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Abstract

This paper introduces a subtask of entity
linking, called character identification, that
maps mentions in multiparty conversation
to their referent characters. Transcripts
of TV shows are collected as the sources
of our corpus and automatically annotated
with mentions by linguistically-motivated
rules. These mentions are manually linked
to their referents through crowdsourcing.
Our corpus comprises 543 scenes from two
TV shows, and shows the inter-annotator
agreement of k = 79.96. For statistical mod-
eling, this task is reformulated as corefer-
ence resolution, and experimented with a
state-of-the-art system on our corpus. Our
best model gives a purity score of 69.21 on
average, which is promising given the chal-
lenging nature of this task and our corpus.

1 Introduction

Machine comprehension has recently become one
of the main targeted challenges in natural language
processing (Richardson et al., 2013; Hermann et al.,
2015; Hixon et al., 2015). The latest approaches
to machine comprehension show lots of promises;
however, most of these approaches face difficulties
in understanding information scattered across dif-
ferent parts of documents. Reading comprehension
in dialogues is particularly hard because speakers
take turns to form a conversation such that it often
requires connecting mentions from multiple utter-
ances together to derive meaningful inferences.
Coreference resolution is a common choice for
making connections between these mentions. How-
ever, most of the state-of-the-art coreference reso-
lution systems are not accustomed to handle dia-
logues well, especially when multiple participants
are involved (Clark and Manning, 2015; Peng et al.,
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2015; Wiseman et al., 2015). Furthermore, linking
mentions to one another may not be good enough
for certain tasks such as question answering, which
requires to know what specific entities that men-
tions refer to. This implies that the task needs to be
approached from the side of entity linking, which
maps each mention to one or more pre-determined
entities.

In this paper, we introduce an entity linking task,
called character identification, that maps each men-
tion in multiparty conversation to its referent char-
acter(s). Mentions can be any nominals referring
to humans. At the moment, there is no dialogue
corpus available to train statistical models for entity
linking using such mentions. Thus, a new corpus is
created by collecting transcripts of TV shows and
annotating mentions with their referent characters.
Our corpus is experimented with a coreference res-
olution system to show the feasibility of this task by
utilizing an existing technology. The contributions
of this work include:!

o Introducing a subtask of entity linking, called
character identification (Section 2).

e Creating a new corpus for character identifica-
tion with thorough analysis (Section 3).

e Reformulating character identification into a
coreference resolution task (Section 4).

o Evaluating our approach to character identifi-
cation on our corpus (Section 5).

To the best of our knowledge, it is the first time that
character identification is experimented on such a
large corpus. It is worth pointing out that charac-
ter identification is just the first step to a bigger
task called character mining. Character mining is
a task that focuses on extracting information and

"All our work is publicly available at:
github.com/emorynlp/character-mining
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constructing knowledge bases associated with par-
ticular characters in contexts. The target entities
are primarily participants, either spoken or men-
tioned, in dialogues. The task can be subdivided
into three sequential tasks, character identification,
attribute extraction, and knowledge base construc-
tion. Character mining is expected to facilitate and
provide entity-specific knowledge for systems like
question answering and dialogue generation. We
believe that these tasks altogether are beneficial for
machine comprehension on multiparty conversa-
tion.

2 Task Description

Character identification is a task of mapping each
mention in context to one or more characters in a
knowledge base. It is a subtask of entity linking;
the main difference is that mentions in character
identification can be any nominals indicating char-
acters (e.g., you, mom, Ross in Figure 1), whereas
they are mostly related to the Wikipedia entries in
entity linking (Ji et al., 2015). Furthermore, charac-
ter identification allows plural or collective nouns
to be mentions such that a mention can be linked
to more than one character, and they can either
be pre-determined, inferred, or dynamically intro-
duced ; however, a mention is usually linked to one
pre-determined entity for entity linking.

The context can be drawn from any kind of docu-
ment where characters are present (e.g., dialogues,
narratives, novels). This paper focuses on context
extracted from multiparty conversation, especially
from transcripts of TV shows. Entities, mainly the
characters in the shows or the speakers in conver-
sations, are predetermined due to the nature of the
dialogue data.

Instead of grabbing transcripts from the existing
corpora (Janin et al., 2003; Lowe et al., 2015), TV
shows are selected because they represent every-
day conversation well, nonetheless they can very
well be domain-specific depending on the plots and
settings. Their contents and exchanges between
characters are written for ease of comprehension.
Prior knowledge regarding characters is usually
not required and can be learned as show proceeds.
Moreover, TV shows cover a variety of topics and
are carried on over a long period of time by specific
groups of people.

The knowledge base can be either pre-populated
or populated from the context. For the example in
Figure 1, all the speakers can be introduced to the
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knowledge base without reading the conversation.
However, certain characters, mentioned during the
conversation but not the speakers, should be dy-
namically added to the knowledge base (e.g., Ross’
mom and dad). This is also true for many real-life
scenarios where the participants are known prior
to a conversation, but characters outside of these
participants are mentioned during the conversation.

Character identification is distinguished from
coreference resolution because mentions are linked
to global entities in character identification whereas
they are linked to one another without considering
global entities in coreference resolution. Further-
more, this task is harder than typical entity linking
because contexts switch of topics more rapidly in
dialogues. In this work, mentions that are either
plural or collective nouns are discarded, and the
knowledge base does not get populated from the
context dynamically. Adding these two aspects will
greatly increase the complexity of this task, which
we will explore in the future.

3 Corpus

The framework introduced here aims to create a
large scale dataset for character identification. This
is the first work to establish a robust framework for
annotating referent information of characters with
a focus on TV show transcripts.

3.1 Data Collection

Transcripts of two TV shows, Friends” and The Big
Bang Theory? are selected for the data collection.
Both shows serve as ideal candidates due to the ca-
sual and day-to-day dialogs among their characters.
Seasons 1 and 2 of Friends (F1 and F2), and Season
1 of The Big Bang Theory (B1) are collected. A
total of 3 seasons, 63 episodes, and 543 scenes are
collected (Table 1).

| Epi | Sce | Spk | UC | SC | WC
FI [ 24229 116 || 5344 ] 9,168 | 76,038
F2 || 22219 113 | 9,626 | 12368 | 82,737
Bl | 17] 95| 31| 2425 3302 | 37,154

Total || 63 | 543 [ 225 || 17,395 | 24,838 | 195,929

Table 1: Composition of our corpus. Epi/Sce/Spk:
# of episodes/scenes/speakers. UC/SC/WC: # of
utterances/statements/words. Redundant speakers
between F1 & F2 are counted only once.

2f]:iendstranscripts .tk
3¢ ranscripts.foreverdreaming.org



Character Identification

Monica

Figure 1: An example of character identification. All three speakers are introduced as characters before the
conversation (Ross, Monica, and Joey), and two more characters are introduced during the conversation
(Jack and Judy). The goal of this task is to identify each mention as one or more of these characters.

Each season is divided into episodes, and each
episode is divided into scenes based on the bound-
ary information provided by the transcripts. Each
scene is divided into utterances where each utter-
ance belongs to a speaker (e.g., the scene in Fig-
ure 1 includes four utterances). Each utterance con-
sists of one or more sentences that may or may not
contain action notes enclosed by parentheses (e.g.,
Ross stares at her in surprise). A sentence with its
action note(s) removed is defined as a statement.

3.2 Mention Detection

Given the dataset in Section 3.1, mentions indicat-
ing humans are pseudo-annotated by our rule-based
mention detector, which utilizes dependency rela-
tions, named entities, and a personal noun dictio-
nary provided by the open-source toolkit, NLP4J.*
Our rules are as follows: a word sequence is con-
sidered a mention if (it is a person named entity,
@it is a pronoun or possessive pronoun exclud-
ing ir*, or )it is in the personal noun dictionary.
The dictionary contains 603 common and singular

*https://github.com/emorynlp/nlp4

92

personal nouns chosen from Freebase’ and DBpe-
dia.® Plural (e.g., we, them, boys) and collective
(e.g., family, people) nouns are discarded but will
be included in the next version of the corpus.

| NE | PRP | PNN(%) | AN
FI || 1,245 | 7,536 | 1,464 24.18) || 10,245
F2 || 1,209 | 7,568 | 1,766 (27.28) || 10,543
Bl 648 | 3,586 | 785(20.05) || 5,019

Total || 3,102 | 18,690 | 4,015 (24.41) || 25,807

Table 2: Composition of the detected mentions.
NE: named entities, PRP: pronouns, PNN(%): sin-
gular personal nouns and its ratio to all nouns.

For quality assurance, 5% of the corpus is sampled
and evaluated. A total of 1,584 mentions from
the first episode of each season in each show are
extracted. If a mention is not identified by the
detector, it is considered a “miss”. If a detected
mention does not refer human character(s), it is
considered an “error”. Our evaluation shows an F1
score of 95.93, which is satisfactory (Table 3).

Shttp://www.freebase.com
®http://wiki.dbpedia.org



H Miss ‘ Error ‘ Total H P ‘ R ‘ F
F1 17 19 615 96.82 [ 94.15 | 94.47
F2 15 3| 448 1 99.31 | 95.98 | 97.62
Bl 19 14 | 475 | 96.93 | 93.05 | 94.95
Total || 51 361,538 [ 97.58 | 94.34 | 95.93

Table 3: Evaluation of our mention detection. P:
precision, R: recall, F: F1 score (in %).

A further investigation on the causes is conducted
on the misses and errors of our mention detection.
Table 4 shows the proportion of each cause. The
majority of them are caused by either negligence of
personal common nouns or inclusion of interjection
use of pronouns, which are mostly coming from
the limitation of our lexicon.

1.
2.

Interjection use of pronouns (e.g., Oh mine).

Personal common nouns not included in the
personal noun dictionary.

3. Non-nominals tagged as nouns.

Proper nouns not tagged by either the part-of-
speech tagger or name entity recognizer.

5. Misspelled pronouns (e.g., I'm — Im).

Analogous phrases referring to characters
(e.g, Mr. I-know-everything).

Causes of Error and Miss H %

Interjection use of pronouns || 27%
Common noun misses 27%
Proper noun misses 18%
Non-nominals 14%
Misspelled pronouns 10%
Analogous phrases 4%

Table 4: Proportions of the misses and errors of our
mention detection.

3.3 Annotation Scheme

All mentions from Section 3.2 are first double an-
notated with their referent characters, then adjudi-
cated if there are disagreements between annotators.
Both annotation and adjudication tasks were con-
ducted on Amazon Mechanical Turk. Annotation
and adjudication of 25,807 mentions took about 8
hours and costed about $450.

Annotation Task

Each mention is annotated with either a main char-
acter, an extra character, or one of the followings:
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collective, unknown, or error. Collective indicates
the plural use of you/your, which cannot be deter-
ministically distinguished from the singular use of
those by our mention detector. Unknown indicates
an unknown character that is not listed as an option
or a filler (e.g., you know). Error indicates an in-
correctly identified mention that does not refer to
any human character.

Our annotation scheme is designed to provide
necessary contextual information and easiness for
accurate annotation. The target scene for annota-
tion includes highlighted mentions and selection
boxes with options of main characters, extra char-
acters, collective, unknown, and error. The pre-
vious and next two scenes from the target scene
are also displayed to provide additional contextual
information to annotators (Table 5). We found
that including these four extra scenes substantially
reduced annotation ambiguity. The annotation is
done by two annotators, and only scenes with 8-50
mentions detected are used for the annotation; this
allows annotators to focus while filtering out the
scenes that have insufficient amounts of mentions
for annotation.

Adjudication Task

Any scene containing at least one annotation dis-
agreement is put into adjudication. The same tem-
plate as that for the annotation task is used for the
adjudication, except that options for the mentions
are modified to display options selected by the pre-
vious two annotators. Nonetheless, adjudicators
still have the flexibility of choosing any option
from the complete list as shown in the annotation
task. This task is done by three adjudicators. The
resultant annotation is determined by the majority
vote of the two annotators from the annotation task
and the three adjudicators from this task.

3.4 Inter-Annotator Agreement

Serval preliminary tasks were conducted on Ama-
zon Mechanical Turk to improve the quality of our
annotation using a subset of the Friends season 1
dataset. Though the result on annotating the subset
gave reasonable agreement scores (F1,, in Table 6),
the percentage of mentions annotated as unknown
was noticeably high. Such ambiguity was primar-
ily attributed to the lack of contextual information
since these tasks were conducted with a template
that did not provide additional scene information
other than the target scene itself. The unknown rate
decreased considerably in the later tasks (F1, F2,



Friends: Season 1, Episode 1, Scene 1

I; told momg and dadg last night, they seemed to take it pretty well.

Ross:

Monica: Oh really, so that hysterical phone call I got from a womany at sobbing 3:00 A.M.,
“I5s’1l never have grandchildren, Ig’1l never have grandchildren.” was what?

Ross: Sorry.

Joey: Alright Rossz, look. Youg’re feeling a lot of pain right now. Yougre angry.

Youjp’re hurting. Can Iy, tell you;s what the answer is?
Friends: Season 1, Episode 1, Scene 2

Friends: Season 1, Episode 1, Scene 3

. ‘Iy’ refers to?
‘momy’ refers to?

. ‘dads’ refers to?
- Main charactery_,,
- Extra charactery_,,
- Collective

- Unknown

- Error

Table 5: An example of our annotation task conducted. Main character;_,, displays the names of all main
characters of the show. Extra character; ,, displays the names of high frequent, but not main, characters.

and B1) after the previous and the next two scenes
were added for context. As a result, our annotation
gave the absolute matching score of 82.83% and the
Cohen’s Kappa score of 79.96% for inter-annotator
agreement, and the unknown rate of 11.87% across
our corpus, which was a consistent trend across
different TV shows included in our corpus.

H Match ‘ Kappa H Col ‘ Unk ‘ Err

F1, 83.00 | 79.94 13.2 | 33.96 | 3.95
F1 84.55 | 80.75 11.2 | 21.42 | 3.71
F2 82.22 | 80.42 | 13.13 | 11.69 | 0.63
B1 81.54 | 7873 | 11.35 | 7.80 | 4.99

Avg. || 82.83 | 79.96 | 12.42 | 11.87 | 2.75

Table 6: Annotation analysis. Match and Kappa
show the absolute matching and Cohen’s Kappa
scores between two annotators (in %). Col/Unk/Err
shows the percentage of mentions annotated as col-
lective, unknown, and error, respectively.

One common disagreement in annotation is caused
by the ambiguity of speakers that you/your/yourself
might refer to. Such confusion often occurs during
a multiparty conversation when one party attempts
to give a general example using personal mentions
that refer to no one in specific. For the following
example, annotators label the you’s as Rachel al-
though they should be labeled as unknown since
you indicates a general human being.

Monica: (to Rachel) You; do this, and yous
do that. Yous still end up with nothing.

The case of you also results in another ambiguity
when it is used as a filler:

Ross: (to Chandler and Joey)
You; know, life is hard.
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The referent of you here is subjective and can be
interpreted differently among individuals. It can
refers to Chandler and Joey collectively. It can also
be unknown if it refers to a general scenario. Fur-
thermore, it potentially can refers to either Chan-
dler or Joey based on the context. Such use case of
you is occasionally unclear to human annotators;
thus, for the purposes of simplicity and consistency,
this work treats them as unknown and considers that
they do not refer to any speaker.

4 Approach

4.1 Coreference Resolution

Character identification is tackled as a coreference
resolution task here, which takes advantage of uti-
lizing existing state-of-the-art systems although it
may not result the best for our task since it is more
similar to entity linking. Most of the current entity
linking systems are accustomed to find entities in
Wikipedia (Mihalcea and Csomai, 2007; Ratinov
et al., 2011), which are not intuitive to adapt to our
task. We are currently developing our own entity
linking system, which we hope to release soon.
Our corpus is first reformed into the CoNLL 12
shared task format, then experimented with two of
the open source systems. The resultant coreference
chains from these system are linked to a specific
character by our cluster remapping algorithm.

CoNLL’12 Shared Task

Our corpus is reformatted to adapt the CoNLL’ 12
shared task on coreference resolution for the com-
patibility with the existing systems (Pradhan et al.,
2012). Each statement is parsed into a constituent
tree using the Berkeley Parser (Petrov et al., 20006),
and tagged with named entities using the NLP4J



tagger (Choi, 2016). The CoNLL format allows
speaker information for each statement, which is
used by both systems we experiment with. The con-
verted format preserves all necessary annotation for
our task.

Stanford Multi-Sieve System

The Stanford multi-pass sieve system (Lee et al.,
2013) is used to provide a baseline of how a coref-
erence resolution system performs on our task. The
system is composed of multiple sieves of linguistic
rules that are in the orders of high-to-low preci-
sion and low-to-high recall. Information regarding
mentions, such as plurality, gender, and parse tree,
is extracted during mention detection and used as
global features. Pairwise links between mentions
are formed based on defined linguistic rules at each
sieve in order to construct coreference chains and
mention clusters. Although no machine learning is
involved, the system offers efficiency in decoding
while yielding reasonable results.

Stanford Entity-Centric System

Another system used in this work is the Stanford
entity-centric system (Clark and Manning, 2015).
The system takes an ensemble-like statistical ap-
proach that utilizes global entity-level features to
create feature clusters, and it is stacked with two
models. The first model, mention pair model, con-
sists of two tasks, classification and ranking. Lo-
gistic classifiers are trained for both tasks to assign
probabilities to a mention. The former task con-
siders the likelihood of two mentions are linked.
The latter task estimates the potential antecedent
of a given mention. The model makes primary sug-
gestions of the coreference clusters and provides
additional feature regarding mention pairs. The
second model, entity-centric coreference model,
aims to produce a final set of coreference clusters
through learning from the features and scores of
mentions pairs. It operates between pairs of clus-
ters unlike the previous model. Iteratively, it builds
up entity-specific mention clusters using agglomer-
ative clustering and imitation learning.

This approach is particularly in alignment with
our task, which finds groups of mentions referring
to a centralized character. Furthermore, it allows
new models to be trained with our corpus. This
would give insight on whether our task can be
learned by machines and whether a generalized
model can be trained to distinguish speakers in all
context.
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4.2 Coreference Evaluation Metrics

All systems are evaluated with the official CoNLL
scorer on three metrics concerning coreference res-
olution: MUC, B3, and CEAF.,.

MUC

MUC (Vilain et al., 1995) concerns the number of
pairwise links needed to be inserted or removed to
map system responses to gold keys. The number
of links the system and gold shared and minimum
numbers of links needed to describe coreference
chains of the system and gold are computed. Preci-
sion is calculated by dividing the former with the
latter that describes the system chains, and recall
is calculated by dividing the former with the later
that describes the gold chains.

B3

In stead of evaluating the coreference chains solely
on their links, the B (Bagga and Baldwin, 1998)
metric computes precision and recall on a mention
level. System performance is evaluated by the aver-
age of all mention scores. Given a set M that con-
tains mentions denoted as m,;. Coreference chains
Sm,; and G, represent the chains containing men-
tion m; in system and gold responses. Precision(P)
and recall(R) are calculated as below:

1S NGl o 1SN G
Plmi) = =g 1 #m) =g

CEAF.

CEAF, (Luo, 2005) metric further points out the
drawback of B3, in which entities can be used more
than once during evaluation. As result, both multi-
ple coreference chains of the same entity and chains
with mentions of multiple entities are not penalized.
To cope with this problem, CEAF evaluates only
on the best one-to-one mapping between the sys-
tem’s and gold’s entities. Given a system entity S;
and gold entity G;. An entity-based similarity met-
ric ¢(.S;, G;) gives the count of common mentions
that refer to both \S; and G';. The alignment with
the best total similarity is denoted as ®(g*). Thus
precision(P) and recall(R) are measured as below.

_ %) _ %)
> #(Si, i)’ > 9(Gi, Gy)

4.3 Cluster Remapping

P R

Since the predicted coreference chains do not di-
rectly point to specific characters, a mapping mech-
anism is needed for linking those chains to certain



TRN ST Document: episode Document: scene
MUC | B® | CEAF. | Avg MUC [ B® | CEAF. | Avg
Stanford multi-pass sieve | FI+F2+B1 || 80.73 | 44.91 27.00 50.88 || 79.09 | 62.26 50.22 63.86
Stanford entity-centric F1+F2+4B1 || 84.44 | 44.95 19.66 49.68 || 83.39 | 69.59 54.48 69.15
F1 90.79 | 61.25 48.63 66.89 || 90.16 | 80.46 69.05 79.89
F1 F2 92.18 | 44.40 35.07 57.22 || 88.49 | 72.74 59.14 73.46
B1 94.83 | 73.46 61.78 76.69 || 91.55 | 80.36 66.95 79.62
F1 89.83 | 67.18 43.98 67.00 || 90.02 | 80.48 71.44 80.65
F2 89.27 | 55.94 38.55 61.25 || 89.61 | 76.76 64.34 76.90
F1+F2 B1 92.94 | 75.26 | 48.61 72.27 || 92.87 | 83.55 68.09 81.50
F1+F2 90.07 | 63.33 42.44 65.28 || 89.89 | 78.75 68.39 79.01
F1+F2+B1 || 90.63 | 65.64 | 43.21 66.49 || 90.55 | 79.84 68.53 79.64
B1 B1 93.33 | 75.83 59.28 76.15 || 91.79 | 82.50 69.69 81.33
Fl1 89.47 | 64.56 | 49.63 67.89 || 90.04 | 79.63 71.45 80.37
F2 89.21 | 57.00 | 44.31 63.51 || 89.60 | 73.78 62.33 75.24
F1+F2+Bl1 B1 95.72 | 72.92 53.87 74.17 || 92.97 | 84.23 70.58 82.59
F1+F2 89.89 | 6226 | 47.92 66.69 || 89.92 | 76.95 67.68 78.18
F1+F2+B1 || 91.06 | 64.94 48.26 68.09 || 90.59 | 78.53 68.37 79.16

Table 7: Coreference resolution results on our corpus. Stanford multi-pass sieve is a rule-based system.
Stanford entity-centric uses its pre-trained model. Every other row shows results achieved by the entity-
centric system using models trained on the indicated training sets.

characters. The resultant chains from the above sys-
tems are mapped to either a character, collective,
or unknown. Each coreference chain is reassigned
through voting based on the group that majority of
the mentions refer to. The referent of each mention
is determined by the below rules:

1. If the mention is a proper noun or a named
entity that refers to a known character, it is
referent to the character.

2. If the mention is a first-person pronoun or pos-
sessive pronoun, it is referent to the character
of the utterance containing the mention.

3. If the mention is a collective pronoun or pos-
sessive pronoun, it is referent to the collective

group.

If none of these rules apply to any of the mentions
in a coreference chain, the chain is mapped to the
unknown group.

5 Experiments

Both the sieve system and the entity-centric system
with its pre-trained model are first evaluated on our
corpus. The entity-centric system is further evalu-
ated with new models trained on our corpus. The
gold mentions are used for these experiments be-
cause we want to focus solely on the performance
analysis of these existing systems on our task.

5.1 Data Splits

Our corpus is split into the training, development,
and evaluation sets (Table 8). Documents are for-
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mulated into two ways, one treating each episode
as a document and the other treating each scene
as a document, which allows us to conduct experi-
ments with or without the contextual information
provided across the previous and next scenes.

| Epi | Sce | Spk | UC | SC | WC
TRN 51| 427 | 189 || 13,681 | 19,575 | 155,789
DEV 5 46 39 1,631 2,313 17,406
TST 7 70 46 2,083 2,950 22,734

Total | 63 [ 543 [ 225 [ 17,395 | 24,838 | 195,929

Table 8: Data splits. TRN/DEV/TST: training, de-
velopment, and evaluation sets. See Table 1 for the
details about Epi/Sce/Spk/UC/SC/WC.

5.2 Analysis of Coreference Resolution

The results indicate several intriguing trends (Ta-
ble 7), explained in the following observations.

5.2.1

These models yield close performance when run
out-of-box. It is interesting because both rule-based
and statistical models give similar baseline results.
This serves as an indicator of how current systems,
trained on the CoNLL’ 12 dataset, do not work as
well with day-to-day multiparty conversational data
that we attend to solve in this work.

Multi-pass sieve vs. Entity-centric

5.2.2 Cross-domain Evaluation

Before looking at the results of the models trained
on F1 and F14+F2, we anticipated that these models
would give undesirable performance when evalu-
ated on B1. Those models give the average scores



TRN ST Document: episode Document: scene
FCEC] UC | UM [ Purity [ FC]EC ]| UC [ UM | Purity
Stanford multi-pass sieve || 46 | 53 | 38.64 | 16.33 | 45.97 38 | 60 | 22.15 | 597 | 64.01
Stanford entity-centric 36 | 60 | 32.59 | 841 38.78 26 | 60 885 | 149 | 44.12
F1 19 | 30 | 30.23 | 4.20 61.13 21 | 30 | 494 | 1.35 | 54.11
Fl1 F2 12 | 24 | 40.00 | 3.15 42.13 17 | 24 | 1791 | 486 | 51.58
B1 9 14 | 0.00 0.00 75.99 14 | 14 | 625 | 1.90 | 70.10
Fl1 20 | 30 | 39.39 | 7.52 69.92 20 | 30 | 10.11 | 2.72 | 56.28
F2 18 | 24 | 49.06 | 8.25 62.54 23 | 24 | 746 | 2.12 | 57.64
F1+F2 B1 12 14 | 51.52 | 12.69 | 72.16 14 14 | 10.87 | 4.56 | 67.11
F1+F2 30 | 46 | 4224 | 7.54 66.65 26 | 46 | 9.26 | 1.83 | 45.11
F1+F2+Bl1 39 | 60 | 4422 | 8.44 67.67 30 | 60 | 7.76 | 1.35 | 41.79
BI1 B1 11 14 | 25.00 | 1.90 80.08 12 | 14 | 14.00 | 547 | 72.83
F1 25 | 30 | 21.67 | 4.06 73.21 20 | 30 | 941 | 3.15 | 51.74
F2 25 | 24 | 29.17 | 3.64 64.62 25 | 24 | 580 | 1.34 | 58.79
F1+F2+B1 B1 9 14 | 20.00 | 1.31 71.29 15 14 | 6.67 | 1.33 | 69.45
F1+F2 39 | 46 | 2476 | 3.78 69.60 29 | 46 | 7.62 | 1.74 | 44.49
F1+F24B1 || 45 | 60 | 23.93 | 3.27 69.21 36 | 60 | 6.84 | 1.39 | 42.81

Table 9: Character identification results on our corpus using cluster remapping on the coreference
resolution system results. FC: found clusters after remapping. EC: expected clusters from gold. UC:
percentage of unknown clusters after remapping. UM: percentage of unknown mentions in the unknown

clusters to all the mentions.

of 76.69 and 72.27 for B1 on the episode-level,
and 79.62 and 79.01 for B1 on the scene-level, re-
spectively. Surprisingly, the models trained on B1
do not yield a better accuracy on the episode-level
(76.15), and show an improvement of 1.69 on the
scene-level, which is smaller than expected. Thus,
it is plausible to take models trained on one show
and apply it to another for coreference resolution.

5.2.3 Cross-domain Training

When looking at the models trained on F1+F2+B1,
we found that more training instances do not nec-
essarily guarantee a continuous increase of system
performance. Although more training data from
a single show gives improvements in the results
(F1 vs. F1+F2), a similar trend cannot be assumed
for the case of the models trained on both shows
(F1+F2+B1) when data of another show (B1) is
added for training; in fact, most scores show de-
creases in performance for both episode- and scene-
level evaluations. We suppose that this is caused
by the introduction of noncontiguous context and
content of the additional show. Thus, we deduce
that models trained on data from multiple shows
are not recommended for the highest performance.

5.2.4 Episode-level vs. Scene-level

We originally foresaw the models trained on the
episode-level would outperform the ones trained on
the scene-level because the scene-level documents
would not provide enough contextual information.
However such speculation is not reflected on our
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evaluation; the results achieved by the scene-level
models consistently yield higher accuracy, which
is probably because the scene-level documents are
much smaller than the episode-level documents so
that fewer characters appear within each document.

5.3 Analysis of Character Identification

The resultant coreference chains produced by the
systems in Section 4.1 do not point to any specific
characters. Thus, our cluster remapping algorithm
in Section 4.3 is run on the coreference chains to
group multiple chains together and assign them
to individual characters. These remapped results
provide a better insight of the effective system per-
formance on our task. Table 9 shows the remapped
results and the cluster purity scores.

5.3.1 Remapped Clusters

As discussed in Section 5.2.4, the scene-level mod-
els consistently outperform the episode-level mod-
els for coreference resolution. However, an op-
posite trend is found for character identification
when the coreference chains are mapped to their
referent characters. The purity scores of the overall
character-mention clusters can be viewed as an ef-
fective accuracy score for character identification.
The purity scores, or the percentages of recover-
able character-mentions clusters, of the remapped
clusters for the scene-level models are generally
lower than the ones for the episode-level models.
Although the percentages of unknown clusters and
unknown mentions are considerably higher for the



episode-level models, we find these results more
reasonable and realistic to the nature of our cor-
pus, since the average percentages of mentions that
are annotated as unknown are 11.87% for the en-
tire corpus and 14.01% for the evaluation set. The
primary cause of lower performance for the scene-
level models is the lack of contextual information
across scenes. The following example is excerpted
from the first utterance in the opening scene of F1:

Monica: There’s nothing to tell!
He; ’s just some guys I3 work with!

As the conversation proceeds, there is no clear in-
dication of who He; and guys refer to until later
scenes introduce the character. As a result, the
coreference chains in the scene-level documents are
noticeably shorter than those in the episode-level
documents. When trying to determine the referent
characters, fewer mentions exist in the coreference
chains produced by the scene-level models such
that there is a higher chance for those chains to be
mapped to wrong characters. Thus, the episode-
level models are recommended for better perfor-
mance on character identification.

6 Related Work

There exist few corpora concerning multiparty
conversational data. SwitchBoard is a telephone
speech corpus with focuses on speaker authentica-
tion and recognition (Godfrey et al., 1992). The
ICSI Meeting Corpus is a collection of meeting
audios and transcript recordings created for re-
search in speech recognition (Janin et al., 2003).
The Ubuntu Dialogue Corpus is a recently intro-
duced dialogue corpus that provides task-domain
specific conversation with multiple turns (Lowe et
al., 2015). All these corpora provide an immense
amount of dialogue data. However, the primary
purposes of them are aimed to tackle tasks like
speaker or speech recognition and next utterance
generation. Thus, mention referent information are
missing for the purpose of our task.

Entity Linking is a natural language processing
task of determining entities and connecting related
information in context to them (Ji et al., 2015).
Linking can be done on domain-specific informa-
tion using extracted local context (Olieman et al.,
2015). Wikification is a branch of entity linking
with an aim of associating concepts to their corre-
sponding Wikipedia pages (Mihalcea and Csomai,
2007). Ratinov et al. (2011) used linked concepts
and their relevant Wikipedia articles as features on
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disambiguation. Kim et al. (2015) explored dia-
logue data in the realm of the task in attempt to im-
prove dialogue tracking using Wikification-based
information.

Similar to entity linking, coreference resolution
is another NLP task that connects mentions to their
antecedents (Pradhan et al., 2012). The task fo-
cuses on finding pair-wise connection between
mentions and forming coreference chains of the
pairs. Dialogues have been studied as a particular
domain for coreference resolution (Rocha, 1999)
due to the complex and context-switching nature
of the data. For most of the systems presented
for the task, they target on narrations or conver-
sations between two parties, such as tutoring sys-
tems (Niraula et al., 2014). Despite their similarity,
coreference resolution still differs from character
identification since the resolved coreference chains
do not directly refer to ant centralized characters.

7 Conclusion

This paper introduces a new task, called character
identification, that is a subtask of entity linking. A
new corpus is created for the evaluation of this task,
which comprises multiparty conversations from TV
show transcripts. Our annotation scheme allows to
create a large dataset with the personal mentions
and their referent characters annotated. The nature
of this corpus is analyzed with potential challenges
and ambiguities identified for future investigation.

Hence, this work provides baseline approaches
and results using the existing coreference resolu-
tion systems. Experiments are run on combinations
of our corpus in various formats to analyze the
applicability of the current systems as well as the
model trainability for our task. A cluster remapping
algorithm is then proposed to connect the corefer-
ence chains to their reference characters or groups.

Character identification is the first step to a ma-
chine comprehension task we define as character
mining. We are going to extend this task to handle
plural and collective nouns, and develop an entity
linking system customized for this task. Further-
more, we will explore an automatic way of building
a knowledge base containing information about the
characters that can be used for more specific tasks
such as question answering.
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