
Proceedings of the SIGDIAL 2016 Conference, pages 220–223,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

LVCSR System on a Hybrid GPU-CPU Embedded Platform for
Real-Time Dialog Applications

Alexei V. Ivanov
Educational Testing Service

90 New Montgomery St.
San Francisco, CA, USA

alexei v ivanov@ieee.org

Patrick L. Lange
Educational Testing Service

90 New Montgomery St.
San Francisco, CA, USA
plange@ets.org

David Suendermann-Oeft
Educational Testing Service

90 New Montgomery St.
San Francisco, CA, USA

suendermann-oeft@ets.org

Abstract
We present the implementation of a large-
vocabulary continuous speech recogni-
tion (LVCSR) system on NVIDIA’s Tegra
K1 hyprid GPU-CPU embedded platform.
The system is trained on a standard 1000-
hour corpus, LibriSpeech, features a tri-
gram WFST-based language model, and
achieves state-of-the-art recognition accu-
racy. The fact that the system is real-
time-able and consumes less than 7.5 watts
peak makes the system perfectly suitable
for fast, but precise, offline spoken dialog
applications, such as in robotics, portable
gaming devices, or in-car systems.

1 Introduction
Many of nowadays’ spoken dialog systems are dis-
tributed systems whose major components, such
as speech recognition, spoken language under-
standing, and dialog managers, are located in the
cloud (Suendermann, 2011). For example, in-
teractive voice response (IVR) systems are often
connected to conventional telephony networks and
handle a substantial portion of customer service
interactions for numerous organizations and enter-
prises. One of the advantages of cloud-based sys-
tems is the strong computational power such sys-
tems can have which is believed to be critical for
some of the components to produce an adequate
performance (see for example recent advances in
commercial speech recognition systems (Hannun
et al., 2014)).

Despite their advantages, cloud-based spoken
dialog systems have several limitations. E.g. they
not only real-time-able speech recognizers, which
poses a number of additional constraints to the im-
plementation of the system (Ivanov et al., 2016),
but, first and foremost, they require a high-speed,
high-reliability, and high-fidelity connection to the

client device. If this precondition is not met, spo-
ken dialog systems cease to be what they promise
to be: dialog systems. Slow, clunky, and intermit-
tent connections may be acceptable with pseudo-
dialog applications such as the ones typical in
virtual assistants (Suendermann-Oeft, 2013), but
they are not suited for realistic conversational ap-
plications such as in customer care (Acomb et
al., 2007), virtual tutoring (Litman and Silliman,
2004), or command and control. Even more im-
portantly, there are numerous applications for spo-
ken dialog systems which require operation in of-
fline mode altogether, for example in moving ve-
hicles (Pellom et al., 2001), with robots in ad-
verse conditions (Toptsis et al., 2004), in certain
medical devices (Williams et al., 2011), or with
portable video game consoles and toys (Sporka et
al., 2006).

Maintaining a cloud application server farm, ca-
pable of supporting the mass service comes at a
recurring operational cost, which limits the range
of possible revenue models with which the spo-
ken dialog system can be offered. A way to solve
this problem is to transfer the necessary hardware
to the client device and let the customer naturally
cover the processing power costs. Thus, reduction
of the complexity of the involved technology and
reducing its power consumption become critical
figures of merit according to which the portable
systems such as robots, portable game consoles,
and toys are going to compete.

Further advantages of using a low-footprint
highly accurate real-time able speech recognizer
over cloud-based recognition include

• no need for complex load balancing, instance
management, or distributed, redundant server
architectures;

• lower energy footprint due to the elimina-
tion of server and communication hardware

220



needed to run cloud-based speech recognition
jobs;

• no privacy concern since the data remains on
the local hardware (which can be important
for applications in medical, intelligence, de-
fense, legal, or financial domains, among oth-
ers);

• straight-forward user adaptation directly on
the client hardware without the need to main-
tain potentially millions of customer profiles
in the cloud;

• reduced network activity resulting in lower
operation costs and improved bandwidth for
other concurrent tasks requiring network
communication, especially for wireless ap-
plications;

• enhanced options for voice activity detection
since the speech recognizer can be constantly
running, while constant streaming of audio
from a client to the cloud is not feasible.

In Section 2 we present a large vocabulary
speech recognition system architecture designed
for NVIDIA’s Tegra K1 hybrid GPU-CPU embed-
ded System-on-a-Chip (SoC). We show that its
recognition accuracy performs on par with state-
of-the-art systems while maintaining low power
consumption and real-time ability in Section 3.

2 System Description
Research has shown that an interaction with a di-
alog application becomes overly tiresome for the
human interlocutor when the system’s response
does not occur promptly (Fried and Edmondson,
2006; Wennerstrom and Siege, 2003; Shigemitsu,
2005). Speech recognition is only the first of many
steps in producing the system’s response. There-
fore, it is crucial that the recognition output can
be produced at the rate of speech or as close to
that as possible. While compromising recogni-
tion accuracy for a better real-time factor (xRT)
is trivial, maintaining the state-of-the-art perfor-
mance within the real-time constraints is challeng-
ing (Ivanov et al., 2016).

Building on top of our results described
in (Ivanov et al., 2015) we implemented a highly
parallel real-time speech recognition inference en-
gine with rapid speaker adaptation that is model-
level compatible with the Kaldi toolkit (Povey et

Figure 1: State diagram

al., 2011). It maintains the state-of-the-art accu-
racy while doing real-time online recognition with
the NVIDIA’s Tegra K1 hybrid GPU-CPU embed-
ded platform. The recent studies (Morbini et al.,
2013; Gaida et al., 2014) confirm state-of-the-art
level of the Kaldi model-generation pipelines.

Figures 1, 2 and 3 show the ASR architecture
we designed. The interaction with the ASR sys-
tem follows the Client-Server architecture. Figure
1 depicts the states the server transitions through
from the client’s perspective. After start-up of the
ASR system, it stays in an idle state until a client
opens a session with the server. This session is
implemented as a web-socket connection. If the
ASR system is used as a component within a di-
alog application, this session stays open until the
full conversation with the human user is finished.
When the server receives a new session, it transi-
tions into the processing state, in which it immedi-
ately processes the incoming audio on a per-chunk
basis. Finalizing recognition of a single utterance
within the dialog is triggered by an “end of the ut-
terance” signal. The upstream dialog system com-
ponent receives the recognition result either on a
per utterance basis or as a partial feedback up un-
til the current position in the utterance. Ability to
interactively produce the intermediate recognition
results is an essential feature of the dialog-oriented
speech recognizer as it allows us to start interpre-
tation of the user input even before its comple-
tion. The recognition session is stopped when the
client closes the web-socket connection. Then, the
server transitions back into the idle state.

In the processing state, the data flows through
the ASR system as shown in Figure 2. We grouped
the individual steps in the employed ASR pipeline,
namely: audio data acquisition, feature extraction,
i-Vector computation, acoustic probability com-
putation, decoding, backtracking and propagating
the result back to the client, represented as blocks
within the figure into the modules that run in a sin-
gle thread. The modules are connected to each
other via the ring buffers represented as wide ar-

221



Figure 2: Data flow diagram

Figure 3: Component diagram

rows. Each module operates as shown in Figure
3. Every x seconds, the module checks if the input
ring buffer contains a new data chunk, processes
the chunk, stores it in the output ring buffer and
repeats.

In Figure 2, the backtracking component is
grouped together with the decoding component
and executed in each processing cycle. This setup
allows the ASR system to generate a partial result
for each input chunk. A possible alternative to this
strategy is to trigger the backtracking by the ’end
of utterance’ signal and only compute the resulting
lattice once. This would additionally save compu-
tation time and is useful when there is no need for
partial results during the recognition process.

The components running in modules placed on
the GPU part of the chip have been especially im-
plemented to utilize the parallel computing advan-
tages of GPUs. Processing speedup with GPUs is
achieved via committing larger areas of the die for
solving the single task. Compared to CPUs graph-
ical processing units (GPUs) allow for an easier

processing resource management. The GPU chip
lacks extensive control logic making it potentially
more efficient. The downside is increase of the
programming effort.

3 Experiments
In order to verify our design we have used a
set of the models, generated by the standard
Kaldi model-generating recipe for the LibriSpeech
acoustic corpus (Panayotov et al., 2015). Specif-
ically, we have used the Deep Neural Network –
Weighted Finite State Transducer (DNN-WFST)
hybrid with i-vector acoustic adaptation. The
acoustic model is implemented as the 8-layer p-
norm DNN with approximately 14.22 million free
parameters stored as single precision floating point
numbers. For language modeling we have taken
a version of the standard LibriSpeech tri-gram
model pruned with the threshold of 3e−7. There
are approximately 200 thousands uni-grams, 1
million bi-grams and 34 thousands tri-grams. The
resulting WFST has the complexity of about 10
millions nodes and 25 millions arcs. The i-vector
is evaluated from a separately trained Univer-
sal Background Gaussian-Mixture Model (UBM-
GMM) with 512 Gaussians. The final i-vector has
100 components. The standard Kaldi MFCC fea-
tures are used.

The evaluation has been performed with the
standard LibriSpeech test sets, namely: “DC” -
2703 clean development recordings (≈ 5h. 24
min.); “DN” - 2864 noisy development recordings
(≈ 5h. 8 min.); “TC” - 2620 clean test recordings
(≈ 5h. 25 min.); “TN” - 2939 noisy test record-
ings (≈ 5h. 21 min.). The evaluation is performed
as the single-pass recognition with online acous-
tic adaptation within the speaker-specific utterance
sets in order to simulate operation of the speech
recognizer in short single-user dialogues.

We compare performance of our Tegra-based
speech engine with the reference implementation
of the Kaldi online2-wav-nnet2-latgen-faster de-
coder that is running on a system powered by the
Intel Core i7-4930K CPU at 3.40GHz clock fre-
quency. All operating parameters (the pruning
beam widths, model mixing coefficients, etc.) are
kept the same between the reference and the pre-
sented system. Table 1 summarizes accuracy and
real-time factors of the compared systems. There
was a minor random WER difference between the
GPU and CPU implementations, similar to what
was reported in the earlier publications (Ivanov et

222



Tasks WER, % CPU 1/xRT TK1 1/xRT
DC ≈ 7.2 1.11 1.20
DN ≈ 19.6 0.97 1.02
TC ≈ 7.8 1.11 1.15
TN ≈ 19.4 0.95 1.01

Table 1: Accuracy and speed of compared recog-
nizers. WER – word error rate; “CPU 1/xRT” – the
inverse of the real-time factor (i.e. the processing-
production speed ratio) for the reference system;
‘TK1 1/xRT” – inverse real-time factor for the pre-
sented system. Power consumption is 150W for
the “CPU” and 7.5W for the “TK1” systems. The
Tegra system hardware cost is approximately 10
times smaller.

al., 2015). The WER figures reported in the table
reflect the average expected performance level.

4 Conclusions
We have demonstrated the possibility to achieve
the state-of-the-art accuracy with a dialog-oriented
real-time able speech recognition inference engine
running on a low-power consumer-grade SoC. The
presented system implements a single-pass rec-
ognizer with online speaker-adaptation which is
essential in dialogs. The system is immediately
usable to support rich dialog experience with the
guaranteed low latency locally-run dialog systems
that take advantage of the complex large vocabu-
lary continuous speech recognition models.

References
K. Acomb, J. Bloom, K. Dayanidhi, P. Hunter,

P. Krogh, E. Levin, and R. Pieraccini. 2007. Techni-
cal Support Dialog Systems: Issues, Problems, and
Solutions. In Proc. of the HLT-NAACL, Rochester,
USA.

J. Fried and R. Edmondson. 2006. How Customer
Perceived Latency Measures Success In Voice Self-
Service. Business Communications Review, 36(3).

C. Gaida, P. L. Lange, R. Petrick, P. Proba,
A. Malatawy, and D. Suendermann-Oeft. 2014.
Comparing Open-Source Speech Recognition
Toolkits. Technical report, DHBW Stuttgart,
Stuttgart, Germany.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Di-
amos, E. Elsen, R. Prenger, S. Satheesh, S. Sen-
gupta, A. Coates, and A. Ng. 2014. Deep speech:
Scaling up end-to-end speech recognition. In in
Proc: of the ICSLP, ArXiv, 1412(5567).

A. V. Ivanov, P. L. Lange, and D. Suendermann-Oeft.
2015. Fast and power efficient hardware-accelerated

cloud-based asr for remote dialog applications. In in
Proc. of ASRU’2015, Scottsdale, AZ, USA.

A. V. Ivanov, P. L. Lange, D. Suendermann-Oeft, V. Ra-
manarayanan, Y. Qian, Z. Yu, and J. Tao. 2016.
Speed vs. accuracy: Designing an optimal asr sys-
tem for spontaneous non-native speech in a real-time
application. In Proc. of the IWSDS, Saariselk, Fin-
land.

D. Litman and S. Silliman. 2004. ITSPOKE: An In-
telligent Tutoring Spoken Dialogue System. In in
Proc: of the HLT-NAACL, Boston, USA.

F. Morbini, K. Audhkhasi, K. Sagae, R. Artstein,
D. Can, P. Georgiou, S. Narayanan, A. Leuski, and
D. Traum. 2013. Which ASR should I choose for
my dialogue system. In Proc. of the SIGDIAL, Metz,
France.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur.
2015. LibriSpeech: an ASR corpus based on pub-
lic domain audio books. In in Proc. of the IEEE
ICASSP, Brisbane, Australia.

B. Pellom, W. Ward, J. Hansen, R. Cole, K. Hacioglu,
J. Zhang, X. Yu, and S. Pradhan. 2001. University
of Colorado Dialog Systems for Travel and Naviga-
tion. In in Proc: of the HLT, San Diego, USA.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely. 2011. The Kaldi Speech Recognition
Toolkit. In Proc. of the ASRU, Hawaii, USA.

Y. Shigemitsu. 2005. Different Interpretations of
Pauses in Natural Conversation - Japanese, Chinese
and Americans. Academic Report, 27(2).

A. Sporka, S. Kurniawan, M. Mahmud, and P. Slavik.
2006. Non-speech input and speech recognition for
real-time control of computer games. In in Proc: of
the Assets, Portland, USA.

D. Suendermann-Oeft. 2013. Modern conversa-
tional agents. In J. Jähnert and C. Förster, editors,
Technologien fuer digitale Innovationen: Interdiszi-
plinaere Beitraege zur Informationsverarbeitung.
Springer VS, Wiesbaden, Germany.

D. Suendermann. 2011. Advances in Commercial De-
ployment of Spoken Dialog Systems. Springer, New
York, USA.

I. Toptsis, S. Li, B. Wrede, and G. Fink. 2004. A
multimodal dialog system for a mobile robot. In in
Proc: of the ICSLP, Jeju, South Korea.

A. Wennerstrom and A. F. Siege. 2003. Keeping the
Floor in Multiparty Conversations: Intonation, Syn-
tax, and Pause. Discourse Processes, 36(2).

J. Williams, S. Witt-Ehsani, A. Liska, and D. Suender-
mann. 2011. Speech Recognition in a Multi-Modal
Health Care Application: Two Sides of the Coin.
In Proc. of the AVIxD/IxDA Workshop, New York,
USA.

223


