for words are constructed by concatenating together the features listed here.

2.1.1 Word Embeddings
Word embeddings are critical for high-performance neural networks in NLP tasks (Turian et al., 2010).
In this paper, we compare six publicly available pre-trained word embeddings. The embeddings are de-
scribed in detail in Table 3. The neural embeddings of Collobert et al. (2011) were chosen because Chiu
and Nichols (2016) reported them to be the highest performing on both CoNLL-2003 and OntoNotes 5.0
datasets. To evaluate embeddings trained on data closer to the WNUT dataset, we also selected the GloVe
embeddings of Pennington et al. (2014), trained on both Web text and tweets, and word2vec embeddings
trained on Google News data (Mikolov et al., 2013) and on tweets (Godin et al., 2015).

Preliminary evaluation on the Dev1 data showed that GloVe 27B outperformed Collobert’s embed-
dings (see Table 5) and word2vec 3B, so they were used in our submission. Following Collobert et al.
(2011), we use lookup tables to extract embeddings and every word is lower cased before lookup.

2.1.2 CNN-extracted Character Features
Following Chiu and Nichols (2016), we use a CNN to extract features from 25 dim. character em-
beddings randomly-initialized from a uniform distribution between -0.5 and 0.5. To accommodate text
normalization, we added embeddings for the normalization symbols described in Section 2.2, namely
<url>, <user>, <smile>, <lolface>, <sadface>, <neutralface>, <heart>, <number>
and <hashtag>. All experiments were conducted with the same character embeddings.

2.1.3 Lexicon Features
Prior knowledge in the form of lexicons (also known as “gazetteers”) has been shown to be essential to
NER (Ratinov and Roth, 2009; Passos et al., 2014). This section describes how the lexicons employed
by our system were constructed. We designed the lexicon categories to be as close as possible to the
shared task NE classes by extracting corresponding descendants from the DBpedia ontology (Auer et al.,
2007). The lexicon used by our system contains 2.2 million entries over 9 different categories, as shown
in Table 1. While most of the lexicons were extracted using only one descendant from the ontology,
Misc, Music, and Product were constructed using multiple classes.
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Text Steve King on ObamaCare and Constitution Day
Company - - - - - - -

Location - S - - - - -
Misc - - - - - B E

Movie - - - - - - -
Music - - - - - - -

Person B E - - - - -
Product - - - - - - -

SportsTeam - - - - - - -
TVShow - - - - - - -

WNUT Gold B-person E-person O O O B-other E-other

Figure 2: Example of lexicon partial matching. The BIE tags indicate whether the token matched the
beginning, inside or end of a lexical entry, and the S tag indicate an exact match with a single entry.

Category Entries DBpedia Classes
Company 57,856 Company
Location 710,704 Place
Misc 132,055 Work + Event - Movie - TVShow
Movie 87,234 Movie
Music 74,816 Band + MusicalArtist
Person 1,074,384 Person
Product 37,820 Device + WNUT:Product
SportsTeam 28,155 SportsTeam
TVShow 29,272 TelevisionShow
Total 2,232,295

Table 1: Number of entries for each lexical cate-
gory and their corresponding DBpedia classes.

Hyper-parameter Final Range
Convolution width 5 [3, 9]
CNN output size 51 [15, 85]
LSTM state size 200 [100, 525]
LSTM layers 1 [1, 5]
Learning rate 0.0138 [10−3, 10−1.8]
Epochs 50 -
Dropout 0.56 [0.25, 0.75]
Mini-batch size 9 -

Table 2: Hyper-parameter search space and final
values used for all experiments.

First, in order to match entries such as festivals, holidays, songs, and more from the other class,
we constructed the Misc lexicon from Event and Work types in the DBpedia ontology excluding Movie
and TelevisionShow to avoid overlap with other classes. Second, in order to deal with inconsistencies
between person and musicartist classes as discussed in Section 3, the Music lexicon is a combi-
nation of the subtypes Band and MusicalArtist1. Finally, in order to maximize coverage, the Product
lexicon is a combination of the subtype Device from the DBpedia ontology and the lexicon product
distributed with WNUT dataset. Every other category is as described in Table 1.

To generate lexicon features, we apply the partial matching algorithm of Chiu and Nichols (2016)
to the input text, as shown in Figure 2. Each lexicon and match type (BIOES) is associated with a
randomly-initialized 5 dim. embedding. The embeddings for all lexicons are concatenated together to
produce the lexicon feature for each word in the input. To facilitate matching, all entries were stripped
of parentheses and tokenized with the Penn Treebank tokenization script.

2.1.4 Capitalization Feature
Following Chiu and Nichols (2016), we used different symbols for word-level capitalization feature each
assigned a randomly initialized embedding: allCaps, upperInitial, lowercase, mixedCaps
and noinfo. Similar symbols were used for character-level (upper case, lower case, punctuation, other).

2.2 Text Normalization
In order to maximize word embedding lookup coverage, we modify the publicly available GloVe prepro-
cessing script2 to normalize irregular spelling and replace special symbols with special embeddings:
<url>, <user>, <smile>, <lolface>, <sadface>, <neutralface>, <heart>, <number>
and <hashtag>. Repeated punctuation is also removed.

When processing hashtags, the hashtag body is split on capital letters, distributing the NE tag across
the resulting tokens. This helps increase word embedding coverage. Refer to Figure 1 for an example.

1Because MusicalArtist is a subtype of Person, both lexicons overlap, but experiments showed that the system still performed
better when MusicalArtist was in both lexicons.

2http://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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Word Data (Size) Dims. Vocab. Types Tokens
Embeddings - +norm. - +norm
Collobert RCV1 + Wikipedia (850M words) 50 130K 51.43% 75.31% 84.63% 82.18%
GloVe 6B Gigaword5 + Wikipedia (6B words) 50 400k 54.22% 82.71% 86.02% 84.17%
GloVe 27B Twitter microposts (27B words) 50 1.2M 57.47% 90.47% 83.67% 97.66%
GloVe 42B Common Crawl (42B words) 300 1.9M 62.14% 90.86% 89.09% 86.21%
word2vec 3B Google News (3B words) 300 3M 55.65% 86.00% 74.95% 72.62%
word2vec 400MT Twitter microposts (400M tweets) 400 3M 63.36% 91.08% 87.23% 85.79%

Table 3: A comparison of word embedding type and token coverage with and without text normalization.

Additionally, we attempted to correct the most obvious spelling irregularities where letters in a word
are repeated more than twice, consulting a dictionary to decide wether to keep one or two occurrences
of that repeated letter. When consulting the dictionary, we prioritized shorter matches when the repeated
letter appeared at the end of the word and longer matches otherwise.

For evaluation of the final system, we mapped the NE tags onto the original test data tokens, as shown
in Figure 1. Because of the tokenization, some of the original entries could end up with more than one
tag. In this case, we prioritize entity over non-entity tags, and keep the most frequent tag. Prioritizing
entity over non-entity tags was meant to improve recall, albeit at the expense of precision.

Initial experiments on Dev1 comparing word2vec 3B, Collobert, and GloVe 27B embeddings showed
that text normalization improved performance for word2vec 3B and GloVe 27B but not Collobert3 (Table
5); that word type coverage increased drastically for all embeddings; and that while word token coverage
greatly increased for GloVe 27B, it slightly decreased for other embeddings (see Table 4). We thus
selected GloVe 27B embeddings for our submission due to their superior performance and coverage.

2.3 Training and Inference
We follow the training and inference methodology of Chiu and Nichols (2016), training our neural net-
work to maximize the sentence-level log-likelihood from Collobert et al. (2011). Training is done by
mini-batch SGD with a fixed learning rate, and we apply dropout (Pham et al., 2014) to the output nodes.
All feature representations are “unfrozen” and allowed to be updated by the training algorithm.

We used the IOB tag scheme to annotate named entities. We also explored the BIOES tag scheme4,
as it was reported to outperform IOB (Ratinov and Roth, 2009), however, IOB outperformed BIOES in
preliminary experiments. We suspect that data sparsity prevented the model from learning meaningful
representations for the extra tags. Our shared task submission’s model trained in approximately 90
minutes and tags the test set in approximately 20 seconds, with memory usage peaking at 350MB5.

2.4 Hyper-parameter Optimization
To maximize performance, we perform hyper-parameter optimization using Optunity’s implementation
of particle swarm (Claesen et al., 2014), as there is some evidence that it is more efficient than random
search (Clerc and Kennedy, 2002). The hyper-parameters of our model and final selected values are
given in Table 2. We evaluated 800 hyper-parameter settings in total. The search used 5-fold validation
to maximize the influence of the entire dataset, as it was small, and we kept the best performing setting.

3 Evaluation

The WNUT 2016 dataset consists of user-generated tweets tagged with 10 types of named enti-
ties: company, facility, geo-loc, movie, musicartist, other, person, product,
sportsteam, and tvshow. Table 4 shows the train, dev and test set data splits. Compared to the
well-researched CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003) or the OntoNotes 5.0 dataset
(Pradhan et al., 2013), the WNUT dataset contains a lot of spelling irregularities and special symbols.
For example, Christmas written as xmas, Guys written as Gaiiissss, emoticons such as “:-)”, “:(”, “<3”

3Neither difference was statistically significant.
4BIOES stands for Begin, Inside, Outside, End, Single, indicating the position of the token in the entity.
5Our models were trained on a 2.7 GHz 12-Core Intel Xeon E5 CPU, with a maximum of 4 cores being used at once.
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Train Dev1 Dev2 Test
Sentences 1,795 599 420 3,850

Tokens 34,899 11,570 6,790 61,908
Entities 1,140 356 272 3,473

Table 4: The WNUT 2016 dataset.

Settings Dev1
Prec. Recall F1

Collobert 56.92 47.33 51.63 (±2.11)
Collobert + norm 55.80 45.84 50.24 (±1.52)
GloVe 27B 54.89 49.07 51.78 (±1.91)
GloVe 27B + norm 54.41 49.86 51.96 (±1.25)
word2vec 3B 54.21 46.74 50.08 (±2.98)
word2vec 3B + norm 54.94 47.44 50.81 (±2.42)

Table 5: Dev1 preliminary evaluation.

Model Test
Prec. Recall F1 Rank*

CambridgeLTL 60.77 46.07 52.41 1
Talos 58.51 38.12 46.16 2
akora 51.70 39.48 44.77 3
NTNU 53.19 32.13 40.06 4
ASU 40.58 37.58 39.02 5
Submitted model 54.97 28.16 37.24 6
*Fixed model 52.04 39.63 44.97 3
**Best model 54.02 42.06 47.24 2

Table 6: F1-scores for our submitted, fixed, and
best 10 tag models. Rank* is the retroactive rank.

Settings Test
Prec. Recall F1

Collobert 50.52 38.00 43.37 (±0.47)
+ norm 51.44 38.13 43.73 (±0.66)
+ lex 51.50 39.73 44.82 (±0.79)
+ norm + lex 51.72 40.46 45.39 (±1.15)
GloVe 6B 50.26 38.90 43.84 (±1.08)
+ norm 52.21 38.10 43.96 (±1.19)
+ lex 51.14 38.95 44.19 (±0.63)
+ norm + lex 51.73 38.73 44.24 (±0.44)
GloVe 27B 48.44 38.44 42.86 (±1.06)
+ norm 49.35 39.66 43.92 (±0.99)
+ lex 51.13 39.12 44.31 (±1.14)
*+ norm + lex 52.04 39.63 44.97 (±0.65)
GloVe 42B 51.81 40.87 45.59 (±0.71)
+ norm 52.91 41.60 46.53 (±0.84)
+ lex 52.27 41.50 46.22 (±0.93)
**+ norm + lex 54.02 42.06 47.24 (±0.70)
word2vec 3B 51.71 38.56 44.11 (±0.47)
+ norm 53.92 37.82 44.39 (±1.28)
+ lex 51.37 39.01 44.31 (±0.68)
+ norm + lex 52.64 39.53 45.10 (±0.91)
word2vec 400MT 50.62 40.92 45.22 (±0.76)
+ norm 51.95 40.41 45.45 (±0.76)
+ lex 53.23 41.45 46.59 (±0.92)
+ norm + lex 53.87 41.78 47.03 (±0.97)

Table 7: F1-scores with different word embed-
dings evaluated on test set with final settings.

and so on are commonplace. Such examples illustrate the diversity of the dataset’s vocabulary, motivating
us to perform text normalization as described in Section 2.2.

Some inconsistencies were found between Dev2 and the other data. The most obvious one is where
singers previously tagged as person in Train were tagged as musicartist in Dev2. This is easily
verifiable by comparing tags for the entity Justin Bieber in those datasets. These tag inconsistencies
make it difficult to learn a robust model for those classes, so we manually retagged all person entities,
keeping the most precise tag (i.e. tagging all singers as musicartist). We did so by searching for
every person entity with Google and used the surrounding context to determine the most precise tag,
replacing a total of 82 person entities out of 664. Other local inconsistencies were not corrected as not
enough evidence was found. In Section 4.3.2 we explore inconsistencies in common tagging errors.

For each experiment, we report the average for precision and recall, and the average and standard devi-
ation for f1-score for 10 successful trials. Minor inconsistencies in reported f1-scores and precision and
recall result from those scores being averaged independently. Statistical significance is calculated using
the Wilcoxon rank sum test, due to its robustness against small sample sizes with unknown distributions.

4 Results and Discussion

In this section, we (1) compare the performance of different word embeddings, (2) analyze the influence
of our lexicon over the performance of our final model, and (3) perform error analysis of various aspects
of both our system and the dataset. Table 7 shows the final results for different settings. Following Cherry
et al. (2015), we compare our system settings to other shared task entries (Strauss et al., 2016) and present
their retroactive ranks. While our submitted system uses GloVe embeddings trained on Twitter (GloVe
27B), we found that GloVe embeddings trained on Common Crawl (GloVe 42B) with text normalization
and lexicons was our best performing setting, achieving a retroactive rank of second place.

4.1 Word Embeddings
Table 7 shows that GloVe embeddings trained on Common Crawl (GloVe 42B) outperformed all other
embeddings by over 2 f1 points. Comparing Tables 4 and 7, we see that word type coverage is correlated
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Figure 3: Left: fraction of named entities of each class matched by entries in each lexicon category.
White = higher fraction. Right: entity-level confusion matrix with outliers highlighted.

with performance for GloVe and word2vec embeddings6. Note that word type coverage appears to be
more important than token coverage. It could be the case that NEs are more likely to contain low-
frequency words, necessitating a large token vocabulary. GloVe 42B’s increased performance over GloVe
27B could be explained thus, though it is also possible that its larger, more diverse dataset is responsible.

It is interesting to point out that Collobert was able to outperform embeddings trained on much larger
datasets with much larger vocabularies. While all embeddings improved with text normalization, only
GloVe 27B and 42B got statistically significant7 increases.

Finally, in order to save time on training, we reduced the vocabulary of the word embedding lookup
table to contain only words from the training data. This allowed us to reduce the network’s training time
by half and reduce its memory usage by over 90%. However, due to a bug, words outside of the train and
dev set vocabulary were treated as unknown, considerably degrading our system’s performance. When
the vocabulary bug is fixed, our submission setting achieves performance with a retroactive rank of third
place. See Table 6 for a comparison to other shared task entries taken from Strauss et al. (2016).

4.2 Lexicon Features

Usage of lexicons greatly improved performance, providing a statistically significant increase in f1-score
for Collobert8, GloVe 27B9, GloVe 42B10, and word2vec-400MT11 embeddings (see Tables 7 and 8).

Figure 3 (left) shows a heat map of lexical coverage. As many of the cells along the diagonal are
bright, it shows that we were able to produce lexicons for many categories with high coverage and
low ambiguity. However, there are some notable exceptions, such as the Location lexicon showing
high coverage on both facility and geo-loc, and both Music and Person lexicons showing
high coverage on musicartist. This lexical overlap likely contributes to misclassification errors; the
confusion matrix in Figure 3 (right) shows that misclassifications between facility and geo-loc
and musicartist and person are quite frequent. Some lexical overlap makes sense considering the
fact that sports teams will often include city names such as Montreal Canadiens or Philadelphia Eagles.

Table 8 compares our fixed shared task submission’s entity-level f1-scores with and without lexicons.
These results show that while many lexicons were effective – particularly company, geo-loc, and

6 It is surprising that word2vec-400MT underperforms Glove 42B, despite its superior word type coverage, but this could
be due to differences in training algorithm, preprocessing (word2vec-400MT used Ritter et al. (2011)’s Twitter NLP Tools), or
casing (word2vec-400MT preserved case, while Glove 42B did not). We also evaluated 300 dim. GloVe embeddings trained on
840B words of Common Crawl data with a vocabulary size of 2.2M, however, they underperformed the GloVe 42B embeddings.

7Wilcoxon rank sum test, p < 0.05.
8Wilcoxon rank sum test, p < 0.005.
9Wilcoxon rank sum test, p < 0.05.

10Wilcoxon rank sum test, p < 0.05.
11Wilcoxon rank sum test, p < 0.01.
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NE com. fac. geo-loc movie musicartist other person product sportsteam tvshow
− lex 38.94 29.00 61.16 3.43 28.68 26.54 55.75 8.48 35.34 10.77
+ lex 45.74 29.87 64.13 4.18 23.06 27.84 55.01 9.04 35.20 9.76

∆ +6.80 +0.87 +2.97 +0.75 −5.63 +1.30 −0.74 +0.57 −0.13 −1.01

Table 8: Per-category comparison of our fixed shared task submission settings with and without lexicons.

B-sports
(1) Don’t be biased Argentina destroyed them . . .

B-geo-loc
O B-sports I-sports

(2) #SunDevils Sun Devils struggle to beat FCS . . .
O O O
O O B-company

(3) #Fedex , #microsoft , #Twitter . . .
O O O

Figure 4: Examples of (1) contextual ambiguity (2) tagging inconsistencies and (3) hashtags inconsis-
tencies. The upper tag is gold annotation. The lower tag is our system’s prediction.

other – the lexicons MusicArtist, Person, SportsTeam, and TVShow were detrimental to
NER performance. As noted above, the MusicArtist and Person lexicons had substantial overlap,
most likely contributing to poor performance.

4.3 Error Analysis
In this section, we describe different sources of errors from a subsample of mistagged test set entities.

4.3.1 Unseen Entities
One of the biggest source of errors when trying to tag noisy Web-text is the amount of unseen entities
the system will face. In the WNUT dataset, roughly 40% of the entities present in the test set are not in
the train or dev datasets. This underscores the importance of high-coverage word embeddings, lexicon
construction, and lexical matching, since the tagger has not encountered almost half of the entities.

4.3.2 Contextual Ambiguity
With fine-grained entities such as the ones defined for this task, our system tends to make errors due
to confusion between entity classes. Figure 3 shows the confusion matrix when the system is evaluated
over the test dataset. One common error occurs between geo-loc and other classes, more specifically
company, facility and sportsteam. We extracted 50 examples for each type of confusion
and found out that place names were mostly being tagged as geo-loc even though context indicates
otherwise. Figure 4 shows a few examples.

Another important class ambiguity is between musicartist and person. In a subsample of 64
examples, 49 were tagged as person. Furthermore, the entity matched both entity’s lexicons in 59%
of the cases. This is also supported by the confusion matrix where music artists get tagged as person
more than twice as often as they get tagged correctly. This contextual ambiguity seems to have led to
a few tagging inconsistencies that could also explain lower overall performance. Either from train to
test set or within the same set, entities sometimes ended up with multiple tags or no tags at all. Such
examples are: singers like Justin Bieber being tagged as person in the training set and musicartist
in the test set; devices such as BlackBerry being tagged either as company or product. Some of these
inconsistencies are understandable because most of the time more than one tag could fit12. Refining
lexicons to maximize coverage while minimizing ambiguity remains an essential area of future work.

4.3.3 Hashtags
In tweets, hashtags are omnipresent. They are a way to highlight relevant keywords or phrases making
it easier to categorize the tweets they are in. It then becomes important to be able to retrieve important

12It could also be explained by the fact that the dataset consists of data constructed with different time periods and annotators.
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information from those relevant keywords. From the subsample we observed that most entities containing
a hashtag were not tagged at all. This can be explained by the fact that only 4% of hashtags are part of
entities in the training set making our network biased against tagging hashtags. This likely lead to more
errors on the test set where more than 15% of hashtags are part of entities.

5 Related Research

Named entity recognition is a task with a long history, dating back to MUC-7 (Chinchor and Robinson,
1997). In this section, we describe the NER research that influenced our system and give an overview of
the work on NER for Twitter. For a more detailed survey, see (Chiu and Nichols, 2016).

Most recent approaches to NER have been characterized by the use of CRF, SVM, and perceptron
models, where performance is heavily dependent on feature engineering. Ratinov and Roth (2009)
used non-local features, a gazetteer extracted from Wikipedia, and Brown-cluster-like word represen-
tations. Lin and Wu (2009) used phrase features obtained by performing k-means clustering over a
private database of search engine query logs in place of a lexicon. Passos et al. (2014) proposed a model
that infused word embeddings with lexical knowledge. In order to combat the problem of sparse features,
Suzuki et al. (2011) performed feature reduction with large-scale unlabelled data.

Recently, the state-of-the-art for NER neural networks have overtaken other approaches to NER. Most
approaches build on the pioneering work of Collobert et al. (2011), which showed that word embeddings
could be employed in a deep FFNN to achieve near state-of-the-art results on POS tagging, chunk-
ing, NER, and SRL. Santos et al. (2015) augmented the architecture of Collobert et al. (2011) with
character-level CNNs, reporting improved performance on Spanish and Portuguese NER. Huang et al.
(2015) employed BLSTMs in place of FFNNs for the POS-tagging, chunking, and NER tasks, but they
employed heavy feature engineering instead of using a CNN to automatically extract character-level
features. Lample et al. (2016) proposed LSTM-CRF and Stack-LSTM architectures for NER.

The earliest work on NER for Twitter, used a CRF model with global features from tweet clusters to
conduct NER with the MUC-7 4 class task definition (Liu et al., 2011). Ritter et al. (2011) developed
a suite of NLP tools explicitly for Twitter and expanded the task to the 10 class definition used in the
WNUT shared tasks. A key difference between NER for Twitter and conventional NER is that the former
also considers peripheral tasks such as named entity tokenization (Li et al., 2012), normalization (Liu et
al., 2012), and linking (Guo et al., 2013; Yamada et al., 2015). The WNUT 2015 Shared Task included
text normalization and named entity tokenization and detection tasks (Baldwin et al., 2015), with most
systems using machine learning methods like CRF together with a variety of features including lexicons,
orthographic features, and distributional information. In contrast with conventional NER, there was only
one neural network entry (Godin et al., 2015), and most systems tended to prefer Brown clusters to word
embeddings. The state of the art at WNUT 2015 used a cascaded model of entity tokenization, followed
by linking to knowledge bases, and, finally, classification with random forests (Yamada et al., 2015).

Our system adopts the architecture of Chiu and Nichols (2016), which combined BLSTMs to maxi-
mize context over the tagged word sequence and word-level CNNs to automatically generate character-
level features with a partial-matching lexicon to achieve the state-of-the-art for NER on both CoNLL
2003 and OntoNotes datasets. Our system can be viewed as an investigation into how well state-of-the-
art neural approaches adapt to the challenges of NER on noisy Web data.

6 Conclusion

In this paper, we described the DeepNNNER entry to the WNUT 2016 Shared Task #2: Named Entity
Recognition in Twitter, which adopted the BLSTM-CNN model of Chiu and Nichols (2016). Extensive
evaluation showed that high word type coverage for word embeddings is crucial to NER performance,
likely due to rare words in entities, and that both text normalization and partial matching on lexicons con-
structed from DBpedia (Auer et al., 2007) contribute significantly to performance. Our best-performing
system uses text normalization, lexicon partial matching, and the GloVe word embeddings of Penning-
ton et al. (2014) trained on 42B words of Common Crawl data, and it achieves a maximum F1-score of
47.24, performance surpassing that of the shared task’s second-ranked system.
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Cıcero Santos, Victor Guimaraes, RJ Niterói, and Rio de Janeiro. 2015. Boosting named entity recognition with
neural character embeddings. In Proceedings of the Fifth Named Entities Workshop, pages 25–33.

Benjamin Strauss, Bethany E. Toma, Alan Ritter, Marie Catherine de Marneffe, and Wei Xu. 2016. Results of the
wnut16 named entity recognition shared task. In Proceedings of the Workshop on Noisy User-generated Text
(WNUT 2016).

Jun Suzuki, Hideki Isozaki, and Masaaki Nagata. 2011. Learning condensed feature representations from large
unsupervised data sets for supervised learning. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies: Short Papers, pages 636–641. Association for
Computational Linguistics.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learn-
ing at HLT-NAACL 2003, pages 142–147. Association for Computational Linguistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 384–394. Association for Computational Linguistics.

Ikuya Yamada, Hideaki Takeda, and Yoshiyasu Takefuji. 2015. Enhancing named entity recognition in twitter
messages using entity linking. In Proceedings of the Workshop on Noisy User-generated Text (WNUT 2015),
Beijing, China, July. Association for Computational Linguistics.

187



Proceedings of the 2nd Workshop on Noisy User-generated Text,
pages 188–196, Osaka, Japan, December 11 2016.

ASU: An Experimental Study on Applying Deep Learning in Twitter
Named Entity Recognition

Michel Naim Gerguis, Cherif Salama, M. Watheq El-Kharashi
Computer & Systems Engineering Department, Ain Shams University, Cairo, 11517, Egypt

michel.naim.naguib.gerguis@gmail.com,
cherif.salama@eng.asu.edu.eg,

watheq.elkharashi@eng.asu.edu.eg

Abstract

This paper describes the ASU system submitted in the COLING W-NUT 2016 Twitter Named
Entity Recognition (NER) task. We present an experimental study on applying deep learning to
extracting named entities (NEs) from tweets. We built two Long Short-Term Memory (LSTM)
models for the task. The first model was built to extract named entities without types while the
second model was built to extract and then classify them into 10 fine-grained entity classes. In
this effort, we show detailed experimentation results on the effectiveness of word embeddings,
brown clusters, part-of-speech (POS) tags, shape features, gazetteers, and local context for the
tweet input vector representation to the LSTM model. Also, we present a set of experiments, to
better design the network parameters for the Twitter NER task. Our system was ranked the fifth
out of ten participants with a final f1-score for the typed classes of 39% and 55% for the non
typed ones.

1 Introduction

The social media dominance, especially Twitter, rapidly drives the text processing technologies for more
automated understanding. Daily, there are billions of short, noisy, user-generated text fragments that
represent and summarize the whole world. Although Natural Language Processing (NLP), in general, is a
very challenging task, the importance of automatically processing those huge amounts of big data pushes
the technology in dealing with more short and noisy data. The open world of social media, like Twitter,
makes it easy for NLP researchers to grasp lots of information to present a holistic view of the world as
represented by millions of users. Through NLP research on social media, one can analyze the political
polarity of the crowds, identify trending events that attract parts of the world, key people, and hot areas
instantaneously, detect emotion storylines and what can lead to or change people’s attitudes, identify and
collect data in disasters including natural ones to help in risk management, grasp the sentiment against
new products or decisions, understand and predict actions based on opinion mining, and many more.
Entity extraction is the basic unit in all these NLP tasks whether to be a singer, president, player, movie,
song, or any entity of interest. The coarse-grained classes like person, location, and organization are not
sufficient for a better representation and understanding of the vibrant world. That is why the fine-grained
NERs are of utmost interest.

Our submission in COLING W-NUT 2016 Named Entity Recognition shared task in Twitter, in its
second edition, (Strauss et al., 2016; Baldwin et al., 2015) relied on an experimental study on applying
deep learning to the task. We experimented with many representations to define the network’s input
vector. The contribution of word embeddings (WEs), brown clusters (BCs), POS tags, a long list of
shape features, vocabulary, and gazetteers was experimentally evaluated in details for the NER task. In
addition, a series of experiments were directed to best tune our network design. Two different LSTM
models were prepared: One for detecting entities regardless of entity type (non typed) and the other was
trained for detecting and classifying the entities (typed).

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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The rest of the paper is organized as follows; In Section 2, we present the data sets available for the task
and how we used them in ASU system. Section 3, illustrates an overview of our system and the process
we followed. In Section 4, we present in details our experimental study in an incremental approach in
which we experimented with lots of representations one-by-one and also, with the network parameters.
Finally, we conclude in Section 5.

2 Data Sets

In this section, we discuss the distribution and the size of the four released data sets for the Twitter NER
task. Also, we brief how those data sets were utilized in training our two models and then in submitting
the final results.

Data Set Training
Set

Dev.
Set

Additional
Set

Test
Set

Num. Tweets 2394 1000 419 3850
Num. Tokens 46469 16261 6789 61908
Num. Entity Tokens 2462 1128 439 5955
Company Tokens 207 49 64 886
Facility Tokens 209 77 13 619
Geo-Loc Tokens 325 158 62 1101
Movie Tokens 80 30 5 82
MusicArtist Tokens 116 76 22 331
Other Tokens 545 229 91 1140
Person Tokens 664 266 113 782
Product Tokens 177 158 15 746
SportsTeam Tokens 74 83 46 195
TvShow Tokens 65 2 8 73

Table 1: W-NUT 2016 Twitter NER Data Sets Statistics.

Four data sets were released
for the task. Table 1 indi-
cates the four sets along with
the total number of tweets per
set, the total number of tokens,
the total number of entity to-
kens, and the total number of
entity tokens per entity class for
the 10 classes. It is important
to note that some of the en-
tity classes are not well repre-
sented in the data sets like the
TvShow, the Movie, and the
SportsTeam classes. While the
provided data set might repre-
sent the real world distribution
of the entity classes, we believe
that for some classes the data is
not enough for deep learning.

ASU system relied on the
training set plus the additional set for training purpose in the whole experimentation study while testing
on the development set as discussed in Section 4. After the system was tuned, we re-trained the models
using the whole available data, training, development, and the additional sets. These trained models were
applied on the test set to submit our final results.

3 Method

In this section, we brief the main methodology we followed to build our two models.
We relied on Microsoft’s computational network toolkit (CNTK) 1 in building up our two models. We

preferred to tackle the task using an LSTM network to benefit from sequence modeling. The network
consists of an input layer, some hidden layers, and an output one. The input layer mainly represents the
input tweet in a vector of nodes. The hidden layers of our network consist of an embedding layer and
some LSTM layers. We initially set the embedding layer to be a 100-nodes layer and an only one hidden
LSTM layer of 200-nodes. For the non typed model, the output layer of the network consists of only
two nodes, one to detect entities and the other for non entities, while the typed model’s output layer is
represented by eleven nodes, one for each entity class and the last one for non entities.

For the experimentation procedures we conducted, first we pass the training data through an encoding
component in order to convert the raw tweet into a vector which is the input representation of the network.
Based on the experiment’s feature representation, we produce a mapping function that maps the features
into some identifiers. Using the same mapping function, we encode the development set. Then, we
design the CNTK configuration file for the network by adjusting the input vector size, the output one,

1https://github.com/Microsoft/CNTK (October 2016)
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and the whole network parameters. We then, train the two models and test over both the training set and
the development one. Finally, we score our results and decide whether to include this feature in the main
flow or discard it. We adopted an incremental approach in which we fix all the parameters and change
only one to assess the value of adding/removing it.

4 Experiments and Results

In this section, all experiments we conducted are presented with details in how we built our LSTM
models: Basically, we have two models. One for the non typed extractions and the other for the typed
ones which work on ten entity classes. Figure 1 illustrates our experimentation efforts for the typed
model while Figure 2 summarizes the history of the non typed model. We plot the f1-scores of the
overall system on the training and the development sets for both models. Each experiment in the figures
is given an integer identifier which will also be used in the following subsections. While we report
the progress in the coming subsections, we preserved the best system as the first record in each table
for reference. Also, we appended the index for the previous experiment on which we based the new
experiment.

Figure 1: ASU incremental approach f1-scores for Typed LSTM model on Training/Dev. Set.

Figure 2: ASU incremental approach f1-scores for Non Typed LSTM model on Training/Dev. Set.
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4.1 ASU Incremental Approach
In the coming subsections, we present the input vector evolution for our network and also our experiments
in the network design. This study shows how our experimentation incrementally moved the overall f1-
score in the typed model from 0% to about 43% in the last one on the development set (Figure 1).

4.1.1 POS Tags
Our experimentation started by deciding which POS tagger to use. We experimented with OpenNLP
model (Morton et al., 2005), TweetNLP model (Owoputi et al., 2013; Gimpel et al., 2011), and Ritter’s
model (Ritter et al., 2011). While TweetNLP relied on a tagset of 25 tags, the two other taggers followed
Penn Treebank tagset. We represented each token by its POS tag, just the current token. Table 2 reports
the f1-scores for each tagger on the training and development sets for the typed model and the non typed
one. We decided to use TweetNLP as it showed the best results. We then, experimented with the POS
tags for some more context. In experiment 4, we added the POS tags for a window of only one token, the
token before and the token after, while in experiment 5, we extended the representation for each token to
a context window of two. Minor gains were introduced to claim the saturation so we finalized POS tags
representation to be a windows of two.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

1 POS Tags: OpenNLP 00.00% 00.00% 13.85% 12.80%
2 POS Tags: Ritter 00.0% 00.00% 27.05% 25.42%
3 POS Tags: TweetNLP 00.00% 00.00% 40.67% 33.12%
4 3 + POS Tags: Context (1) 15.11% 12.37% 44.69% 36.39%
5 4 + POS Tags: Context (2) 16.44% 12.42% 46.10% 37.27%

Table 2: POS Tags in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.2 Brown Clusters
We experimented with the tweets brown clusters 2 (Owoputi et al., 2012) in various binary prefix lengths.
We believe that BCs out of twitter data could be of more relevance (Derczynski et al., 2015; Cherry et
al., 2015) than other sources like Wikipedia (Yang and Kim, 2015). Table 3 summarizes the f1-scores
for each prefix length incrementally. Our experimental study indicates that brown clusters’ prefixes of 4,
8, and 10 are the best. Contextual brown clusters for a window of one reported minimal gains.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

5 4 + POS Tags: Context (2) 16.44% 12.42% 46.10% 37.27%
6 5 + BCs: Len. 4 24.33% 18.07% 47.19% 38.82%
7 6 + BCs: Len. 8 28.32% 22.15% 48.60% 38.73%
8 7 + BCs: Len. 12 29.55% 23.36% 53.71% 44.36%
9 8 + BCs: Len. 6 32.03% 23.88% 53.72% 44.70%
10 9 + BCs: Len. 10 37.44% 27.84% 57.16% 47.90%
11 10 + BCs: Context (1) Len. 4 40.76% 27.84% 57.56% 48.62%
12 11 + BCs: Context (1) Len. 6 40.41% 30.45% 58.96% 48.34%
13 12 + BCs: Context (1) Len. 8 41.90% 31.15% 60.51% 49.19%
14 13 + BCs: Context (1) Len. 10 45.05% 32.32% 63.09% 49.10%
15 14 + BCs: Context (1) Len. 12 45.67% 30.96% 65.59% 49.54%

Table 3: Brown Clusters in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

2http://www.cs.cmu.edu/ ark/TweetNLP/ (October 2016)
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4.1.3 Word Embeddings
ASU system utilizes Google’s word embeddings models Word2Vec3 which are based on 300 dimensional
vectors (Mikolov et al., 2013). We believe that generating embeddings out of tweets would boost the
results (Toh et al., 2015). In experiment 16, 300 nodes of WEs were added to the input representation.
Context window of one and two were also tested in experiments 17 and 18 respectively. Enhancements in
the results on the training set were noticed when we added the context window of two, while regressions
on the development set which we classified as a sort of over-fitting so we discard it. Table 4 summarizes
the three WEs experiments in ASU.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

15 14 + BCs: Context (1) Len. 12 45.67% 30.96% 65.59% 49.54%
16 15 + WEs: 300 Dim 51.33% 33.78% 71.42% 50.61%
17 16 + WEs: Context (1) 56.65% 34.98% 79.55% 51.72%
18 17 + WEs: Context (2) 60.48% 32.02% 84.84% 50.86%

Table 4: Word Embeddings in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.4 Shape Features
So far, the token itself is not represented in the input vector. A list of shape features was collected from
previous efforts (Akhtar et al., 2015; Toh et al., 2015) and then extended to reach the following set of 11
features:

1. StartsWithUpper, whether the token starts with an upper letter.

2. StartOfTweet, whether the token is the first one in the tweet.

3. AllUpper, whether the token is all capitalized.

4. TweetAllUpper, whether the tweet is all capitalized.

5. ContainsUpper, whether the token contains a capital letter other than the first one.

6. IsAplhaNumeric, whether the token contains numbers and letters.

7. AllDigit, whether the token is a digit or a decimal number.

8. AllPunc, whether the token is a punctuation or a symbol.

9. ContainsPunc, whether the token contains a punctuation or a symbol letter.

10. IsHashTag, whether the token is a hashtag, starts with a # marker.

11. IsTag, whether the token is a twitter tag, starts with an @ marker.

Table 5 shows results obtained when the shape features were added. We got some enhancements when
we applied the shape features to the token itself while when we appended the shape features for the token
before and the token after, creating a context window of size one, regressions were noticed.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

17 16 + WEs: Context (1) 56.65% 34.98% 79.55% 51.72%
19 17 + Shape 57.40% 37.28% 83.70% 56.89%
20 19 + Shape: Context (1) 56.47% 37.30% 87.24% 56.32%

Table 5: Shape Features in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

3https://github.com/3Top/word2vec-api (October 2016)
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4.1.5 Non Entity Features
We then, started to rely on some dictionaries. Two new nodes were added in the input representation.
One to indicate whether the token is a stop word or not and the other to mark being a frequent lower
word. We relied on the available dictionaries which lead to a slight regression in the non typed model
results. We believe that the top 10K lowered words are not enough so it needs further additions. With
simple error analysis, we found lots of tokens not in the lower list like Sunday and club for example.
We also, experimented with those two features in a context window of one showing reasonable gain as
summarized in Table 6.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

19 17 + Shape 57.40% 37.28% 83.70% 56.89%
21 19 + IsStop IsLower 57.58% 37.47% 85.50% 56.39%
22 21 + IsStop IsLower: Context (1) 62.35% 38.61% 84.69% 56.36%

Table 6: Non Entity Features in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.6 Vocabulary Features
To represent the vocabulary of the tokens, we collected a unique list of the tokens in the training data
sorted descendingly by frequency of occurrences. A threshold of 3 was used to select the top 1.75K
tokens to be represented in the input vector. As Table 7 shows, a good gain could be noticed due to
adding the vocabulary information to the input vector representation.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

22 21 + IsStop IsLower: Context (1) 62.35% 38.61% 84.69% 56.36%
23 22 + Tokens: Freq. GT 3 64.20% 40.68% 86.55% 57.27%

Table 7: Vocabulary in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.7 Embedding Layer Size
Next, we focused on the network design itself. The defaults used in all previous experiments were a 100-
nodes embedding layer followed by a single 200-nodes hidden layer. We tried out various sizes for our
embedding layer to find out that a 150-nodes layer added two more f1-score points to our typed system
as shown in Table 8.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

23 22 + Tokens: Freq. GT 3 64.20% 40.68% 86.55% 57.27%
24 23 + EM: 50 56.59% 34.61% 80.92% 55.91%
25 23 + EM: 150 68.28% 42.76% 89.12% 57.02%
26 23 + EM: 200 70.95% 40.03% 89.54% 57.00%
27 23 + EM: 300 69.15% 41.97% 90.37% 56.36%

Table 8: Embedding Layer Size Tuning in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.8 Hidden Layer Size
As Table 9 illustrates, the default size we used in previous experiments, denoted by id 25, showed the
best f1-score for the typed model. The 400-nodes hidden layer increased the ability of our system to
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score in movie and tvshow classes. Only the scores of those two classes did not improve along with all
previous experiments, so we preferred the 400-nodes hidden layer.

ID Experiment
Description

Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

25 23 + EM: 150 68.28% 42.76% 89.12% 57.02%
28 25 + HL: 1 * 150 54.79% 34.20% 88.67% 57.40%
29 25 + HL: 1 * 250 68.16% 41.74% 88.60% 58.39%
30 25 + HL: 1 * 300 68.26% 40.16% 88.49% 56.66%
31 25 + HL: 1 * 400 78.18% 41.91% 88.81% 56.11%
32 25 + HL: 1 * 500 82.47% 41.78% 89.58% 56.18%

Table 9: Hidden Layer Size Tuning in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.9 Number of Hidden Layers
Another dimension was subject to our experimentation, the number of the hidden layers. The default
was just one layer but when we extended to two hidden layers, we experienced a huge loss on the results
as Table 10 details. That is why, we stopped investing more time in this direction.

ID Experiment
Description

Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

31 25 + HL: 1 * 400 78.18% 41.91% 88.81% 56.11%
33 31 + HL: 2 * 400 51.00% 32.18% 86.81% 56.67%

Table 10: Number of Hidden Layers Tuning in ASU for Typed/Non Typed Models on the Training/Dev.
Sets.

4.1.10 Number of Epochs
The last parameter, we experimented with, in our network design was the number of epochs. The default
was to pass by the data 7.5 times in the learning phase. We tried to study the change when our system
doubles the times in passing by the whole data. We also, experimented with some more variants as Table
11 summarizes. We favored the SeeData rate of 10 times for the benefit of the typed system.

ID Experiment
Description

Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

31 25 + HL: 1 * 400 78.18% 41.91% 88.81% 56.11%
34 31 + SeeData: 10 83.04% 42.16% 91.56% 55.93%
35 31 + SeeData: 5 71.35% 38.94% 84.64% 56.88%
36 31 + SeeData: 15 89.27% 41.55% 94.75% 54.36%

Table 11: Number of Epochs Tuning in ASU for Typed/Non Typed Models on the Training/Dev. Sets.

4.1.11 Gazetteers
Finally, we experimented with gazetteers. To include the gazetteers in our representation, 10 more nodes
in the input vector were added, one per entity class. We mapped the 10 entity classes to the supported
gazetteers to end up with two classes with no data which were movie and musicartist. Relying on
Wikipedia and a fine-grained entity classification platform, we built, we have managed to get a long list
of movies and music artists from Wikipedia. To make sure of precise matches, all single token entities
were removed if they match one of the top 10K frequent lower tokens. We then, matched the data
against the gazetteers starting from the lengthy entities first. Our experimental results, documented in
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Table 12, showed that the gazetteers negatively affected the system when applied to the current tokens
only, experiment 37. When we used them for the token before and after along with the current token,
experiment 38, acceptable enhancements showed up. Our last experiment, experiment 39, preserved the
gazetteers features for the context windows of one while bypassing the current tokens to show the best
results.

ID Experiment Description Train. Set:
Typed

Dev. Set:
Typed

Train. Set:
Non Typed

Dev. Set:
Non Typed

34 31 + SeeData: 10 83.04% 42.16% 91.56% 55.93%
37 34 + GAZ: Current 80.06% 41.38% 92.35% 55.76%
38 37 + GAZ: Context (1) 85.41% 42.05% 91.63% 57.33%
39 34 + GAZ: Context (1) No Current 84.60% 42.59% 91.55% 56.73%

Table 12: Gazetteers in ASU for Typed/Non Typed Models on the Training/Dev. Sets..

4.2 Final System
Our final results are reported in details in Table 13. We report our final precision, recall, and f1-score
on the training, development, and the testing sets. After we tuned the two models, we appended the
training and development sets to act as a new training set for our final model which was used in the final
submission as detailed in Section 2.

Type Training Set Development Set Testing Set
P R F1 P R F1 P R F1

company 85.44% 86.27% 85.85% 19.75% 41.03% 26.67% 51.18% 31.40% 38.92%
facility 82.73% 81.98% 82.35% 32.50% 34.21% 33.33% 21.82% 18.97% 20.30%
geo-loc 86.51% 91.61% 88.99% 49.32% 62.07% 54.96% 60.60% 61.56% 61.08%
movie 63.16% 64.86% 64.00% 20.00% 20.00% 20.00% 02.78% 02.94% 02.86%
musicartist 64.06% 60.29% 62.12% 22.73% 12.20% 15.87% 12.28% 03.66% 05.65%
other 66.92% 65.44% 66.17% 32.86% 34.85% 33.82% 21.97% 20.21% 21.05%
person 96.56% 96.74% 96.65% 58.51% 64.33% 61.28% 43.45% 64.73% 52.00%
product 83.33% 75.47% 79.21% 09.68% 08.11% 08.82% 12.90% 08.13% 09.98%
sportsteam 88.24% 87.21% 87.72% 55.81% 34.29% 42.48% 30.41% 40.14% 34.60%
tvshow 82.86% 72.50% 77.33% 11.11% 50.00% 18.18% 09.09% 06.06% 07.27%
Overall 84.69% 84.50% 84.60% 40.98% 44.33% 42.59% 40.58% 37.58% 39.02%
No Types 92.45% 90.67% 91.55% 54.62% 59.00% 56.73% 57.55% 52.98% 55.17%

Table 13: Results of ASU System on Training, Development, and Testing Set.

5 Conclusion

We presented the ASU system in the COLING W-NUT 2016 Twitter NER task. Our system experimen-
tally shows an incremental approach in designing two LSTM models: One for entity detection and the
other for extracting and classifying a set of 10 fine-grained classes. This study presents experimentally
the effect of adding/removing many features in the input representation along with an analysis on the
network design. We report a 39% f1-score for the typed model on the test set and a 55% for the non
typed one bringing ASU to the fifth place out of ten participants.

We believe that word embeddings, if generated out of a corpus of tweets, would greatly benefit our
system. Also, the Wikipedia fine-grained entity classification platform showed a great potential in col-
lecting lots of Wikipedia entities based on a small input set of ten examples. Although we did not invest
a lot in gazetteers and we only use it for two classes, the Wikipedia platform showed a great potential
that it can scale for any fine-grained entity class.
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Abstract 

This paper describes our system used in the 2nd Workshop on Noisy User-generated Text 
(WNUT) shared task for Named Entity Recognition (NER) in Twitter, in conjunction with 
Coling 2016. Our system is based on supervised machine learning by applying Conditional 
Random Fields (CRF) to train two classifiers for two different evaluations. The first evaluation 
aims at predicting the 10 fine-grained types of named entities; while the second evaluation 
aims at predicting no type of named entities. The experimental results show that our method 
has significantly improved Twitter NER performance.  

Keywords:  Twitter, named entity recognition, machine learning, CRF. 

1 Introduction 

Named entity recognition is one of the key information extraction tasks. This concerns the 
identification of named entities and the classification of named entities such as person, organisation, 
location, time and event (Nadeau and Sekine, 2007). The existing standard NER systems are usually 
trained on formal texts, such as the newswire. However, these linguistic tools do not work well on the 
new and challenging noisy tweet messages because the style of Tweet messages is short (length upto 
140 characters) and unstructured. The content is highly noisy, contains many ill-formed words and 
covers several topics. Sometimes even human annotators do not have enough context to disambiguate 
the entities reliably (Baldwin et al., 2015). 

Our team at UQAM is interested by social media analysis research within the NLP context (Sadat et 
al, 2014a; Sadat et al, 2014b; Sadat, 2013). Thus, our participation at the 2nd Workshop on Noisy 
User-generated Text (WNUT) shared task for Named Entity Recognition in Twitter, in conjunction 
with Coling 2016, is very fruitful. This shared task consists of two separate evaluations aiming at: (1) 
predicting the 10 fine-grained types of named entities, and (2) predicting the no-type of named 
entities. For both evaluation, our system is based on supervised machine learning and trained with a 
sequential labeling algorithm, using Conditional Random Fields (CRF). Our contribution here consists 
of the proposal about the new features regarding the polysemy count based on an lexicalized semantic 
network and ontology, such as an encyclopedic dictionary, and the longest n-gram sequence length of 
each word in a tweet based on a language model about actualities, news and also syntactic features by 
parsing each tweet.  

The present paper is organized as follows: In the section 2, we report the proposed system about the 
features extraction. The experimentations and the evaluations are presented in the sections 3 and 4 
respectively. Finally, the section 5 summarizes our work and gives future perspective.  

 

2 Features extraction 

In this section, we describe a variety of features that are used during the modelling of our NER system 
for tweets. Our model is composed of the following features: (1) orthographic, (2) lexical and (3) 
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syntactic features as well as (4) POS (part-of-speech) tags, (5) polysemy count and (6) longest n-gram 
length. 

(1) The orthographic features templates are as follows: 
• Affixes: The suffixes of the current word are extracted with length upto 4 characters from 

its last character. The prefixes of the current word are extracted with length upto 4 
characters from its firts character. 

• Capitalization: There are three patterns for the current word and two other patterns for the 
previous word and the next word.  

• Punctuation and Digit: There are six patterns in order to check whether the current word, 
the previous word and the next word contain punctuation marks and/or numbers.  

 
(2) The lexical features consist of the number of occurrences of a word in the sentence, the number 

of occurrences of the lemma of a word in the sentence and the word in lowercase format. 
 
(3) The syntactic features consist of the constituent labels and the distance of a word to root. The 

word’s constituent label (Constituent Label) and its depth in the constituent tree (Distance to Root) are 
extracted using a syntactic parser. We used Berkerley parser (Petrov and Klein, 2007).  

 
(4) The POS tags features in the task of NE recognition contain many useful information for 

classifying and predicting named entities. In this work, we use a POS tagger, named TwitIE 
(Bontcheva et al., 2013), providing the output in the same format given by the organizers. Predicted 
tags are used as features as follows: 

• POS tags: The search space windows is 4. There are a combination of patterns with the 
current word, the two previous words and the two next words and their corresponding POS 
tags: (w-2, p-2), (w-1, p-1), (w0, p0), (w+1, p+1), (w+2, p+2). 

 
(5) The polysemy count: We extract the polysemy count, which is the number of meanings of a 

word in a given language. The BabelNet (Navigli et al., 2012) API is used to extract this feature. 
 
(6) The longest n-gram length: We seek to get the length (n + 1) of the longest left sequence (wi−n) 

concerned by the current word (wi) and known by the language model (LM) concerned. For example, 
if the longest left sequence wi−2, wi−1, wi appears in the longest n-gram value for wi will be 3. This 
value ranges from 0 to the max order of the LM concerned (Servan et al., 2015). We used a language 
model from WMT-20161: 

 
n-gram #tokens 

1 167 333 
2  3 330 169 
3 5 129 254 

Table 1. Statistics of the n-gram of the language model from WMT-2016 
 

These features were chosen because of their relevance in several NLP tasks such as POS tagging, 
chunk tagging and NE recognition, following the WNUT 2015 workshop2. The features for the tokens, 
in the patterns, were based on uni-grams, bi-grams, tri-grams and within a context window of size 3 
(previous token, current token, next token). 

 

3 Experimental setup 

3.1 Preparation of corpus 

Our model is trained with the data provided by the 2nd shared task workshop organizers. 
 
                                                
1 Language model from WMT-2016: http://www.quest.dcs.shef.ac.uk/quest_files_16/lm.tok.en.tar.gz  
2 WNUT 2015 workshop: http://noisy-text.github.io/2015/  
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Dataset #tweets #tokens 

train_2016 (= train_2015 + dev_2015) 2 394 37 619  
dev_2016 (= test_2015) 1 000 16 429 
new_dev_2016 420 14 400 
test_2016 3 856 48 782 

Table 2. Statistics of the corpora provided by the 2nd shared task at WNUT-2016 
 
There are 2 datasets corresponding to two seperate evaluations: one where the task is to predict fine-

grained types and the other in which no type information is to be predicted. The training data consists 
of the train_2015 and dev_2015 data. The first dataset is annotated with 10 fine-grained NER 
categories such as person, geo-location, company, facility, product, music artist, movie, sports team, tv 
show and other. The second dataset is annotated without any type information, just only with B, I, O 
tags.  

The training corpus consists of 2 394 tweets while the development corpora consist of 420 tweets. 
The testing data consists of 3 856 tweets (see Table 2). A total of 3 590 NEs are manually annotated in 
the corpora with 1 128 NEs in the training data and 2 462 NEs in the development data respectively 
(see Table 3).  

 
NE category Training data Development data 

person 266 664 
geo-location 158 325 

company 49 207 
facility 77 209 
product 158 177 

music artist 76 116 
movie 30 80 

sports team 83 74 
tv show 2 65 

other 229 545 
Total 1 128 2 462 

Table 3. Statistics of the 10 fine-grained types of named entities in the training data and the 
development data provided by the 2nd shared task at WNUT-2016 

 

3.2 Experimentations 

In the preprocessing phase, we apply Twitter tokenization, POS tagging on tokenized data with 
TwitIE3 (Bontcheva et al., 2013).  

Once the final feature extraction has been completed, in the training phase, we make use of 
Conditional Random Fields (CRF) (Lafferty et al., 2001) as machine learning technique. We use the 
CRF implementation Wapiti4, version 1.5.0 toolkit to create our model. The optimization algorithm is 
l-bfgs (Limited-memory Broyden-Fletcher-Goldfarb-Shanno). During decoding phase, our model 
classifies, from a test corpus, whether a word should be labelled as named entities. Our model was 
evaluated on two tasks: (1) to predict 10 fine-grained types of named entities and (2) to predict no type 
of named entities. 

We propose three templates with different features as follows: 
 
 
 

                                                
3 TwitIE: https://gate.ac.uk/wiki/twitie.html  
4 Wapiti 1.5.0: https://wapiti.limsi.fr  
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Features Template 1  
(with unigrams) 

Template 2  
(with bigrams) 

Template 3  
(with trigrams) 

(1) Orthographic features x x x 
(2) Lexical features x x x 
(3) Syntactic features  x x 
(4) POS tags x x x 
(5) Polysemy count   x 
(6) Longest n-gram length   x 

Table 4. Three CRF templates for the evaluations 
 
The features for the tokens in the templates are in uni-grams (Template 1), bi-grams (Template 2), 

tri-grams (Template 3) and within a context window of size 3 (previous token, current token, next 
token) (see Table 4). We combine the train data, the dev data for training our model.  

We use the metrics of precision, recall and weighted harmonic mean of precision and recall (F1) to 
evaluate the performance of the proposed system in two cases: (1) 10 types of named entities and (2) 
no-types of named entities.  
 

4 Evaluations 

The experiments are performed by training the model on all the features defined in section 2. We have 
trained, tested and evaluated iteratively the system in order to find out the best fitting feature sets.  The 
results are presented in table 5 with models trained on the combination of training and development 
data with 2 814 tweets, then tested on the dev_2015 with 1 000 tweets which are used in the baseline 
system (see README5 file of WNUT-2016 workshop).  
 

 10-types No type 
 P R F1 P R F1 

Baseline  
(provided by WNUT-

2016) 
40.34 32.22 35.83 54.21 49.62 51.82 

Exp1 (template 1) 38.91 23.91 29.62 74.33 59.33 65.99 
Exp2 (template 2) 40.36 23.82 29.96 74.33 60.00 66.40 
Exp3 (template 3) 36.82 27.36 31.39 76.00 69.00 72.33 

Table 5. Evaluations with model trained by applying tree templates 
with (train, dev, test) = (2 814, 0, 1 000) tweets 

 
We realised that the performance of NER system was improved by applying the second template 

and the third template versus the first template with F1 of 65.99%, 66.40%, 72.33% for no-type of 
NEs and with F1 of 29.62%, 29.96%, 31.39% for 10-types of NEs respectively (see Table 5). We 
observed that the combination of all features with trigrams (Template 3) provided the best 
performance of NER model with F1 of 72.33% for no-type of NEs and with F1 of 31.39% for 10-
types of NEs. While the experiments 1, 2, 3 give a better performance than the baseline with a gain of 
+14.17%, +14.58%, +20.51% of F1, respectively, in the evaluation of no-type of NEs, the 
experiments 1, 2, 3 give a performance less than the performance of the baseline, with a loss of  
-6.21%, -5.87%, -4.44% of F1, respectively, in the evaluation of 10-types of NEs. 

 
Table 6 illustrated the effect of each features on the classifier when added to the baseline system 

which contains only the orthographic features and the POS tags features. We observed that not all 
features are equally useful in the classification and identification tasks. Some features get more 
                                                
5 README file of WNUT-2016 workshop: https://www.dropbox.com/s/yaoy7zi9vz71nki/wnut_ner_evaluation.tgz?dl=0  
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improvement in one context than in another, i.e. the syntactic features (+1.72% of F1) versus the 
lexical features (+0.45% of F1) for 10-types of NEs but the syntactic features (+0.33% of F1) versus 
the lexical features (+1.00% of F1) for no-types of NEs. And features can vary in effacity depending 
on the classification paradigm in which they are used. We noticed that each feature had separately a 
little bit improvement versus the baseline. The overall features get the significant enhancement upto 
+5.03% of F1 for 10-types of NEs and +8.66% of F1 for no-types of NEs. 
 

 10-types No type 
 P R F1 P R F1 

Baseline :                                                    
orthographic + POS tags fea-
tures 

42.64 22.91 26.36 73.67 57.67 63.67 

+ lexical features 40.73 23.73 26.82 
(+0.45) 74.33 59.33 64.67 

(+1.00) 

+ syntactic features 43.00 24.18 27.64 
(+1.27) 73.00 58.67 64.00 

(+0.33) 

+ the polysemy count  44.45 23.55 27.18 
(+0.82) 74.33 58.67 64.33 

(+0.67) 

+ the longest n-gram length  42.18 23.55 26.91 
(+0.55) 74.33 58.67 64.33 

(+0.67) 

All features 36.82 27.36 31.39 
(+5.03) 76.00 69.00 72.33 

(+8.66) 
Table 6. Effect of each features on the classifier when added to the baseline system  

with (train, dev, test) = (2 814, 0, 1 000) tweets 
 

Moreover, we observed that the language model of WMT-2016 was trained on newswire and 
actualities information. So the data are similar to the contents inside Twitter messages. Indeed, the 
new feature of polysemy count allows to disambiguate a word by checking the number of meanings of 
this word in a Twitter message in an encyclopedic dictionary. 

 
This is one reason why we have submitted our model trained with the template 3 for the WNUT-

2016 workshop. The results are showed in the table 7. We have performed two experiments with 
different datasets as follows: 

• Experiment 1: (train, dev, test) = (2 814, 0, 3 856) tweets, 
• Experiment 2: (train, dev, test) = (3 534, 280, 3 856) tweets, where train set is composed 

by train_2016 (2 394 tweets), dev_2016 (1 000 tweets) and some of new_dev_2016 (140 
tweets). 
 

We have purposely experimented with different size of the training set and the development set, but 
the same size of the testing set in order to examine the performance of our model. We observed that 
the variation of size in the training set and the development set gives an impact on our model 
performance. We noticed that the model trained in the experiment 2 performed globally better for the 
both evaluations than the model trained in the experiment 1. The experiment 2 gains +5.49% of F1 
more than the experiment 1 about the evaluation of 10-types of NEs, but slightly +1.96% of F1 more 
than the experiment 1 about the evaluation of no-types of NEs. We realised that the larger the size of 
in the training set and the development set is, the better the performance of our model.  

 
Official evaluation, with our model trained in the experiment 2 (submitted), have shown F1 of 

29.82% for the 10-types fine grained named entities types and F1 of 44.30% for the no-type of named 
entities, as explained in Table 7. 
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 10-types No type 
 P R F1 P R F1 

Experiment 1 34.73 26.36 29.97   76.33 67.67 71.74 
Experiment 2  

(submitted) 40.73 23.52 29.82 53.21 37.95 44.30 

Experiment 2 40.90 31.30 35.46   77.00 70.67 73.70 
Table 7. Evaluations with model trained with template 3,  

Experiment 1: (train, dev, test) = (2 814, 0, 3 856) tweets, 
Experiment 2: (train, dev, test) = (3 534, 280, 3 856) tweets 

5 Conclusion 

In this paper, we have presented our work in WNUT-2016 – The 2nd shared task of named entities 
recognition in Twitter. We have proposed a set of features which improves the NER system 
performance. We have considered various combinations of features. Our system shows the official 
evaluation results of 29.82% (F1) for the 10 fine-grained types of named entities and 44.30% (F1) for 
the no-type of named entities.  

Further work will focus on adding more domain-specific features and additional features such as 
word embeddings, to improve the accuracy of the system. In addition, we would like to investigate 
neural network architectures such as bidirectional LSTM, that have shown great promise in many NLP 
tasks, for named entities recognition and co-reference resolution. 
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Abstract 

Many of the existing Named Entity Recognition (NER) solutions are built based on news corpus data with 

proper syntax. These solutions might not lead to highly accurate results when being applied to noisy, user 

generated data, e.g., tweets, which can feature sloppy spelling, concept drift, and limited contextualization 

of terms and concepts due to length constraints. The models described in this paper are based on linear 

chain conditional random fields (CRFs), use the BIEOU encoding scheme, and leverage random feature 

dropout for up-sampling the training data. The considered features include word clusters and pre-trained 

distributed word representations, updated gazetteer features, and global context predictions. The latter 

feature allows for ingesting the meaning of new or rare tokens into the system via unsupervised learning 

and for alleviating the need to learn lexicon based features, which usually tend to be high dimensional. In 

this paper, we report on the solution [ST] we submitted to the WNUT 2016 NER shared task. We also 

present an improvement over our original submission [SI], which we built by using semi-supervised learn-

ing on labelled training data and pre-trained resourced constructed from unlabelled tweet data. Our ST 

solution achieved an F1 score of 1.2% higher than the baseline (35.1% F1) for the task of extracting 10 

entity types. The SI resulted in an increase of 8.2% in F1 score over the baseline (7.08% over ST). Finally, 

the SI model’s evaluation on the test data achieved a F1 score of 47.3% (~1.15% increase over the 2nd best 

submitted solution). Our experimental setup and results are available as a standalone twitter NER tool at 

https://github.com/napsternxg/TwitterNER.   

1 Introduction 

A common task in information extraction is the identification of named entities from free text, also 

referred to as Named Entity Recognition (NER) (Sarawagi, 2008). In the machine learning and data 

mining literature, NER is typically formulated as a sequence prediction problem, where for a given 

sequence of tokens, an algorithm or model need to predict the correct sequence of labels. Additionally, 

most of the NER systems are designed or trained based on monolingual newswire corpora, which are 

written with proper linguistic syntax. However, noisy and user generated text data, which are common 

on social media, pose several challenges for generic NER systems, such as shorter and multilingual 

texts, ever evolving word forms and vocabulary, improper grammar, and shortened or incorrectly spelled 

words. Let us consider a fictional tweet: “r u guyz goin to c da #coldplay show @madisonsqrgrdn?”. 

This tweet contains two named entities, namely: “Coldplay”, a music band, and “Madison Square Gar-

den, NYC, USA”, a geolocation, which references the place at which the band is playing. Many of the 

terms present in the exemplary tweet would be considered as out of vocabulary (OOV) terms by tradi-

tional NER systems. Furthermore, using a large set of such OOV tokens for training a classifier is likely 

to result in a sparse and high dimensional feature space, thereby increasing computing time. The phe-

nomenon of concept-drift, i.e., the meaning of terms shifting over time, has also been found to affect the 

accuracy of NER systems over time, resulting in poor performance of a classifier trained on older data 

(Cherry & Guo, 2015; Derczynski, Maynard, et al., 2015; Fromreide et al., 2014; Hulten et al., 2001; 

Masud et al., 2010).  

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
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The Workshop on “Noisy User-generated Text” (WNUT) continued its 2015 shared task on NER on 

tweets (Baldwin et al., 2015) in 2016. In 2016, the task was divided into two parts: (1) identification of 

named entities in tweets, and (2) NER on 10 types of entities, namely person, geo-location, other, com-

pany, sports-team, facility, product, music-artist, movie, and tv-show.  

In this paper we introduce two solutions to perform NER on tweets. The first system, which we will 

refer to as the submitted solution [ST], was submitted as an entry to the WNUT 2016 NER shared task. 

It uses random feature [RF] dropout for up-sampling the dataset. This system was improved into a semi-

supervised solution (our 2nd solution [SI]), which uses additional, unsupervised features. These features 

have been found to be useful in prior information extraction and NER tasks. The semi-supervised ap-

proach circumvents the need to include word n-gram features from any tweets, and builds upon the 

successful usage of word representations (Collobert et al., 2011), and word clusters (Lin & Wu, 2009; 

Miller et al., 2004; Ratinov & Roth, 2009; Turian et al., 2010) for NER by utilizing large amounts of 

unlabelled data or models pre-trained on a large vocabulary. The SI system was designed to mitigate the 

various issues mentioned above, and utilizes the unlabelled tokens from the all the available datasets 

(including unlabelled test data) to improve the prediction quality on the evaluation datasets, a form of 

transductive learning (Joachims, 2003). The SI system outperforms ST by ~7% (F1 score) when using 

the development set for evaluation, and by ~11% when using the test set (1% higher than the 2nd best 

team in the task). The SI model does not utilize any word n-gram lexical features. We believe that the 

approach taken for SI is useful for situations that require refinement or adaptation of an existing classi-

fier to perform well on a new test set. We have released our experimental setup and code at 

https://github.com/napsternxg/TwitterNER.   

2 Data 

The training, development, and test dataset were provided by the task organizers. The training set con-

sists of 2,394 tweets with a total of 1,499 named entities. The organizers provided two separate devel-

opment datasets, which we merged to create a dataset of 1,420 tweets with 937 named entities. This 

merged dataset was used as the development dataset for all of our experiments. The test dataset com-

prises 3,856 tweets with 3,473 named entities. Most of the tweets in the provided data lack any entities 

mentions (42% in training, 59% in development, and 47% in test data), resulting in sparse training sam-

ples. Furthermore, certain types of entities, such as movie and tvshow, have only a few instances. The 

frequency distribution of the different types of named entities in the training, development, and test data 

are shown in Figure 1. Additionally, we found that the training, development, and test data have an 

average of 19.4 (±7.6), 16.2 (±6.8), and 16.1 (±6.6) tokens per sequence, respectively, and mostly con-

tain less than 3 entities per tweet. This implies that the presence of certain entity types might be reflective 

of the category of the tweet, e.g. movie entities will be found in tweets about movies, and sports-team 

entities will be found in tweets about sports. Additionally, some types of entities are more likely to co-

occur with each other than others. Using the provided data, we found that both person and geo-location 

 
Figure 1: Frequency of named entity types in training, development, and test datasets. 
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entities were most likely to co-occur with entities of other 8 types, compared to the co-occurrence of the 

rest of the entities.  

Although the original dataset was tagged using the Begin-Inside-Outside (BIO) encoding, we con-

verted that into the Begin-Inside-End-Outside-Unigram (BIEOU) encoding, which has been found to 

be more efficient for sequence classification tasks (Ratinov & Roth, 2009). However, the predicted tags 

were converted back to the BIO encoding to make our submission compatible with the evaluation sys-

tem.   

3 Feature Engineering 

We trained our system using multiple combinations of features. Features were chosen with the intent to 

increase the generalizability and scalability of our classifier. Some of the considered features can be 

updated with the availability of new unlabelled data, while other features capture the general token pat-

terns in tweets. All features are described in detail in the following subsections.  

3.1 Regex features [RF] 

Regular expressions are rules describing regularities in data, and are typically empirically derived. For 

example, in regular English corpora, named entities usually being with capital letters. Although regex 

based approaches can be effective, they are likely to result in retrieving large amounts of false positives. 

Most NER systems use token level regex features (Baldwin et al., 2015; Ratinov & Roth, 2009). We 

extended these regex features by including features which detect syntax patterns of tokens commonly 

present in tweets. Our patterns return “true” if the regex pattern matches the token. A detailed list of our 

regex features is described in Table 1. These features were extracted per token, and every pair of the 

neighbouring tokens’ regex features were multiplied to create pairwise features.  

 

isHashtag - Identifies if token is a hashtag 

isMention - Identifies if token is a user mention 

isMoney - Identifies if token represents monetary 

values 

isNumber - Identifies if token is a number 

isDigits - Identifies if token only consists of digits 

isAllCapitalWord - Identifies if token only con-

sists of capital alphabets 

isAllSmallCase - Identifies if token only consists 

of small alphabets 

isWord - Identifies if token only consists of letters 

isAlphaNumeric - Identifies if token only consists 

of digits and letters 

isSingleCapLetter - Identifies if token only con-

sists of single capital letter 

isSpecialCharacter - Identifies if token only con-

sists of special characters such as: #;:-/<>'"()& 

endsWithDot- Identifies if token only consists 

of alphanumeric and ends with a `.`, e.g. Dr 

containsDashes - Identifies if token only con-

tains dashes 

containsDigits - Identifies if token only con-

tains digits 

singlePunctuation - Identifies if token is only 

single punctuation 

repeatedPunctuation - Identifies if token only 

consists of repeated punctuations 

singleDot - Identifies if token only consists of a 

single dot 

singleComma- Identifies if token only consists 

of a single comma 

fourDigits- Identifies if token only consists of 

four digits 

singleQuote- Identifies if token only consists of 

a single quotation mark 

Table 1: List of regex features 

3.2 Gazetteers [GZ] 

The task organizers provided a set of gazetteer lists. Although being helpful, these lists include some 

irregularities, such as words composed of or containing non-ascii characters, garbled strings, and miss-

ing names of important named entities in many categories. Furthermore, the provided gazetteers did not 

include names of movies or music artists. We increased the given set of gazetteers by including an 

additional 41K person names, 63K music artist names, 8K TV show titles, 2K sports team names, and 

110K movie titles from WikiData (https://www.wikidata.org), additional 8.3M locations from 

GeoNames (http://www.geonames.org/), and 4.5M music artist names and their 1.4M name variants 

from the Discogs’ public data dump  (http://data.discogs.com/). Improved gazetteer features were also 

used as features in last year’s shared task (Derczynski, Augenstein, et al., 2015). The gazetteer features 
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were implemented on a per token level, where we look up a gazetteer phrase in a range of window sizes 

W (min=1 and max=6) both left and right of the current token. Additionally, we encode the window size 

and the identified gazetteer name. Finally, we include interaction terms computed as the product of all 

pairs of gazetteer features for each token.  

3.3 Word representations [WR] 

Distributed word representations have been shown to improve the accuracy of NER systems (Collobert 

et al., 2011; Turian et al., 2010). We used 200 dimensional GloVe word representations [WRG] 

(Pennington et al., 2014), which were pre-trained on 6 billion tweets. Furthermore, we built a set of 

word clusters by performing an agglomerative clustering of word representations [WRFTC] and fine tun-

ing them on the training plus development dataset by running the word2vec model (Mikolov, Chen, et 

al., 2013; Mikolov, Sutskever, et al., 2013).  

3.4 Word clusters [WC] 

Word clusters are word groupings that get generated in an unsupervised fashion, and they have been 

successfully used as features for NER tasks (Lin & Wu, 2009; Miller et al., 2004; Ratinov & Roth, 2009; 

Turian et al., 2010). One algorithm for creating such sets is Brown clustering (Brown et al., 1992), which 

produces a hierarchical cluster of words in the corpus while optimizing the likelihood of a language 

model based on a Hidden Markov Model (HMM). We used pre-trained 1000 brown clusters [WCBPT] 

that were prepared by using a large corpus of tweets (Gimpel et al., 2011; Owoputi et al., 2013). Addi-

tionally, we built another set of brown clusters [WCBD] with a cluster size of 100 based on all of the 

available data by using the code provided by Liang (2005)1. Furthermore, we also used an implementa-

tion2 of the algorithm proposed by Clark (2003) to create 32 (default option) additional word clusters 

from our training plus development data based on the regex and sequential features of the words. We 

choose to call these Clark clusters [WCCC]. Additionally, for each token, we also included all word 

cluster features for their immediate neighbours along with interactive terms; with the latter capturing 

the product of the token cluster with the neighbouring cluster.  

3.5 Additional features 

Even though the strength of our system lies in its semi-supervised nature and its non-reliance on data 

specific features such as lexical tokens [LT], we still included lexical tokens for comparison. Addition-

ally, we used certain global features [GF] for helping with the prediction. Global features capture the 

overall composition of the sequence. We constructed the GF using the average values of the word rep-

resentations and the binary presence of cluster and dictionary features. Additionally, another feature was 

constructed, which approximates the probability of the sequence being of a certain type. This feature 

adds an additional context to the token level prediction task, e.g. a tweet about sports is more likely to 

mention a sports team, and similarly, a tweet about a company is more likely to mention a product and 

vice-versa. To use this global feature, we first trained a Logistic regression classifier to predict if a tweet 

is about any of each of the 10 types of entities. The predicted probability per type is used as a feature 

for each of the tokens in the sequence.  

3.6 Random up-sampling with feature dropout [RSFD] 

Since the training dataset is comparatively small and its features are sparse, we create synthetic examples 

by dropping interaction and lexical features with probability p. These features were chosen for random 

dropout because our earlier experiments had shown that the classifier identifies large weights for these 

features. We further scaled the training data size by a factor of k. This technique is inspired by the 

success of the dropout technique (Srivastava et al., 2014), which serves as a regularization function for 

deep neural networks. However, our technique is slightly different in that we use dropout to create a 

larger number of noisy samples from our data. Also, in contrast to the basic dropout technique, we did 

not re-weight the feature weights using the dropout probability (Srivastava et al., 2014) during evalua-

tion.  

                                                 
1 https://github.com/percyliang/brown-cluster  
2 https://github.com/ninjin/clark_pos_induction  
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4 NER classification algorithm 

We used a linear chain CRF (Lafferty et al., 2001; McCallum & Li, 2003) as implemented in CRFSuite 

(Okazaki, 2007) package for training all our models. The models were trained using stochastic gradient 

decent (SGD) with an L2 norm (C=1e-3). We also tested some of the recently popular deep learning 

based approaches, such as word embedding based and character based recurrent neural networks, for 

our prediction task. However, these techniques did not yield competitive results and were too slow to 

converge on CPU. Furthermore, training the CRF model was faster (average training time of the CRF 

algorithms was ~3 mins on CPU, compared to >15 minutes for the character/word based 3-layer deep 

recurrent neural network solution), and gave interpretable results while beating the baseline model pro-

vided by the task organizers. In the following sections, we will first describe the model we used in our 

submission to the shared task, and then our improvement over the initial model and results.  

4.1 Shared task submission solution [ST] based on random feature dropout up-sampling 

Our original submission to the shared task [ST] was based on a system that uses the lexical, regex, and 

dictionary based features with random feature dropout based up-sampling. All the interaction terms were 

randomly dropped out with p=0.5, and the scaling factor k was chosen to be 5. The dictionary based 

features were created using a context window of size 2 to the left and right of the token. Additional 

interaction features were included by calculating the product of the dictionary features of the token and 

the neighbouring tokens. Finally, ST was based on a classifier trained only on the training dataset, and 

was corpus specific in that it used the vocabulary created from the training data.  

4.2 Semi-supervised word clusters and representation based solution [SI] 

The described lexicon based solution [ST] had one major drawback: The most highly weighted features 

were mainly tokens descriptive of entity types as occurring in the training data. For example, the highest 

weighted feature for the label U-person was word_normed:pope. Similarly, for many of the other entity 

types, the highest weighted features were the names or labels of popular entities. Although these features 

help to achieve a decent evaluation score on the development dataset, they can lead to overfitting of the 

classifier to the vocabulary of the training corpus. In order to circumvent this issue, a semi-supervised 

(Blum, 1998; Blum & Mitchell, 1998) solution builds on the general recent success of using word rep-

resentations and word clusters in NER tasks, while disregarding lexical vocabulary based features. The 

intuition behind our approach to the 2nd solution [SI] was to ensure that the classifier learns higher level 

representations of the observed tokens. All the features used for our second solution augment the tokens 

present in the given tweets. This allows us to scale-up the underlying resources, such as gazetteers, and 

improve word representations and clusters using the new unlabelled test data, while still being able to 

update the classifier from the initially provided, limited training data. We replicate this behaviour in our 

classifiers by training our clusters on all of the unlabelled data generated by merging tweet texts from 

the training, development, and test data (only un-labelled) [TDTE] (Blum & Mitchell, 1998), and com-

paring the resulting performance to that obtained with unsupervised training that does not consider the 

test data [TD]. Although it might appear that our classifier has access to the unlabelled test data se-

quences while learning, it rather is the case that we resemble an online setting where we continuously 

update our unsupervised features using the new batch of unlabelled test data, and then retrain our model 

on the original training data (Blum, 1998; Blum & Mitchell, 1998; Carlson et al., 2010; Chapelle et al., 

2009; Liang, 2005; Turian et al., 2010; Zhu & Goldberg, 2009). In this case, the unlabelled data prevent 

the classifier from overfitting to the training data by acting as a regularization factor. An alternative 

approach would be to train these clusters on a large number of unlabelled tweets that match the time 

range and search domain of the test tweets.  

5 Results 

In the following sections, we describe the evaluation of the accuracy of both the ST and SI system in 

comparison to BL and against each other. All evaluations were done by using the evaluation script pro-

vided by the organizers. We use the classifier provided by the organizers as the baseline (BL) system. 

The baseline system uses lexical, gazetteer, and regex features.  
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5.1 Performance in WNUT NER shared task 

Using BL as a point of comparison, ST scored 1.1% (F1 score) higher for the 10-types task (based on 

the development set), and 1.2% (F1) lower for the no-types task. Our ST is based on random feature 

dropout based sampling.  

Among the 10 participating teams, our solution placed 7th for the 10-types category with an overall 

F1 score of 36.95%, and 6th in the no-type category with an overall F1 score of 51.38%. The top team 

on both tasks (same team in both cases) achieved F1 scores of 52.41% and 65.89%, respectively. Over-

all, we found that ST performed best on the geo-location type (F1 score of 64.72%), and behind the top 

two teams (score of 72.61% and 68.36%, respectively) for this category. We placed 3rd in terms of F1 

(37%) in the facility category shown Table 2.   

 

Rank 1 2 3 4 5 6 7 8 9 10 TD TDTE 

10-types overall 52.4 46.2 44.8 40.1 39.0 37.2 37.0 36.2 29.8 19.3 46.4 47.3 

No-types 65.9 63.2 60.2 59.1 55.2 51.4 47.8 46.7 44.3 40.7 57.3 59.0 

company 57.2 46.9 43.8 31.3 38.9 34.5 25.8 42.6 24.3 10.2 42.1 46.2 

facility 42.4 31.6 36.1 36.5 20.3 30.4 37.0 40.5 26.3 26.1 37.5 34.8 

geo-loc 72.6 68.4 63.3 61.1 61.1 57.0 64.7 60.9 47.4 37.0 70.1 71.0 

movie 10.9 5.1 4.6 15.8 2.9 0.0 4.0 5.0 0.0 5.4 0.0 0.0 

musicartist 9.5 8.5 7.0 17.4 5.7 37.2 1.8 0.0 2.8 0.0 7.6 5.8 

other 31.7 27.1 29.2 26.3 21.1 22.5 16.2 13.0 22.6 8.4 31.7 32.4 

person 59.0 51.8 52.8 48.8 52.0 42.6 40.5 52.3 34.1 20.6 51.3 52.2 

product 20.1 11.5 18.3 3.8 10.0 7.3 5.7 15.4 6.3 0.8 10.0 9.3 

sportsteam 52.4 34.2 38.5 18.5 34.6 15.9 9.1 19.7 11.0 0.0 31.3 32.0 

tvshow 5.9 0.0 4.7 5.4 7.3 9.8 4.8 0.0 5.1 0.0 5.7 5.7 

Rank 1 2 3 4 5 6 7 8 9 10 ~2 ~2 

Table 2: Results of the WNUT NER 2016 shared task. Rank denotes the rank of the winning team, 

which we use as an ID to identify the evaluation performance of each of the participating teams in the 

shared task. Our solution was ranked 7th (in bold) and (6th not shown) in the 10-types and no-types cat-

egories, respectively. Columns with TD and TDTE show the performance of the improved model on 

the test data, and their ranks denote the best rank in the competition which they beat.  

5.2 Improved model performance [SI] 

In this section we describe the evaluation of our improved system SI, which was developed after the 

release of the shared task results. Since we received the gold standard labels for the test-set late in the 

process, we evaluated most of the improved models based on the development set. We present the ad-

ditive effect of a series of features to the model in Table 3. Additionally, that table also shows the per-

formance of ST and BL. We do not include any lexical features in SI, however, lexical features were 

part of the ST and BL models. We found that the addition of the gazetteer [GZ] features improved the 

classification accuracy considerably. The next two big jumps in accuracy increase in SI came from using 

brown clusters [WCBTP] and fine-tuned word representations based clusters [WCFTC]. From all of the 

improved models that we trained, we selected the 10-types category model with the highest overall F1 

score, namely RF+GZ+WRG+WCBPT+WCCC+WRFTC model, also referred to as SI herein. Only the SI 

model was also evaluated on the test data with [TDTE] as well as without [TD], using the test data for 

enriching the unsupervised features. Although the model with the global features [See +GF in Table 3] 

is not the top one in terms of the F1 score, it achieved considerably high scores for movie and tvshow 

class, which have very few training instances. Similarly, the random dropout up-sampling based solution 

showed improvements by 15% and 6% F1 score in terms of predicting named entities of the types movie 
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and music-artist, respectively. Finally, these models were trained in almost half the time as the ST mod-

els.   

5.3 Features learned by the model 

We extracted the learned features from the top performing model on the 10-types category (the 

RF+GZ+WRG+WCBPT+WCCC+WRFTC model). The features with the highest positive and negative 

weights for each of the category labels are presented in Table 4. The table also shows that for person, 

product, movie, and tvshow the top features were specific dimensions of the pre-trained word embed-

ding. Furthermore, the brown cluster ids of the token word are more informative for the named entities 

of geo-location, other, and company types, while the brown cluster id of neighbouring tokens is likely 

to indicate if a named entity is of type musicartist, sportsteam, or facility. Additionally, if the token 

belongs to a phrase in a gazetteer of music artist names, then it is less likely to be a geo-loc, company, 

or product.  

 

Type Most positive weight Most negative weight 

Entity feature w feature w 

person WV_90U 1.27 WV_46U -1.02 

other BC_2_:1001000U 1.28 isAllSmallCase|isAlphaNumeric[+1] U -0.88 

geo-loc BC_0:11100110101->U 2.33 DICT=musicartist_namesU -0.88 

facility BC_2[-1]:1001111110B 1.63 WV_185->B -0.68 

company BC_0:111001100001U 1.30 DICT=musicartist_namevars->U -0.77 

product WV_199U 1.07 DICT=musicartist_namevarsU  -0.97 

musicartist BC_2[-1]:11110010U 1.21 DICT=geonamesU -0.80 

movie WV_75B 0.76 isAlphaNumeric[+1] E -0.50 

sportsteam BC_0[+1]:1111011010B 1.29 WV_30U -0.86 

tvshow WV_154U 0.76 isInitCapitalWord|singlePunctuation[+1] E -0.40 

Table 4: Feature weights (w) in the SI model for each of the 10 entity types. WV is word vector; BC is 

brown cluster. [-/+ num] denotes features for left or right neighbour, respectively.  BIEOU denotes 

which boundary type for the entity type the feature belongs to.  

We also investigated the transition features of the linear chain CRF model. The transition matrix (based 

on transition weights) is presented in Figure 2, and coloured as red for negative weights and black for 

positive weights. Some trends become obvious from the transition matrix: For most entity types, the 

model is able to find high transition weights for going from B to I to E, while penalizing transitions 

Additive 

Features  
RF +GZ +WRG +WCBPT +WCCC +WRFTC +GF +RSFD ST BL TD TDTE 

10-types 5.3 34.8 36.7 41.6 41.0 43.3 40.9 40.0 36.2 35.1 46.4 47.3 

company 0.0 30.0 34.5 33.3 35.2 33.3 32.0 33.3 27.7 26.2 42.1 46.2 

facility 0.0 12.4 9.6 20.8 18.6 17.9 14.5 16.7 30.4 19.2 37.5 34.8 

geo-loc 5.2 47.2 48.1 53.8 54.4 55.9 56.7 56.1 49.7 48.4 70.1 71.0 

movie 8.0 7.4 6.5 8.3 7.7 9.5 23.5 28.6 8.3 0.0 0.0 0.0 

musicartist 0.0 6.6 8.5 9.1 9.5 12.7 6.5 14.7 0.0 0.0 7.6 5.8 

other 5.8 18.6 18.7 22.5 20.9 26.6 22.1 17.7 24.2 27.7 31.7 32.4 

person 11.4 55.1 58.5 63.4 63.8 64.8 65.0 60.2 53.4 50.2 51.3 52.2 

product 2.9 12.7 20.0 16.7 18.2 15.4 10.8 11.9 9.0 11.9 10.0 9.3 

Sportsteam 0.0 12.9 27.9 30.5 29.0 28.1 27.7 25.4 12.8 13.1 31.3 32.0 

tvshow 0.0 0.0 0.0 16.7 16.7 16.7 18.2 13.3 0.0 14.3 5.7 5.7 

No-types 13.1 48.3 52.5 56.7 56.4 57.4 53.7 52.9 50.5 51.7 57.3 59.0 

Table 3: Change in F1 score for the NER classifier on the development dataset on incremental 

addition of different types of features (from left to right). ST refers to submitted solution, BL refers to 

baseline solution provided by the organizers. Bolded values are the best scores across classifiers. 
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between the other states. The choice of using BIEOU tagging is supported by the results shown in the 

transition matrix since for most entity types, there is a high negative weight for going from the B or I 

tag to the O tag. However, a transition from the U tag to O tag is usually supported. Our earliest exper-

iments (not reported here) revealed that there was a considerable improvement from using the BIEOU 

tagging scheme. This finding aligns with the existing research which argues for the usage of this tagging 

scheme for NER tasks.  

 

 
Figure 2: Transition weights learned by the SI model. 

6 Discussion and conclusion 

Prior work has shown that semi-supervised algorithms can perform decently for NER tasks with sparse 

labelled data (Blum, 1998; Carlson et al., 2010; Chapelle et al., 2009; Liang, 2005; Turian et al., 2010; 

Zhu & Goldberg, 2009). We leverage this fact in our SI model via the use of unsupervised word clusters, 

word representations, and refined gazetteers; all of which contributed to a cumulative increase in accu-

racy over our initial submission [ST] by ~11% when using the test data for evaluation. Furthermore, the 

transition features learned by our model are reflective of correct learning of NER sequences and demon-

strate the strength of using the BIEUO encoding scheme. Additionally, the supervised training of our 

classifier on features extracted from the unlabelled data, as opposed to lexical token features, reduces 

the dimensionality of the training data for the classifier and results in increased performance in terms of 

both accuracy and training time. Furthermore, our model can be adjusted on the arrival of new unlabelled 

data by updating the underlying learned word clusters and representations, and retraining the model on 

the existing labelled data. As identified by Turian et al. (2010), the importance of word representations 

and word clusters increases as the availability of unlabelled data increases. We can add additional entity 

names to the gazetteers. Retraining the model on the same training data would then allow for accommo-

dating to the new feature representations. Finally, the random feature dropout based up-sampling can 

help to increase the amount of training data available, and can also be improved by random swapping 

of entity types in the training data with their nearest neighbours in the word representations and clusters, 

or by choosing entities from the most correlated gazetteers. We believe that our described models can 

help in improving NER on noisy-text, and our open source implementation can be further extended.  
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Abstract

This paper describes the shared task for the English Twitter geolocation prediction associated
with WNUT 2016. We discuss details of the task settings, data preparation and participant sys-
tems. The derived dataset and performance figures from each system provide baselines for future
research in this realm.

1 Introduction

With ever-increasing numbers of people interacting with social media, social data has become a gold
mine of insights into the people, opinions and events of the world. Perhaps the greatest insights come
when that data is partitioned into meaningful sub-populations, with one of the most obvious such parti-
tioning dimensions being geographical. In many social platforms, however, geographical information is
either missing, incomplete or not accessible. This greatly restricts the utility of social data for location-
related applications such as regional sentiment analysis, local event detection, and geographically-
bounded marketing and healthcare. This shared task focuses on predicting geographical location (i.e.,
geotagging) using English Twitter text data. The task provides a benchmark dataset for comparing differ-
ent geotagging methods, and more generally sheds light on how to expand geotagging from social media
to a more general domain.

In this shared task paper, we present the task scope and evaluation metrics; how training, development
and test data were collected and filtered; and we also summarise and compare the key innovations of
each participant system. Overall, we had five teams submit 21 results. Three of the five teams described
their approach in peer-reviewed papers. We found that the system from FUJIXEROX achieved the best
median distance error, using a neural net, and that the system from CSIRO using an ensemble had the
highest accuracy and a competitive median distance error.

2 Geotagging Shared Task

In machine learning terms, the geotagging shared task can be expressed as two different problems. By
assigning a latitude/longitude pair to a given input tweet and measuring the distance between the pre-
dicted point and the true GPS labelled point, it can be cast as a (multi-target) regression problem. If
the aim is to predict one from a set of pre-defined mutually exclusive classes (e.g. metropolitan city
centres), then geotagging becomes a multiclass classification problem. In this shared task, we adopt the
later classification setting. Participants were given training and development data based on metropolitan

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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city representations derived from GeoNames.1 The goal is to predict the class label (i.e. city) for each
item in the test dataset.

The shared task was carried out on two levels: tweet-level and user-level. The tweet-level is more
practical in real world applications, as a tweet is a basic text unit created by a Twitter user and often is
associated with a unique location. However, because a single tweet text can be terse and will often not
contain explicitly geolocating information, the more popular setting for geolocation research has been
user-level prediction, aggregating a user’s tweets. This assumes that each user has a primary location,
and that the primary location can be inferred from the aggregated tweet data.

To comply with Twitter’s terms of service, participants were given tweet IDs and a downloading script
to obtain data and annotations. Participants then built geotagging systems using the released training and
development data. When the test data was released, participants had three days to run their experiments
and submit results.

The shared task has the following goals:

1. Provide a large-scale carefully-sampled dataset for the Twitter geotagging task, and as an enabler
for future research on the topic;

2. Evaluate the effectiveness of different methods within a consolidated experimental setting, to better
benchmark geotagging methods;

3 Datasets and Evaluation

As a compromise between the competing desires to provide a comprehensive, large-scale dataset, and to
provide a manageably-sized dataset, we selected 1 million users for training, and 10K users for develop-
ment and test, respectively. Each user has a unique class label to denote their primary location. The class
labels are derived from metropolitan city centres in GeoNames, following Han et al. (2012). In total,
the class set is made up of 3362 cities. The training data for the tweet-level task is based on a unique
tweet from each of the same 1 million users. The development and test data sizes are both 10K messages
in size, different from the user-level development and test data. We deliberately chose to keep strict
separation between the data for the user- and tweet-level tasks to prevent the use of user-level predictions
for the tweet-level task. A team could have up to 5 members, and submit up to 3 three runs for each of
the two tasks.

We filter geotagged tweets from 2013 to 2016 via archived data from the 10% Twitter Streaming API.
All the training and development data is from 2013 to 2015. For the test data, 50% is from 2013 to 2015,
and the other half is from 2016. This is reserved for analysis of the impact of temporal differentiation on
model generalisation (Han et al., 2014; Dredze et al., 2016). All tweets are filtered by Twitter’s language
ID code, retaining only those which are labelled as English. We run the filter in two passes: in the
first round, we take all users with geotagged tweets; and in the second pass, we only keep users with at
least 10 geotagged tweets. The requirement of 10 geotagged tweets was determined empirically, to get
a reliable estimation of a user’s primary location, while avoiding incorporating bot-generated messages.
To be eligible as a data record in the geotagging dataset, a user must have 50% of their tweets coming
from the same metropolitan area.2 The number of unfiltered geotagged tweets was initially 419M, from
which 172M English tweets were extracted. After filtering out users with less than 10 geotagged tweets
and those who didn’t have at least 50% of tweets from a single city, we randomly chose 1M users for
training and 10k each for the development and test sets. The training set consists of 12.8M tweets, the
user-level development and test sets consist of 128k and 99k tweets, respectively, and the tweet-level
development and test sets each contain 10k tweets.

Candidate geotagging systems were evaluated using three metrics. “Accuracy” indicates how well a
given system performs in a “hard” classification task setting, in terms of whether they correctly predict
the city or not. In comparison, distance-based metrics (relative to the centre of the city the user is
assigned to) provide a “soft” evaluation, in the sense that they reward near-miss predictions, and penalise

1http://www.geonames.org/
2Defined as a circle of radius 50km around the centre of a given city.
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SUBMISSION ACCURACY MEDIAN MEAN

FUJIXEROX.2 0.409 69.5 1792.5
CSIRO.1 0.436 74.7 2538.2
FUJIXEROX.1 0.381 92.0 1895.4
CSIRO.2 0.422 183.7 2976.7
CSIRO.3 0.420 226.3 3051.3
DREXEL.3 0.298 445.8 3428.2
AIST.1 0.078 3092.7 4702.4
IBM.1 0.146 3424.6 5338.9
DREXEL.2 0.082 4911.2 6144.3
DREXEL.1 0.085 5848.3 6175.3

Table 1: Tweet-level results ranked by median error distance

SUBMISSION ACCURACY MEDIAN MEAN

FUJIXEROX.2 0.476 16.1 1122.3
FUJIXEROX.1 0.464 21.0 963.8
CSIRO.1 0.526 21.7 1928.8
CSIRO.2 0.520 23.1 2071.5
FUJIXEROX.3 0.451 28.2 1084.3
CSIRO.3 0.501 30.6 2242.4
DREXEL.3 0.352 262.7 3124.4
IBM.1 0.225 630.2 2860.2
AIST.1 0.098 1711.1 4002.4
DREXEL.2 0.079 4000.2 6161.4
DREXEL.1 0.080 5714.9 6053.3

Table 2: User-level results ranked by median error distance

wildly-wrong predictions. Specifically, as our distance-based metrics, we measure (in kilometres): (a)
the median error distance; and (b) the mean error distance. Although distance-based metrics are more
intuitive, class-based predictions such as city labels are often easier to use in downstream applications.

4 Systems and Results

In total, 5 teams uploaded 21 runs, among which 3 teams submitted system description papers.
Miura et al. (2016) (“FUJIXEROX”) applied vectorised inputs in linear models for both tweet-level

and user-level geotagging tasks. They used tweet text, user self-declared locations, timezone values,
and user self-descriptions as input sources. Each source of input is transformed from a one-hot bag-of-
word representation into a vector. Vectors from the same source are averaged, and vectors from different
sources then are concatenated and used as the input to linear models. A softmax function is used to select
the most probable class.

Jayasinghe et al. (2016) (“CSIRO”) adopted ensemble learning methods with carefully extracted fea-
tures from various available sources in both text and metadata. Namely, the authors implemented label
propagation methods among tweet posts, location name mappings, text retrieval methods that assume
similar text comes from the same region, and language-based classifiers. Having obtained outputs from
each of the individual methods, the authors combined the resultant features in different ways. The best
accuracy is achieved by using accuracy-ordered predictions, i.e. taking the prediction from the best
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SUBMISSION ACCURACY MEDIAN MEAN ACCURACY MEDIAN MEAN

FUJIXEROX.2 0.377 77.7 1205.4 0.441 60.9 2379.6
CSIRO.1 0.344 230.4 2242.7 0.529 10.1 2833.7
FUJIXEROX.1 0.345 105.9 1594.1 0.417 79.7 2196.7
CSIRO.2 0.319 649.3 2811.6 0.525 10.1 3141.8
CSIRO.3 0.315 689.8 2773.6 0.524 10.2 3329.0
DREXEL.3 0.270 605.8 3531.5 0.327 340.7 3324.8
AIST.1 0.063 2259.1 3886.4 0.093 4164.1 5518.5
IBM.1 0.121 3105.8 4867.5 0.170 3852.7 5810.3
DREXEL.2 0.074 3800.3 5461.5 0.089 6897.3 6827.1
DREXEL.1 0.078 5498.6 5616.0 0.091 6986.7 6734.5

Table 3: Tweet-level results comparison for pre 2016 (left) and 2016 (right) test sets

SUBMISSION ACCURACY MEDIAN MEAN ACCURACY MEDIAN MEAN

FUJIXEROX.2 0.417 50.6 919.0 0.534 0.0 1325.6
FUJIXEROX.1 0.404 48.0 818.8 0.524 0.0 1108.9
CSIRO.1 0.413 66.6 1996.3 0.640 12.9 1861.2
CSIRO.2 0.402 111.3 2121.6 0.638 13.0 2021.3
FUJIXEROX.3 0.401 55.0 849.8 0.502 0.0 1318.8
CSIRO.3 0.370 267.8 2075.7 0.631 13.7 2409.0
DREXEL.3 0.287 617.9 3413.3 0.417 85.7 2835.6
IBM.1 0.196 611.7 2232.8 0.254 689.2 3487.6
AIST.1 0.089 1450.7 3333.9 0.106 2289.3 4670.9
DREXEL.2 0.069 3659.8 5503.0 0.088 6229.9 6819.8
DREXEL.1 0.071 5268.0 5586.8 0.090 6514.4 6519.8

Table 4: User-level results comparison for pre 2016 (left) and 2016 (right) test sets

method in the validation stage, and if no results are found, backing off to the next classifier. As highly
accurate methods rely on location-based services or reliable social network information, this ensemble
approach is primarily precision-oriented.

Chi et al. (2016) (“IBM”) applied multinomial naive Bayes methods over different sets of features.
Unlike other teams, they only used tweet text data in their system. The system used an existing set
of location-indicative words, gazetted location names from GeoNames, hashtags, users mentions, and
a combination of all of these features. In addition, a frequency-based method was used to filter the
combined feature set. Experimental results show feature selection over the methods combined achieved
the best results across all metrics.

Tweet-level and user-level results are shown in Table 1 and Table 2, respectively. FUJIXEROX achieved
the best median error distance. The best accuracy was achieved by CSIRO; this system also achieved
very competitive median error distance. Both teams systematically used metadata embedded in tweets,
which supports the hypothesis that metadata contains abundant high-quality location information (Han et
al., 2014). Nonetheless, the system from IBM provides insights into how well pure text-based methods
can perform. Unfortunately the other two teams did not submit description papers, and we do not have
insights into the methods they experimented with.

Interestingly, the gap between user-level and tweet-level results was fairly modest for those systems
which made use of metadata. This is partly due to the fact that everything is mapped to a city-level
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representation, but provides further evidence that metadata plays a major role in geotagging.
Our test data consists of 5K 2016 data and 5K 2013-2015 data. We also show results for those two

subsets in Figure 3 and Figure 4 to analyse the temporal impact. Interestingly, we found that 2016 test
cases are more likely to predict compared with pre 2016 data in terms of accuracy and median distance
error. As the 2016 test data is from new users created in 2016, this suggests people are more open to
sharing their location information either in their profiles or in the tweet text data.

5 Conclusion and Future work

This paper presents an overview of the English Twitter geolocation prediction shared task. It detailed
the two tasks, data preparation process, and evaluation metrics used in the shared task. It also outlined
the approaches adopted by the participant systems, and reported results across multiple metrics. We
found that tweet metadata offers abundant high-quality location information, which contributes to the
geotagging tasks at both the tweet- and user-level. In the future, we plan to make the data replication
procedure easier, allowing a wider audience to evaluate systems and compare with others.
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Abstract

In this paper, we describe CSIRO Data61’s participation in the Geolocation shared task at the
Workshop for Noisy User-generated Text. Our approach was to use ensemble methods to cap-
italise on four component methods: heuristics based on metadata, a label propagation method,
timezone text classifiers, and an information retrieval approach. The ensembles we explored
focused on examining the role of language technologies in geolocation prediction and also in
examining the use of hard voting and cascading ensemble methods. Based on the accuracy of
city-level predictions, our systems were the best performing submissions at this year’s shared
task. Furthermore, when estimating the latitude and longitude of a user, our median error dis-
tance was accurate to within 30 kilometers.

1 Introduction

Social media platforms present an attractive source of real-time and large volume data for analysts.
Publicly available data from these platforms can provide insights that shape our understanding of a
number of different topics, such as early signals on the outbreaks of diseases (for example, see Robinson
et al. (2015)), natural disasters such as earthquakes and fires (Yin et al., 2012), or the mental health of
populations as represented by online data (Larsen et al., 2015).

For analytics where aggregated data is used to provide insights, geographical information is important.
For example, responses to early signals of disease outbreaks or natural disasters are more effective with
geolocation metadata. Geographical information could be used at different granularities, such as com-
paring rural and city mental health. However, most social media platforms do not provide geographical
metadata. For example, it is reported that less than 3% of Twitter data has geo-coordinates provided
(Jurgens et al., 2015), even though the platform supports geolocation metadata. Other platforms, such as
public discussion forums and blogs often do not have geolocation capabilities. There is thus a need to
develop approaches to automatically determine location information for social media content.

As part of the 2016 Workshop on Noisy User-generated Text, a shared task to infer geolocation for
Twitter posts and users was organised (Han et al., 2016).1 The goal was twofold: (i) for an English
Twitter post, infer the city location; and (2) for a Twitter user (authoring mainly English Tweets), infer
the user’s base city.

In this paper, we describe the approach of the CSIRO Data61 team to this shared task. We adopted an
ensemble approach combining four complementary methods for predicting geolocation.

The shared task results revealed that our system was placed first for accuracy for city location. As
we optimised for city location, we narrowly missed out on first place for the median accuracy when
predicting latitude and longitude coordinates.

2 Preparing Data

In this section, we describe the collection and preparation of the shared task data and addition geospatial
resources used by some of the component methods.

1http://noisy-text.github.io/2016/geo-shared-task.html
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2.1 Shared Task Data
Starting with the data release from the shared task organisers, our first task was to download the training
and validation sets as JSON2 objects from the Twitter Application Programming Interface (API). The
JSON data includes the text of the Twitter post and the profile information for the Twitter users, as well
as associated metadata. At the time of collection, not all the data was available as some users had elected
to remove or change the privacy settings of accounts and/or content. We were able to collect 9,472,450
training tweets (73.84% of the data set) and 783,492 distinct users (78.35% of the data set).

The data was then loaded into a database so that queries could be used, as needed by each of the
different approaches. The primary table of the database was designed with each Twitter post as a record.
Queries could then retrieve the different JSON metadata fields for a given post. As this also contains
identifiers for the Twitter user who authored the post, we could retrieve the posts for given Twitter user.

2.2 A GeoNames Mirror
Some of our approaches require a service to map from locations to the corresponding latitude and lon-
gitude coordinates. Such translations are provided by web services such as GeoNames3. We created a
local version of the GeoNames service and indexed it with Apache Solr, which allows spatial indexing
allowing queries such as “find places within X km”, as well as place name searches. We refer to this
resource as the GeoNames Solr Mirror. We also loaded GeoNames data into a PostgreSQL database
with the PostGIS extension in order to map city labels to time zones using the “point within polygon”
function.

2.3 A Mapping from Shared Task City Labels to Geonames
We created mappings between the 3363 shared task labels found in the training and validation data sets
and their corresponding GeoNames cities. In most cases, this was done automatically by using the first
section of the label as the query to our GeoNames Solr Mirror. With this approach, we mapped most
shared task labels to a GeoNames location within 100km of the gold label coordinates. Only 11 shared
task labels could not be mapped automatically, which we created manually.

2.4 A Mapping from Twitter Time zones to the “TZ” resource
Twitter uses a non-standard string format for time zone, making it difficult to link to other geospatial
resources such as the publicly available time zone resource, TZ, which provides time zone boundaries.4

To utilize this resource, we obtained mappings from Twitter time zones to the TZ resource. As the
Twitter format is very similar to those the Ruby on Rails (RoR) tool, we started with existing RoR to
TZ resources.5 Missing mappings were then added manually. The mappings and the TZ resource were
stored in a Postgres/PostGIS database.

3 Our Approaches to Geolocation

Our approach to the shared task was to use ensemble approaches, as the strengths of each component
approach can offset the weakness of any individual approach. This was inspired by arguments about the
strengths of combining social network methods with natural language processing methods (Jurgens et al.
(2015), Rahimi et al. (2015)), and by work by Han and Cook (2013), who combined text classifiers and
metadata approaches. Here, we explore a larger set of component methods: (i) use of heuristics based
on metadata, (ii) a social network inference method, (iii) an information retrieval method, and (iv) a text
classification method. We will now briefly describe these in more detail.

3.1 Metadata Methods
We used five methods based on Twitter metadata inspired by approaches described in Schulz et al. (2013).
For all approaches, a list of candidate shared task labels was produced. We ranked shared task labels

2JavaScript Object Notation
3http://www.geonames.org/
4http://efele.net/maps/tz/world/
5http://api.rubyonrails.org/classes/ActiveSupport/TimeZone.html
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based on the prior probability of observing them in the training data. The most probable shared task
label was then chosen as the city prediction, with GeoNames Solr Mirror providing the relevant latitude
and longitude coordinates.

3.1.1 Metadata Text-to-Gazetteer

This method looks at the Twitter post text for mentions of place names. The text was tokenised and
stopwords, punctuation sequences and URLs were removed. All remaining tokens were used as search
input to our GeoNames Solr Mirror. Potential matching GeoNames places were then mapped to candidate
shared task labels.

3.1.2 Metadata Location-to-Gazetteer

This method uses the location text field found in the user profile section of the Twitter post. This is a
free-text field that may be left blank. We first checked if the location is a set of coordinates, for example
“-6.156277, 106.57207”. For these, we mapped the coordinates to a candidate city using the GeoNames
Solr Mirror, which provides the closest city location within 50km of the coordinates. For all other cases,
the location text was treated similarly to text in the Metadata Text-to-Gazetteer method.

3.1.3 Metadata Time Zone

In this approach, we utilised the time zone information in the user’s profile, which takes a value from a
finite set specified by Twitter. We mapped any time zone information to the equivalent TZ time zones
(there may be more than one). For each TZ time zone, we issued a database query to find cities within
the time zone boundaries. This provided a list of candidate cities.

For example, if the user has “Sydney” as their Twitter time zone setting, this was mapped to the
“Australia/Sydney” TZ time zone, which contains a number of candidate shared task labels: e.g., north
shore-02-au, canberra-01-au, sydney-02-au.

3.1.4 Metadata UTC (Coordinated Universal Time)

This method utilises the UTC offset setting that is automatically generated by Twitter based on user’s
time zone setting; it is not set directly by the user. This method defines a geographical area from which
candidate cities are generated. For example, the UTC offset value 32400 (GMT+09:00) mapped to the
Twitter time zones: Seoul, Osaka, Sapporo, Tokyo and Yakutsk. These were then converted into TZ time
zones which are used to produce a list of candidate cities.

3.1.5 Metadata Application

Metadata for each Twitter post indicates the application used to create the content, for example “Twitter
for iPhone” and “Twitter for Android”. We note that some apps are more popular in some countries than
others. We thus used the training data to create probability distributions of countries for each possible
application value, allowing country-level predictions to be made. Given a prediction for the country, we
then generated list of candidate cities. As this metadata is always present, this method always provides a
location prediction.

3.1.6 Metadata URL IP-Lookup

This method uses the Uniform Resource Locators (URLs) found in either the Twitter post text itself or
in the user profile. We assumed that people are likely to include URLs hosted in their home country.
After excluding URLs that refer to worldwide services with no specific host country (such as Facebook,
Instagram and YouTube)6, we then converted URLs to Internet Protocol (IP) addresses. These can be
used to look up the host country using the public domain resource, the IP2Location LITE database7. This
allowed a list of host countries to be predicted, from which we generated a list of candidate cities.

6We exclude these URLs with the following regular expression patterns: *.com, *.net, *.ly, *.fm, *.be, *.me, *.gl, and *.co.
7http://lite.ip2location.com
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3.1.7 Metadata Location-Based Service (LBS) Links
We implemented a second URL-based approach (unrelated to the prior method) to capitalise on links
geolocation-centric web applications, or a Location-Based Service (LBS). LBSs have been shown to
provide high precision estimates of location (Schulz et al., 2013). Using the training set, we identified
the LBSs which commonly occurred: FourSquare8, Swarm9, Path10, Facebook11 and Instagram12.

We first extracted the URL from metadata. If no tweet URLs were found in the post text, then URLs
found in the user’s profile data were also considered. For Facebook and Instagram URLs, we mined
the links to create queries for the respective platform Application Programming Interfaces (APIs). For
the others, we scraped metadata from the target page of the link for geographic coordinates, using code
specific to each LBS platform. We then used the GeoNames SOLR Mirror to retrieve a city which could
then be mapped to a shared task label.

For Facebook links, we are interested in Pages, representing public entities, or Events. These are
often publicly accessible and may have geolocation information attached. We can identify if a node is a
Facebook Event or Page by checking whether it conforms to the following Facebook URL templates.13

For those templates that resulted in public (HTML) content, we extracted the relevant location latitude
and longitude metadata.

For Instagram links, we mined the target webpage JSON for an Instagram-specific location identifier.
This identifier could then be mapped to the web page for a location (using a prescribed URL pattern),
providing latitude and longitude metadata.14

3.1.8 Metadata Combination
We also defined an ensemble using just metadata approaches. All techniques were executed individually
with each producing a list of candidate cities. Each city was given a manual weighting depending on the
method that produced it, using the following manual weighting scheme based on experiments with the
validation set: (i) Metadata Location-based Service Links: 10; (ii) Metadata Text-to-Gazetteer: 6; (iii)
Metadata Location-to-Gazetteer : 5; (iv) Metadata Time Zone: 3; (v) others: 1. The weighted candidate
lists from each method were then combined, and weightings for cities appearing in more than one list
were added together. The city with the maximum final weighting was selected.

3.2 Label Propagation Approaches

We implemented a label propagation-like method based on the work of Jurgens et al. (2015) and inspired
by Jurgens’ publicly available code15. In this work, social media networks are defined using Twitter post
interactions, specifically mentions within the Twitter post to other Twitter users (often with the pattern
@screen name). A relationship between two Twitter users was only included in the network if both users
mentioned each other (edges were bidirectional).

In this shared task, however, one constraint was to only use the network information induced from
the shared task data, which led to small networks when using bidirectional edges. Following (Rahimi et
al., 2015), we thus used unidirectional edges. Furthermore, we also included interaction edges based on
replies, again adding unidirectional edges (User X replies to User Y). Once the network was constructed,
edge direction was then ignored.

Using these definitions, we transformed the Twitter post data into a network, which we stored in a
database as a series of relationships between a source and target Twitter user. Each Twitter post contains

8https://foursquare.com
9https://www.swarmapp.com

10https://path.com
11https://www.facebook.com
12https://www.instagram.com
13URLs for Events typically take the form, https://www.facebook.com/Events/Event_ID, whereas Pages are

either of the form, https://www.facebook.com/Page_UNIQUE_IDENTIFIER or https://www.facebook.
com/Page-NAME-Page_ID. The latter is used when the Page has not been designated a unique identifier (only the most
popular pages are given these).

14https://www.instagram.com/explore/locations/LOCATION_ID
15https://github.com/networkdynamics/geoinference
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an author screen name as metadata. For links based on mentions, we extracted mentioned authors screen
name in metadata. For reply links, we found the metadata about the post that triggered the reply and
extracted the author screen name. For predictions on the test set, although the Twitter user identifiers
were hashed, the metadata still existed to create a mention and reply network which could be linked to
the networks derived from the training and validation sets.

Our label propagation method used a single iteration, and inferred the location of a Twitter user based
on the neighbours in the graph. Issuing the appropriate database queries provided the neighbours for a
user using the network. For all neighbours, we computed the majority city. For the users sharing the
majority city, we calculated the average latitude and longitude. In situations where there was a tie for the
majority city, we randomly selected a city.

We applied two variants of this approach that differed in the depth of the neighbourhood. For a single
“hop” (which we refer to as the 1-hop label propagation method), we looked at the immediate neighbours
of a user. For hop depth of 2, (which we refer to as the 2-hop label propagation method), we recursively
retrieved the neighbours of the neighbours and treated these as if they were 1-hop neighbours. We then
applied the 1-hop method to the Twitter user in question.

We evaluated these approaches on a network based on the training data and using the validation set
as our gold standard. The 1-hop method performed well, with an accuracy of 62%. The accuracy of
the 2-hop method was approximately 31%. However, the 1-hop network only covered 16% of validation
set while 2-hop covered 66%. We note that increasing the hop depth beyond 2 hops did not increase
coverage substantially. The two variants thus introduce a trade-off between coverage and accuracy,
which we exploit in the ensemble methods.

3.3 Information Retrieval Approaches

We employed an information retrieval approach based on the premise that a Twitter post is likely to
originate from the same location as the majority of similar tweets in the training dataset. This hinges, of
course, on the definition of similarity. For example, consider content in the form I’m at place X in city Y
and also I am in place X, city Y: that is, Twitter posts with similar mentions. For such posts, we assume
that they occur in the same location. We now describe method to capture such similarity efficiently.

To retrieve Twitter posts with similar text, we index the training data using the Apache Solr search
engine. Twitter post text is indexed using hash signatures that can capture similarity. Such approaches
have been used in information retrieval to detect near duplicates (Broder, 1997). One benefit of using
hash signatures in the index is that we avoid pairwise comparisons of documents.

Specifically, we used the following procedure. We first preprocessed the text of the Twitter post to
normalise for case and then tokenised the text. We then generated a MinHash signature of 100 integers
for each token in the normalised Twitter post, as described in Broder (1997). Finally, we divided the
MinHash signature into 25 bands to produce locality sensitive hashes (LSHs) (Leskovec et al., 2014).
The locality sensitive hashes were indexed. For a given Twitter post, we transformed it into an LSH, and
retrieved the top 10 search results in our Solr search engine.

Any @mentions were also specifically indexed, again using an Apache Solr search engine. For a given
Twitter post, we retrieved the top 10 search results having similar mentions.

For each set of search results, we then retrieved the associated shared task labels for these results and
obtained a probability estimated for each label, computed as the frequency normalised by the number of
retrieved search results. The label with the highest probability from either method was then selected as
the prediction. We refer to this approach as the Information Retrieval method.

3.4 Text Classification Approach

Our final approach was one based on text classification. We created a time zone variant of the Pigeo
System described in Rahimi et al. (2016), akin to the classification approach of Mahmud et al. (2012).
The Pigeo system first clusters content geographically, using the cluster labels for supervised machine
learning with a logistic regression classifier. Automatically labelled Twitter posts are then assigned the

222



centroid latitude and longitude for the cluster.16

At training time, we iterated through the list of unique time zones found in the training set. For each
subset of data sharing a time zone, we trained a classifier, using a modified version of the Pigeo. We first
preprocessed and tokenised the Twitter post text in the training set using the CMU Twokenizer tool17

(Gimpel et al., 2011).
The system then performs k-means clustering on the Twitter posts for a given time zone. We used

k = 200 for this work. This provides a cluster identifier that can be used as a label for each Twitter post.
This label is associated to the median latitude and longitude for the cluster.

We use the cluster labels to train a logistic regression classifier, using the default feature set (unigrams
with TFIDF weights) and parameters of the Pigeo system, with minor changes (i) to handle time zone
models, and (ii) to use our own geospatial resources.

After training, this resulted in approximately 300 classifiers. To apply the time zone text classifiers,
our approach identifies the timezone of the Twitter post to be classified and then uses the relevant classi-
fication model to predict latitude and longitude. We use our geospatial resources to then map the latitude
and longitude to a shared task label.

4 Producing Twitter Post and User Predictions

The approaches described in the preceding section are generally oriented toward producing a prediction
for the Twitter post. The exceptions are the label propagation methods, which predict user locations.

We applied heuristics to allow each component method to work for either scenario. For the label
progation methods, to predictions for a Twitter post, we simply applied the predicted location of the user.
For all other methods, to produce predictions for a user, we retrieved the Twitter posts authored by that
user in the test set and computed a shared task label for the post.18 Then, for all posts, the majority label
was found and chosen as the label prediction for the user. We calculated the mean latitude and longitude
from those posts sharing the majority label to compute the coordinates for the user.

5 Submitted Ensembles

We submitted three ensemble approaches for each of the two variants of the shared task (the first focusing
on Twitter posts, the second on Twitter users). These are listed in Table 1. We now describe each of these.

5.1 Ensembles for Twitter Post Geolocation

The Full Cascade19 system was a cascade of components. Components were ordered based on their
accuracy at predicting the city location in the validation set, with the best performing systems occurering
earlier. We note that earlier components also have the benefit of providing only high-quality predictions
or none at all. That is, they err on the side of precision.

The Heuristic Cascade20 system only includes methods based on the Metadata of the Twitter post, and
also the label propagation (which only propagates location metadata). These were again ordered based
on their accuracy on the validation set.

The Voting Variant21 system used a mixture of cascades and voting methods to combine the component
methods. We started with a cascade of the high precision heuristic and label propagation methods.
We then used a voting mechanism for the other methods. Finally, for any Twitter posts that were left
unlabelled, we used the Combined Metadata approach to provide a prediction. The voting mechanism
was such that there had to be more than one vote for a city prediction, and there could be no ties.

16The full Pigeo system also combines the text classification approach with a label propagation approach, however this
functionality was not available in the version that was downloaded.

17https://github.com/brendano/ark-tweet-nlp/blob/master/src/cmu/arktweetnlp/
Twokenize.java

18For the text classification approach, there was a slight variation which was to use a label generated from the latitude and
longitude coordinates, accurate to 1 decimal place.

19This is csiro.1.tweet in the shared task results.
20This is csiro.2.tweet in the shared task results.
21This is csiro.3.tweet in the shared task results.
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Ensemble: Full Cascade
Task: User, Post

1 Metadata LBS Links
2 1-hop Label Propagation
3 Metadata Location-to-Gazetteer
4 2-hop Label Propagation
5 Time zone Text Classifier
6 Information Retrieval
7 Metadata Combination

Ensemble: Heuristic Cascade
Task: User, Post

1 Metadata LBS Links
2 1-hop Label Propagation
3 Metadata Location-to-Gazetteer
4 2-hop Label Propagation
5 Metadata Combination

Ensemble: Voting Variant
Task: Post

1 Metadata LBS Links
2 1-hop Label Propagation
3 Metadata Location-to-Gazetteer
4 Voting:

• 2-hop Label Propagation
• Time zone Text Classifier
• Information retrieval
• Metadata Time Zone
• Metadata Application
• Metadata Text-to-Gazetter
• Metadata UTC
• Metadata URL IP-Loopup

5 Metadata Combination

Ensemble: Ablation Variant
Task: User

1 Metadata LBS Links
2 1-hop Label Propagation
3 Metadata Location-to-Gazetteer
4 2-hop Label Propagation
5 Information Retrieval
6 Metadata Combination

Table 1: Ensembles submitted.

5.2 Ensembles for Twitter User Geolocation

We submitted 3 systems to the Twitter user variant of the shared task. The Full Cascade and Voting
Variant systems were as described above, except that, for each component, the version that produced
user-level predictions was used.22 The Ablation Variant23 system uses all (user prediction) approaches
in the Full Cascade except the time zone text classification approach.

6 Results

In Table 2, we report the official evaluation results for the Twitter post variant of the shared task.24 The
two metrics reported are the classification accuracy (for a city-level label), and the median error distance.
For accuracy, the higher the score, the better. For the median error distance, the aim is to minimise this
score. We also list the maximum, mean and minimum scores.

Based on the accuracy, our Full Cascade submission was the best performing system submitted. In
fact, our three systems come in the top 3 ranks. In terms of median error distance, our Full Cascade
submission is the second best system. Our other two submissions come in 3rd and 4th place. All three
submissions do better than the mean.

In Table 2, we report the official evaluation results for the Twitter user variant of the shared task in
the same format as above. In terms of the accuracy metric, our Full Cascade submission was the best
performing system and our three systems again come in the top 3 ranks. The systems come in 3rd, 4th
and 6th place when examining median error distance. All three submissions do better than the mean.

22These were csiro.1.user and csiro.3.user respectively in the shared task results.
23This is csiro.2.user in the shared task results.
24http://noisy-text.github.io/2016/geo-shared-task.html

224



System Accuracy Median
Full Cascade 0.4362 74.6866

Heuristic Cascade 0.4217 183.7280
Voting Variant 0.4195 226.3125

Eval. Best 0.4362 69.4985
Eval. Mean 0.2755 1836.8786
Eval. Worst 0.0778 5848.3488

Table 2: Evaluation results for Twitter posts.

System Accuracy Median
Full Cascade 0.5265 21.6853

Ablation Cascade 0.5202 23.1475
Voting Variant 0.5006 30.5772

Eval. Best 0.5265 16.1326
Eval. Mean 0.3428 1132.7192
Eval. Worst 0.0787 5714.9461

Table 3: Evaluation results for Twitter users.

7 Discussion

Our variants were chosen to explore two questions: (i) what is the contribution of language technology
approaches; (ii) can voting approaches help when no clear cascade ordering is apparent. We describe
some early insights from the published evaluation results.

We find that language technologies, at least in their current implementations here, had a small effect on
accuracy. This is evidenced by the small drop in performance between the Full Cascade and the Heuristic
Cascade, where, in the latter, the two language technology approaches, the time zone text classifier and
the information retrieval approach, have been removed.

We note, however, that the time zone text classifier had the ability, where it was applicable, to minimise
the median error distance. Indeed, omitting this classifier worsens the median error distance, as can be
seen in Table 2, where the Heuristic Cascade (without language technology) has a higher mean error
distance than the Full Cascade (with language technology).

Our implementation of the voting mechanism could not out-perform our cascades with manual or-
derings of components. We note that our components do not always expose a ranked list of candidate
locations, and so only a hard voting is possible.

In future work, we will explore alternative ways to harness language technologies. This might include
an exploration of ambiguous cases where a Twitter post is about events that do not coincide with the
Twitter user’s location.

We would also like to examine approaches that utilise the probability of predictions in producing the
final location estimate. We note that our systems did well when measuring performance with accuracy,
which may be because we optimised our cascade for this metric. We may have obtained a different
ordering had we use the median error distance. In future work, we will explore this interaction further.

8 Conclusion

We described the submitted CSIRO Data61 systems in the Geolocation shared task at the Workshop for
Noisy User-generated Text. Based on the accuracy at the predicting the city of a Twitter post or user, our
systems were the best performing submissions. For estimating the latitude and longitude of a user, our
median error distance was accurate to within 30 kilometers. Our approach was to use ensemble methods
to capitalise on four component methods: heuristics based on metadata, a label propagation method, time
zone text classifiers, and an information retrieval approaches.
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Abstract

Knowing the location of a social media user and their posts is important for various purposes,
such as the recommendation of location-based items/services, and locality detection of cri-
sis/disasters. This paper describes our submission to the shared task “Geolocation Prediction
in Twitter” of the 2nd Workshop on Noisy User-generated Text. In this shared task, we propose
an algorithm to predict the location of Twitter users and tweets using a multinomial Naive Bayes
classifier trained on Location Indicative Words and various textual features (such as city/country
names, #hashtags and @mentions). We compared our approach against various baselines based
on Location Indicative Words, city/country names, #hashtags and @mentions as individual fea-
ture sets, and experimental results show that our approach outperforms these baselines in terms
of classification accuracy, mean and median error distance.

1 Introduction

Determining the location of a social media user and where a message is posted from is important for
location-based recommendation (Ye et al., 2010), crisis detection and management (Sakaki et al., 2010),
detecting location-centric communities (Lim et al., 2015), demographics analysis (Sloan et al., 2013)
and targeted advertising (Tuten, 2008). This work aims to assign a geographical location (most probable
location from a list of pre-defined locations, such as cities or countries) to a piece of text. For this textual
content, we focus on the Twitter social networking site, which boosts more than 500 million tweets
posted on a daily basis (Internet Live Statistics, 2016). In Twitter, tweets are short messages of 140
characters or less, and can also include #hashtags to indicate the topic of the tweet and @mentions to
refer to another user. Fig. 1 shows an example of a tweet that contains a text message with a mention of
@westernbulldogs, two hashtags of #7NewsMelb and #bemorebulldog, along with an embedded image.

Figure 1: Example of a tweet message containing a mention (@westernbulldogs), two hashtags (#7News-
Melb and #bemorebulldog) and an attached picture.
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Despite the popularity of Twitter and a large volume of tweets, only a small amount of tweets (les
than 1%) are geotagged with the location that they were posted from (Sloan et al., 2013), thus restricting
the usability of many tweets for location-based services and studies. Due to this motivating factor, the
geolocation prediction of tweets and Twitter users have garnered immense interest in recent years. In this
paper, we describe our submitted geolocation prediction algorithm for the shared task “Geolocation Pre-
diction in Twitter” in the 2nd Workshop on Noisy User-generated Text (Han et al., 2016). Our algorithm
utilizes a multinomial Naive Bayes classifier, using a textual feature set that includes a combination of
location indicative words, city/country names, #hashtags and @mentions, which are automatically learnt
from a large collection of Twitter data.

Here, we use two examples respectively from tweet level and user level to describe the basic applica-
tion of our method. From tweet level, for instance, “I plan to take a tram to the federation square this arvo
to watch the cricket...” is assigned to Melbourne, Victoria, Australia. The text doesn’t contain gazetted
terms such as “Melbourne”, but our geotagger is able to geolocate this text on basis of location indicative
words like “tram”, “federation square” and “arvo” and other textual features. From the user level, we can
see an example from Figure 2. In Figure 2, the input is the twitter ID of Barack Obama (the president of
United States), and the predicted location is Washington.

Figure 2: A simple demo from the Twitter user level prediction task.

1.1 Main Contributions

Our main contributions include:

1. We present a geolocation prediction algorithm for Twitter based on a multinomial Naive Bayes
classifier, using text-based features that are automatically learnt from tweets.

2. We study the effects of using various feature sets including location indicative words, city/country
names, #hashtags, @mentions and a combination of all of the above.

3. We experiment on a Twitter dataset comprising 9.05 million tweets generated by 778K users and
show that our approach out-performs a state-of-the-art text-based classifier that solely uses location
indicative words.
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1.2 Structure and Organization

The rest of the paper is structured as follows. Section 2 describes our proposed approach, including data
pre-processing, feature set selection, model training, and evaluation. Section 3 presents the experimental
results of our proposed approach and various baselines. Section 4 summarizes our paper and highlights
some future directions for geolocation prediction.

2 Proposed Approach

In this section, we describe our proposed approach to the geolocation prediction of Twitter users and
tweets. Our proposed approach comprises three main phases, namely: (i) data pre-processing to identify
the set of textual features; (ii) model training to train our prediction algorithm based on multinomial
Naive Bayes classifier; and (iii) evaluating our prediction algorithm on the development and testing sets.

2.1 Data Preprocessing and Feature Set Selection

Our pre-processing of tweets in the training set comprises the following: (i) converting all text in the
tweets to lowercase; (ii) removing all punctuation characters; (iii) tokenizing tweets into individual words
based on whitespaces. These processed tweets are then used as input to our multinomial Naive Bayes
classifier, where the usage frequency count of a set of feature words is derived from these processed
tweets. We now describe the various feature sets used in our experiments, which are:

1. Location Indicative Words (LIW). The set of words that are indicative of a specific city, as gener-
ated in (Han et al., 2014; Han et al., 2012). These LIWs are uni-grams that are used in only one or
a small subset of all cities in the world and are selected from the set of all unigrams based on their
information gain ratio.

2. City/Country Names (CC). The set of city names and country names as listed in the GeoNames
database (GeoNames, 2016) and U.S. Department of State list of countries (U.S. DoS, 2016). The
basic intuition is that a Twitter user is more likely to mention a city or country that this user is
residing in, compared to a city or country that is not.

3. #Hashtags (HASH). The set of #hashtags used in our training set of tweets, we select the top 10,000
#hashtags based on their usage frequency. Twitter #hashtags are typically used to indicate the topic
associated with the tweet and this choice of feature set allows us to capture any location-based topics
that are indicative of a specific city or country, e.g., #bemorebulldog is used to support the Western
Bulldogs, an Australian Football League team that is based in Victoria, Australia.

4. @Mentions (MENT). The set of @mentions used in our training set of tweets, we select the top
10,000 @mentions based on their usage frequency. Twitter @mentions are used as a reference
to another user and appears on the wall/notification page of that user. Similar to our use of the
HASH feature set, the MENT feature set allows us to infer the location of a user based on who
he/she is mentioning, e.g., @7NewsMelbourne is the twitter username of a Melbourne-based news
broadcaster.

5. Combination of all the above (ALL). A combination of the LIW, CC, HASH and MENT feature
sets as a single feature set.

Using these feature sets, we then proceed to train our multinomial Naive Bayes classifier, which we
describe in more details in the next section.

2.2 Training of multinomial Naive Bayes classifier

The multinomial Naive Bayes classifier has been frequently used for various text classification tasks such
as sentiment analysis (Melville et al., 2009), news categorization (Kibriya et al., 2004), among others.
Using the feature sets described in Section 2.1, we apply a multinomial Naive Bayes classifier to our five
different set of features using a bag-of-features approach, which we now describe in greater detail.
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Given that C is the set of all cities (i.e., our labels) and T is the set of all tweets in our training set, our
aim is to geotag each tweet t ∈ T with a city c ∈ C such that the probability P (c|t) is maximized. We
utilize a bag-of-features approach and represent each tweet t as a set of features fi ∈ t (out of N total
features), where each feature fi indicates the number of times (frequency count) that a feature word fi is
used in a tweet t. Thus, we have:

arg max
c∈C

P (c|t) = arg max
c∈C

P (c)
∏

1<i<N

P (fi|c) (1)

Given that tc is the set of all tweets that are posted in a specific city c and T is the set of all tweets, we
can calculate the prior probability based on:

P (c) =
|tc|
|T | (2)

To cater for feature words that may not appear in our training set, we apply Laplace smoothing by
adding 1 to the frequency count of each feature word. Let Freqf , c be the frequency count of a feature
word f in tweets from a specific city c, we have the conditional probability:

P (fi|c) =
Freqf , c + 1∑N

fx=1 Freqfx,c + N
(3)

Our geolocation prediction task is targetted at two levels, namely: (i) at tweet-level for individual
tweets; and (ii) at user-level for an individual user based on his/her collection of posted tweets. For the
tweet-level prediction task, Equation 1 is defined based on individual tweets and can be utilized for this
task. For the user-level prediction task, there are two possible approaches to apply Equation 1 for a single
user, namely:

1. Tweet Aggregation As One. In this approach, we aggregate all tweets posted by a user as a single
document and apply Equation 1 on this combined document. As our multinomial Naive Bayes
classifier accounts for the frequency of feature word usage, this approach is suitable for the users
who are likely to mention words associated with his/her home city multiple times in their tweets,
compared to cities that they do not reside in.

2. Most Frequent Tweet City. Alternatively, we can apply Equation 1 to the collection of tweets
posted by a user, then perform a frequency count of each city that is labelled to each tweet. There-
after, the home location of a user is assigned based on the city that has the highest frequency count.

We performed some preliminary experiments to evaluate both approaches and found that “Tweet Ag-
gregation As One” (Approach 1) out-performs “Most Frequent Tweet City” (Approach 2). As such, we
selected Approach 1 for the user-level geolocation task and use it in for the remaining of this paper.

2.3 Algorithms and Baselines
There are different variants of our geolocation prediction algorithms, with each algorithm differing based
on the different set of features (described in Section 2.1) that it was trained with. The five algorithms
used in our paper are:

1. MNB-LIW: A multinomial Naive Bayes classifier trained using the LIW feature set, i.e., the set of
location indicative words. This algorithm also serves as the baseline for the current state-of-the-art
on text-based geolocation prediction on Twitter (Han et al., 2012).

2. MNB-CC: A multinomial Naive Bayes classifier trained using the CC feature set, i.e., the list of
city and country names.

3. MNB-HASH: A multinomial Naive Bayes classifier trained using the HASH feature set, i.e., the
top 10,000 #hashtags used in our training set.
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4. MNB-MENT: A multinomial Naive Bayes classifier trained using the MENT feature set, i.e., the
top 10,000 @mentions used in our training set.

5. MNB-ALL: A multinomial Naive Bayes classifier trained using a combination of location indica-
tive words, city/country names, #hashtags and @mentions as a single feature set.

6. MNB-PART: Same as MNB-ALL, except that we select a subset of features from the combined
feature set, using a collection frequency-based feature selection strategy (Manning et al., 2008).

2.4 Evaluation Metrics

To evaluate these six algorithms, we use the following evaluation metrics:

• Accuracy. The proportion of tweets (and users) that is correctly classified to their home location
(city), out of all tweets (and users). This metric allows us to measure the correctness of our predic-
tion algorithm in terms of percentage of correct labelled cities.

• Mean Error Distance. The average error, in terms of distance, between the predicted cities and
the ground truth cities of the tweets (and users). Even for mislabelled cities, a mislabelled city
that is nearer to the ground truth city is deemed better, e.g., New York mislabelled as Chicago, is
considered better than New York mislabelled as London. This metric aims to measure this aspect.

• Median Error Distance. The median error, in terms of distance, between the predicted cities and
the ground truth cities of the tweets (and users). Similar to the Mean Error Distance, except that we
are measuring the error distance in terms of median values

3 Experiments and Results

In this section, we describe the dataset used in our experiment, highlight our experimental setup and
discuss the key results of our proposed algorithm and various baselines.

3.1 Dataset Description

As part of the shared task, a total of 12 million tweets were made available, which the participants
have to retrieve via the Twitter API. However, due to inactive Twitter accounts, deleted tweets and time
constraint, we were only able to crawl a total of 9.05 million tweets. Similarly, for the validation dataset,
we were only able to crawl 7,215 users and 7,789 tweets out of the 10,000 users and 10,000 tweets. As
the testing dataset was directly provided by the organizers, we were able to experiment on all 10,000
users and tweets. Table 1 shows the summary statistics of our training, validation, and testing dataset.

Table 1: Dataset description

Set Prediction Task No. of Users No. of Tweets

Training N.A. 778,383 9,053,573

Validation User-level 7,215 -

Validation Tweet-level - 7,789

Testing User-level 10,000 -

Testing Tweet-level - 10,000

3.2 Experimental Setup

Our experimental setup is aligned to the setup of the shared task and comprises three main phrases. In
the first phrase, we use the training dataset to extract our various feature sets and train our geolocation
predictors (MNB-LIW, MNB-CC, MNB-HASH, MNB-MENT, MNB-ALL, MNB-PART). In the second
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Table 2: Results for Tweet-level Geolocation Prediction. The bolded results indicate the best performing
statistics (highest value for accuracy and lowest value for mean/median error) for the validation and
testing set.

Algorithm Set Accuracy Mean Error Median Error

MNB-LIW Validation 0.1013 8751.9379 8153.5067

MNB-CC Validation 0.0608 12438.9015 10790.024

MNB-HASH Validation 0.0815 5293.6749 6216.3957

MNB-MENT Validation 0.0449 11576.5707 9552.6721

MNB-ALL Validation 0.1163 3314.5639 4993.7693

MNB-PART Validation 0.1221 3129.8084 4933.3203
MNB-LIW Testing 0.125 7778.6698 7453.0552

MNB-CC Testing 0.0862 11395.3637 9439.0232

MNB-HASH Testing 0.0991 5532.4149 6379.0754

MNB-MENT Testing 0.0461 9458.3402 9016.1264

MNB-ALL Testing 0.1376 3582.5483 5457.1922

MNB-PART Testing 0.1455 3424.6398 5338.8984

phase, we evaluate our trained predictors (models) on the validation dataset. For the final phrase, we re-
run our various predictors on the testing dataset. As the ground truth labels for the testing dataset was
made available only after the shared task, we selected the best performing predictor (MNB-PART) from
the second phrase and submitted it to the shared task for the third phrase.

3.3 Results

Table 2 shows the geolocation prediction results for the tweet-level, in terms of accuracy, mean and me-
dian error distances. The results show that our proposed MNB-PART algorithm outperforms all baselines
for the validation and testing datasets, in terms of all three evaluation metrics. In particular, MNB-PART
shows a relative improvement of more than 16% compared to MNB-LIW in terms of accuracy, and offers
predictions with less than half the mean error distances than that of MNB-LIW.

Similarly, Table 3 shows the user-level geolocation prediction results, in terms of the same three evalu-
ation metrics. In terms of accuracy, MNB-PART shows a relative improvement of 7.1% over MNB-LIW
for the testing dataset, while MNB-LIW out-performs MNB-PART by 4.5% for the validation dataset.
In terms of mean and median error distances, MNB-PART incurs less than half the mean error distances
and less than two-thirds of the median error distances for the testing dataset.

4 Conclusion and Future Work

In this paper, we proposed an approach for geolocation prediction on Twitter based on a multinomial
Naive Bayes classifier using a feature set derived from the textual features of tweets. Specifically, our
feature set is based on a combination of location indicative words, city/country names, #hashtags and
@mentions as a combined feature set. Instead of using the entire feature set, our approach uses a subset
of the features, which are selected based on a frequency-based feature selection strategy. We com-
pared our proposed approach MNB-PART against various baselines that uses location indicative words,
city/country names, #hashtags and @mentions separately as independent feature sets, i.e., MNB-LIW,
MNB-CC, MNB-HASH and MNB-MENT, respectively. The experimental results show that MNB-PART
outperforms all baselines in most cases, including against its counterpart MNB-ALL that utilizes all fea-
tures. These results show the effectiveness of using a combined feature set of location indicative words,
city/country names, #hashtags and @mentions, then employing a feature selection strategy to use a sub-
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Table 3: Results for User-level Geolocation Prediction. The bolded results indicate the best performing
statistics (highest value for accuracy and lowest value for mean/median error) for the validation and
testing set.

Algorithm Set Accuracy Mean Error Median Error

MNB-LIW Validation 0.2046 662.3987 2970.8039

MNB-CC Validation 0.1476 8605.2476 7994.2556

MNB-HASH Validation 0.1609 872.7039 2706.0175

MNB-MENT Validation 0.0973 3377.6792 5292.4654

MNB-ALL Validation 0.1767 928.2935 2599.0432

MNB-PART Validation 0.1953 629.8692 2290.3172
MNB-LIW Testing 0.21 1373.1077 4533.2978

MNB-CC Testing 0.1976 5207.3125 7037.8555

MNB-HASH Testing 0.1812 961.3378 3352.8145

MNB-MENT Testing 0.0944 4650.7975 5933.8057

MNB-ALL Testing 0.1996 962.144 3234.4641

MNB-PART Testing 0.225 630.2436 2860.1745

set of these features for training and testing on a multinomial Naive Bayes classifier.
Our work focuses on the use of textual features in tweets for geolocation prediction. Apart from

textual features, there are interesting future directions for utilizing non-textual features of a user for this
geolocation prediction task, such as:

1. Using friendship (bi-directional) and following (uni-directional) links to infer the location of a user
based on his/her friends and followings.

2. Using demographics information listed in a user’s profile, such as the user description, selected
timezone, user-entered location field.

3. Using the temporal information in posted tweets, use the time distribution of a user’s tweeting
activities to determine possible time zones and thus cities that a user is in.
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Abstract

This paper describes a model that we submitted to W-NUT 2016 Shared task #1: Geolocation
Prediction in Twitter. Our model classifies a tweet or a user to a city using a simple neural net-
works structure with fully-connected layers and average pooling processes. From the findings
of previous geolocation prediction approaches, we integrated various user metadata along with
message texts and trained the model with them. In the test run of the task, the model achieved
the accuracy of 40.91% and the median distance error of 69.50 km in message-level prediction
and the accuracy of 47.55% and the median distance error of 16.13 km in user-level prediction.
These results are moderate performances in terms of accuracy and best performances in terms of
distance. The results show a promising extension of neural networks based models for geoloca-
tion prediction where recent advances in neural networks can be added to enhance our current
simple model.

1 Introduction

The growth of social media has brought demands to develop techniques to automatically extract a variety
of information from it. A geolocation predictor is one such technique that has been widely studied to
strengthen business activities such as advertisement and marketing. This paper describes a model that
we developed to tackle this geolocation prediction task. The model is a neural networks based model
that uses various user metadata along with message texts. We participated W-NUT 2016 Shared task #1:
Geolocation Prediction in Twitter (Rahimi et al., 2016) with this model.

The architecture of our model is designed by following previous researches that have targeted geolo-
cation prediction in Twitter. Cheng et al. (2010) proposed a probabilistic model based on local (location
indicative) words to estimate city-level geolocation prediction of Twitter users. Han et al. (2014) im-
plemented a city-level geolocation prediction system for Twitter users, and constructed a Naive Bayes
learner using location indicative words and user metadata. We decided to use both message texts and
user metadata which have shown effectiveness in these past studies.

Another characteristic of our model is that we decided to use neural networks as a machine learn-
ing method to train a geolocation predictor. Neural networks are being extensively applied to tasks of
image processing, speech processing, or text processing and have shown the state of the performances
(Goodfellow et al., 2016). In a context of geolocation prediction, Liu and Inkpen (2015) have showed
that a model based on stacked denoising auto-encoders achieves a comparable performance to the state
of the arts models. Although neural networks with deep complex layers have recently received attention
as achieving high performance, we designed our model to be a simple scalable neural networks based
model considering the following two reasons:

1. A city-level geolocation prediction of Twitter is a large scale task that requires a scalable machine
learning method which can handle millions of tweet with thousands of classes (Han et al., 2014).

2. A model based on shallow simple neural networks has recently marked close performance to deep
models with high scalability on several tasks (Joulin et al., 2016).

In the following sections of this paper, we first describe the specification of datasets to train and to
test our model in Section 2. The detail of our neural networks based model is explained in Section 3,
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Name #tweet #user
Training (tweet/user) 9026924 781889

Validation (tweet) 7260 4725
Validation (user) 94872 7826
Training10 (user) 7809590 622133

Validation10 (user) 87084 6807

Table 1: The number of tweet and the number of user we collected for each dataset.

Name #tweet #user
Experimental Training (tweet) 8846145 766251

Pseudo Test (tweet) 7819 7819
Experimental Training10 (user) 7653295 609691

Pseudo Test10 (user) 78173 6221

Table 2: A summary of the experimental training datasets and the pseudo test datasets.

accompanying Section 4 that explains experiments and the test run which were performed to evaluate the
model. Finally, Section 5 summarizes and concludes the paper with some future directions.

2 Data

2.1 Tweets and Users

We collected the training dataset and the validation dataset using the official download script. Table 1
shows the statistics of tweets and users that we successfully downloaded with the script. For the user
geolocation prediction task, we only used users that have 10 or more tweets in the datasets. Training10
(user) and Validation10 (user) in Table 1 are the subsets of Training (tweet/user) and Validation (user) that
fulfill this condition. We used Training10 (user) and Validation10 (user) in the experiments of user-level
prediction systems which will be described in Section 4.

The training datasets are further split to experimental training datasets and pseudo test datasets since
the test datasets were not available at the development period of the task. For each training dataset,
98% and 1% of the users were randomly sampled as an experimental training dataset and a pseudo test
dataset respectively1. Furthermore, one tweet per user were selected to form Pseudo Test (tweet) so
that the number of tweets in the dataset becomes close to Validation (tweet). Table 2 summarizes these
experimental training datasets and pseudo test datasets.

2.2 Geo Coordinates of Tweet Cities

We realized that the tweet-level geo coordinates of the training data and the validation data are not the
geo coordinates of the corresponding tweet cities. To obtain the geo coordinates of the tweet cities, we
replaced the geo coordinates of the tweets with user city geo coordinates. For tweet cities that are not
apparent in the user cities, we referred to GeoNames2 to obtain geo coordinates of them.

3 Model

The training datasets consists of 8–9M tweets and the number of class is over 3K in the geolocation
prediction task. Because of the large dataset size and the number of class, we decided to construct
a simple and efficient model. Our model is a variant of Joulin et al. (2016), that is called fastText.
Although the fastText model is simple, the accuracy of fastText is on par with deep complex models on
several tasks. Moreover the fastText model trains much faster compared to typical deep complex models.
The original fast text model is targeted for text classification that deals with one sentence. The Twitter

1The remaining 1% of the users were kept for an alternative pseudo test dataset but were not used in the experiments of our
submission systems.

2http://www.geonames.org/
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Figure 1: Model architecture.

Parameter Message-level User-level
Text word embedding dimension 300 300

Location word embedding dimension 300 300
Description word embedding dimension 300 300

Time zone embedding dimension 50 100
n-gram 2 2

Batch size 1500 160

Table 3: The parameters of the best performing models.

data in this shared task includes not only message text but also user metadata. Therefore we extend fast
text model to deal with message text and user metadata.

Our model for message-level prediction is shown in Figure 1. We use the text field of tweet and three
metadata fields of user: location, description, and time zone. In the text, the location, and the description
fields, the word embeddings of words in a field are averaged to form a representation of the field. The
weights of word embeddings are not shared across the fields because the unique weights resulted to better
performance than the shared weights. Similar to fastText, we also use bag of n-gram features to capture
word orders. According to Guo and Berkhahn (2016), the embeddings of categorial variables can reduce
the network size and capture the intrinsic properties of the categorical variables. Therefore, we decided
to embed the value of the time zone field into a fixed size vector as a time zone representation. All
representations are then concatenated as a tweet representation. Finally the tweet representation is fed
into a linear classification layer. The objective function of our model is defined as cross-entropy loss.
We minimize the objective function through stochastic gradient descent over shuffled mini-batches with
Adam (Kingma and Ba, 2014).

We basically used the same model for user-level prediction except that the text fields of tweets in a
user instance are concatenated into one long text. The three metadata fields are also used in the user level
predictor.

4 Experiments

4.1 Model Configurations

Text Processors

We used Twokenizer (Owoputi et al., 2013) to segment words from texts. Prior to word segmentations, all
upper case characters in texts were converted to lower case correspondants and Unicode Normalization
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Validation Pseudo Test Test
Acc. (%) Acc. (%) Acc. (%) Median Dist. Err. Mean Dist. Err.

Message-level 39.1 39.6 40.91 69.50 1792.53
User-level 45.0 45.2 47.55 16.13 1122.26

Table 4: Evaluation results of the test run with the accuracies of the validation datasets and the pseudo
test datasets.

in form NFKC3 is applied to texts. We also normalized Twitter user names to “USER” and URLs to
“URL” using regular expressions.

Pre-training of Word Embeddings
In our model, words are input to the model as n-dimensional word embeddings. We pre-trained word
embeddings using the text, the location, and the description fields of the full training data (Training
(tweet/user) in Section 2) and the method of Bojanowski et al. (2016)4 with skip gram algorithm to
speed up a training process of the user-level prediction task. For the parameters of skip gram, we used
learning rate=0.025, window size=5, negative sample size=5, and epoch=5.

Model Parameters
We prepared three user-level systems and two message-level systems for the submission. These systems
are all variants of the model explained in Section 3 with different parameters. Table 3 lists the parameters
that are used in the user-level prediction system 2 and the message-level prediction system 2 which were
our best systems in the test run. These parameters were decided prior to the submission with grid search
using the validation datasets and the pseudo test datasets.

4.2 Evaluations
The message-level prediction system 2 and the user-level prediction system 2 were evaluated on the test
run with classification accuracy, median distance error, and mean distance error. Table 4 shows the result
of the test run along with the accuracies of the validation datasets and the pseudo test datasets. The
performances of our model was moderate in terms of accuracies compared to the best systems (tweet-
level-best=43.62% and user-level-best=52.65%) and best in terms of median distance errors.

5 Conclusion

We developed a simple neural networks based model for geolocation prediction in Twitter. In the test run,
the model performed the accuracy of 40.91% and the median distance error of 69.50 km in message-level
prediction and the accuracy of 47.55% and the median distance error of 16.13 km in user-level predic-
tion. These results indicate that a neural networks based model has high scalability and is a competitive
approach in geolocation prediction.

As future work, we plan to expand our model to have a deeper complex structure which has shown
effectiveness in other tasks. We found out that the current model is quite simple only taking several hours
of training time with a use of a single modern GPU. Some expansions using current advances in neural
networks can possibly boost the performances of the model without losing the scalability of the model.
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