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Abstract

This paper presents an end-to-end frame-
work for task-oriented dialog systems
using a variant of Deep Recurrent Q-
Networks (DRQN). The model is able
to interface with a relational database
and jointly learn policies for both lan-
guage understanding and dialog strategy.
Moreover, we propose a hybrid algorithm
that combines the strength of reinforce-
ment learning and supervised learning to
achieve faster learning speed. We evalu-
ated the proposed model on a 20 Question
Game conversational game simulator. Re-
sults show that the proposed method out-
performs the modular-based baseline and
learns a distributed representation of the
latent dialog state.

1 Introduction

Task-oriented dialog systems have been an im-
portant branch of spoken dialog system (SDS)
research (Raux et al., 2005; Young, 2006; Bo-
hus and Rudnicky, 2003). The SDS agent has
to achieve some predefined targets (e.g. book-
ing a flight) through natural language interac-
tion with the users. The typical structure of a
task-oriented dialog system is outlined in Fig-
ure 1 (Young, 2006). This pipeline consists of
several independently-developed modules: natural
language understanding (the NLU) maps the user
utterances to some semantic representation. This
information is further processed by the dialog state
tracker (DST), which accumulates the input of the
turn along with the dialog history. The DST out-
puts the current dialog state and the dialog policy
selects the next system action based on the dia-
log state. Then natural language generation (NLG)
maps the selected action to its surface form which
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is sent to the TTS (Text-to-Speech). This process
repeats until the agent’s goal is satisfied.
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Figure 1: Conventional pipeline of an SDS.
The proposed model replaces the modules in the
dotted-line box with one end-to-end model.

The conventional SDS pipeline has limitations.
The first issue is the credit assignment problem.
Developers usually only get feedback from the end
users, who inform them about system performance
quality. Determining the source of the error re-
quires tedious error analysis in each module be-
cause errors from upstream modules can propa-
gate to the rest of the pipeline. The second lim-
itation is process interdependence, which makes
online adaptation challenging. For example, when
one module (e.g. NLU) is retrained with new data,
all the others (e.g DM) that depend on it become
sub-optimal due to the fact that they were trained
on the output distributions of the older version of
the module. Although the ideal solution is to re-
train the entire pipeline to ensure global optimal-
ity, this requires significant human effort.

Due to these limitations, the goal of this study
is to develop an end-to-end framework for task-
oriented SDS that replaces 3 important modules:
the NLU, the DST and the dialog policy with a sin-
gle module that can be jointly optimized. Devel-
oping such a model for task-oriented dialog sys-
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tems faces several challenges. The foremost chal-
lenge is that a task-oriented system must learn a
strategic dialog policy that can achieve the goal of
a given task which is beyond the ability of standard
supervised learning (Li et al., 2014). The second
challenge is that often a task-oriented agent needs
to interface with structured external databases,
which have symbolic query formats (e.g. SQL
query). In order to find answers to the users’ re-
quests from the databases, the agent must formu-
late a valid database query. This is difficult for
conventional neural network models which do not
provide intermediate symbolic representations.

This paper describes a deep reinforcement
learning based end-to-end framework for both dia-
log state tracking and dialog policy that addresses
the above-mentioned issues. We evaluated the pro-
posed approach on a conversational game sim-
ulator that requires both language understanding
and strategic planning. Our studies yield promis-
ing results 1) in jointly learning policies for state
tracking and dialog strategies that are superior to
a modular-based baseline, 2) in efficiently incor-
porating various types of labelled data and 3) in
learning dialog state representations.

Section 2 of the paper discusses related work;
Section 3 reviews the basics of deep reinforce-
ment learning; Section 4 describes the proposed
framework; Section 5 gives experimental results
and model analysis; and Section 6 concludes.

2 Related Work

Dialog State Tracking: The process of constantly
representing the state of the dialog is called di-
alog state tracking (DST). Most industrial sys-
tems use rule-based heuristics to update the di-
alog state by selecting a high-confidence output
from the NLU (Williams et al., 2013). Numerous
advanced statistical methods have been proposed
to exploit the correlation between turns to make
the system more robust given the uncertainty of
the automatic speech recognition (ASR) and the
NLU (Bohus and Rudnicky, 2006; Thomson and
Young, 2010). The Dialog State Tracking Chal-
lenge (DSTC) (Williams et al., 2013) formalizes
the problem as a supervised sequential labelling
task where the state tracker estimates the true slot
values based on a sequence of NLU outputs. In
practice the output of the state tracker is used by
a different dialog policy, so that the distribution
in the training data and in the live data are mis-

matched (Williams et al., 2013). Therefore one
of the basic assumptions of DSTC is that the state
tracker’s performance will translate to better dia-
log policy performance. Lee (2014) showed posi-
tive results following this assumption by showing
a positive correlation between end-to-end dialog
performance and state tracking performance.

Reinforcement Learning (RL): RL has been
a popular approach for learning the optimal dia-
log policy of a task-oriented dialog system (Singh
et al., 2002; Williams and Young, 2007; Georgila
and Traum, 2011; Lee and Eskenazi, 2012). A
dialog policy is formulated as a Partially Observ-
able Markov Decision Process (POMDP) which
models the uncertainty existing in both the users’
goals and the outputs of the ASR and the NLU.
Williams (2007) showed that POMDP-based sys-
tems perform significantly better than rule-based
systems especially when the ASR word error
rate (WER) is high. Other work has explored
methods that improve the amount of training
data needed for a POMDP-based dialog manager.
Gasi¢ (2010) utilized Gaussian Process RL algo-
rithms and greatly reduced the data needed for
training. Existing applications of RL to dialog
management assume a given dialog state represen-
tation. Instead, our approach learns its own dia-
log state representation from the raw dialogs along
with a dialog policy in an end-to-end fashion.

End-to-End SDSs: There have been many at-
tempts to develop end-to-end chat-oriented dialog
systems that can directly map from the history of a
conversation to the next system response (Vinyals
and Le, 2015; Serban et al., 2015; Shang et al.,
2015). These methods train sequence-to-sequence
models (Sutskever et al., 2014) on large human-
human conversation corpora. The resulting mod-
els are able to do basic chatting with users. The
work in this paper differs from them by focusing
on building a task-oriented system that can inter-
face with structured databases and provide real in-
formation to users.

Recently, Wen el al. (2016) introduced a
network-based end-to-end trainable tasked-
oriented dialog system. Their approach treated
a dialog system as a mapping problem between
the dialog history and the system response. They
learned this mapping via a novel variant of the
encoder-decoder model. The main differences
between our models and theirs are that ours has
the advantage of learning a strategic plan using



RL and jointly optimizing state tracking beyond
standard supervised learning.

3 Deep Reinforcement Learning

Before describing the proposed algorithms, we
briefly review deep reinforcement learning (RL).
RL models are based on the Markov Decision Pro-
cess (MDP). An MDP is a tuple (S, A, P,v, R),
where S is a set of states; A is a set of actions; P
defines the transition probability P(s'|s, a); R de-
fines the expected immediate reward R(s, a); and
v € [0,1) is the discounting factor. The goal of
reinforcement learning is to find the optimal pol-
icy 7*, such that the expected cumulative return is
maximized (Sutton and Barto, 1998). MDPs as-
sume full observability of the internal states of the
world, which is rarely true for real-world appli-
cations. The Partially Observable Markov Deci-
sion Process (POMDP) takes the uncertainty in the
state variable into account. A POMDP is defined
by a tuple (S, A, P,v,R,0,Z). O is a set of ob-
servations and Z defines an observation probabil-
ity P(o|s, a). The other variables are the same as
the ones in MDPs. Solving a POMDP usually re-
quires computing the belief state b(s), which is the
probability distribution of all possible states, such
that ) _b(s) = 1. It has been shown that the belief
state is sufficient for optimal control (Monahan,
1982), so that the objective is to find 7" : b — a
that maximizes the expected future return.

3.1 Deep Q-Network

The deep Q-Network (DQN) introduced by
Mnih (2015) uses a deep neural network (DNN)
to parametrize the Q-value function Q(s,a;0)
and achieves human-level performance in playing
many Atari games. DQN keeps two separate mod-
els: a target network ¢;" and a behavior network
¢;. For every K new samples, DQN uses ¢, to
compute the target values y”?" and updates the
parameters in 6;. Only after every C' updates, the
new weights of ¢; are copied over to 6, . Further-
more, DQN utilizes experience replay to store all
previous experience tuples (s,a,r,s"). Before a
new model update, the algorithm samples a mini-
batch of experiences of size M from the memory
and computes the gradient of the following loss
function:

‘C(el) = E(s,a,r,s’)[(yDQN - Q(S’ a; 9@))2] (1)
yPON — T+’YH12}XQ(S/,CL/;9;) (2)

Recently, Hasselt et al. (2015) leveraged the over-
estimation problem of standard Q-Learning by in-
troducing double DQN and Schaul et al. (2015)
improves the convergence speed of DQN via pri-
oritized experience replay. We found both modifi-
cations useful and included them in our studies.

3.2 Deep Recurrent Q-Network

An extension to DQN is a Deep Recurrent Q-
Network (DRQN) which introduces a Long Short-
Term Memory (LSTM) layer (Hochreiter and
Schmidhuber, 1997) on top of the convolutional
layer of the original DQN model (Hausknecht
and Stone, 2015) which allows DRQN to solve
POMDPs. The recurrent neural network can thus
be viewed as an approximation of the belief state
that can aggregate information from a sequence
of observations. Hausknecht (2015) shows that
DRQN performs significantly better than DQN
when an agent only observes partial states. A
similar model was proposed by Narasimhan and
Kulkarni (2015) and learns to play Multi-User
Dungeon (MUD) games (Curtis, 1992) with game
states hidden in natural language paragraphs.

4 Proposed Model

4.1 Overview

End-to-end learning refers to models that can
back-propagate error signals from the end output
to the raw inputs. Prior work in end-to-end state
tracking (Henderson et al., 2014) learns a sequen-
tial classifier that estimates the dialog state based
on ASR output without the need of an NLU. In-
stead of treating state tracking as a standard su-
pervised learning task, we propose to unify dialog
state tracking with the dialog policy so that both
are treated as actions available to a reinforcement
learning agent. Specifically, we learn an optimal
policy that either generates a verbal response or
modifies the current estimated dialog state based
on the new observations. This formulation makes
it possible to obtain a state tracker even without
the labelled data required for DSTC, as long as
the rewards from the users and the databases are
available. Furthermore, in cases where dialog state
tracking labels are available, the proposed model
can incorporate them with minimum modification
and greatly accelerate its learning speed. Thus, the
following sections describe two models: RL and
Hybrid-RL, corresponding to two labelling scenar-
ios: 1) only dialog success labels and 2) dialog
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Figure 2: An overview of the proposed end-to-end
task-oriented dialog management framework.

success labels with state tracking labels.

4.2 Learning from the Users and Databases

Figure 2 shows an overview of the framework. We
consider a task-oriented dialog task, in which there
are S slots, each with cardinality C;,7 € [0, 5).
The environment consists of a user, £“ and a
database E%. The agent can send verbal actions,
a’ € A" to the user and the user will reply with
natural language responses o" and rewards r*. In
order to interface with the database environment
E%_ the agent can apply special actions a” € A"
that can modify a query hypothesis ~. The hy-
pothesis is a slot-filling form that represents the
most likely slot values given the observed evi-
dence. Given this hypothesis, h, the database can
perform a normal query and give the results as ob-
servations, 0% and rewards r.

At each turn ¢, the agent applies its selected ac-
tion a; € {A?, A"} and receives the observations
from either the user or the database. We can then
define the observation o of turn ¢ as,

o' = | of (3)

We then use the LSTM network as the dialog state
tracker that is capable of aggregating information
over turns and generating a dialog state represen-
tation, by = LST M (o, bi—1), where by is an ap-
proximation of the belief state at turn ¢. Finally,
the dialog state representation from the LSTM net-
work is the input to S 4 1 policy networks imple-
mented as Multilayer Perceptrons (MLP). The first
policy network approximates the Q-value function
for all verbal actions (b, a”) while the rest esti-
mate the Q-value function for each slot, Q(b;, a™),
as shown in Figure 3.

Qb+, a%) Q(by, a"1) | | Qlbry1, @'2)
)
(O(BO) ( (OOO)(O(BO) (
| tanh | | tanh | | tanh |
A A A
) @O0V
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Figure 3: The network takes the observation o, at
turn ¢. The recurrent unit updates its hidden state
based on both the history and the current turn em-
bedding. Then the model outputs the Q-values for
all actions. The policy network in grey is masked
by the action mask

4.3 Incorporating State Tracking Labels

The pure RL approach described in the previous
section could suffer from slow convergence when
the cardinality of slots is large. This is due to the
nature of reinforcement learning: that it has to try
different actions (possible values of a slot) in order
to estimate the expected long-term payoff. On the
other hand, a supervised classifier can learn much
more efficiently. A typical multi-class classifica-
tion loss function (e.g. categorical cross entropy)
assumes that there is a single correct label such
that it encourages the probability of the correct la-
bel and suppresses the probabilities of the all the
wrong ones. Modeling dialog state tracking as a
Q-value function has advantages over a local clas-
sifier. For instance, take the situation where a user
wants to send an email and the state tracker needs
to estimate the user’s goal from among three pos-
sible values: send, edit and delete. In a classifi-
cation task, all the incorrect labels (edit, delete)
are treated as equally undesirable. However, the
cost of mistakenly recognizing the user goal as
delete is much larger than edit, which can only
be learned from the future rewards. In order to
train the slot-filling policy with both short-term
and long-term supervision signals, we decompose
the reward function for A" into two parts:

Q™ (b,a") = R(b,a) + 7Y _ P¥|b,a")V™ (V)

b/
4)
R(b,a,b') = R(b,a") + P(a"|b) (5)

where P(a"|b) is the conditional probability that
the correct label of the slots is a” given the cur-



rent belief state. In practice, instead of training
a separate model estimating P(a"|b), we can re-
place P(a"|b) by 1(y = a”) as the sample re-
ward r, where y is the label. Furthermore, a key
observation is that although it is expensive to col-
lect data from the user E“, one can easily sample
trajectories of interaction with the database since
P(V|b, a") is known. Therefore, we can acceler-
ate learning by generating synthetic experiences,
ie. tuple (b,a”, r,t)Va" € A" and add them
to the experience replay buffer. This approach is
closely related to the Dyna Q-Learning proposed
in (Sutton, 1990). The difference is that Dyna Q-
learning uses the estimated environment dynamics
to generating experiences, while our method only
uses the known transition function (i.e. the dy-
namics of the database) to generate synthetic sam-
ples.

4.4 Implementation Details

We can optimize the network architecture in sev-
eral ways to improve its efficiency:

Shared State Tracking Policies: it is more ef-
ficient to tie the weights of the policy networks
for similar slots and use the index of slot as an in-
put. This can reduce the number of parameters that
needs to be learned and encourage shared struc-
tures. The studies in Section 5 illustrate one ex-
ample.

Constrained Action Mask: We can constrain
the available actions at each turn to force the
agent to alternate between verbal response and
slot-filling. We define A,,,sx as a function that
takes state s and outputs a set of available actions
for:

Apask(s) = A, new inputs from the user (6)
= A, otherwise (7)
Reward Shaping based on the Database: the
reward signals from the users are usually sparse
(at the end of a dialog), the database, however,
can provide frequent rewards to the agent. Reward
shaping is a technique used to speed up learning.
Ng et al. (1999) showed that potential-based re-
ward shaping does not alter the optimal solution;
it only impacts the learning speed. The pseudo re-
ward function F'(s, a, s') is defined as:

R(s,a,s") = R(s,a,s") + F(s,a,s") (8)
F(s,a,s") =v¢(s") — ¢(s) )

Let the total number of entities in the database
be D and P,,,, be the max potential, the potential

o(s) is:

(10)
1D

d
d)(st) = Pmar(l - Bt) lfdt >0
o(st) =0 ifd, =0

The intuition of this potential function is to
encourage the agent to narrow down the possi-
ble range of valid entities as quickly as possible.
Meanwhile, if no entities are consistent with the
current hypothesis, this implies that there are mis-
takes in previous slot filling, which gives a poten-
tial of 0.

5 Experiments

5.1 20Q Game as Task-oriented Dialog

In order to test the proposed framework, we chose
the 20 Question Game (20Q). The game rules are
as follows: at the beginning of each game, the
user thinks of a famous person. Then the agent
asks the user a series of Yes/No questions. The
user honestly answers, using one of three answers:
yes, no or I don’t know. In order to have this
resemble a dialog, our user can answer with any
natural utterance representing one of the three in-
tents. The agent can make guesses at any turn, but
a wrong guess results in a negative reward. The
goal is to guess the correct person within a max-
imum number of turns with the least number of
wrong guesses. An example game conversation is
as follows:

Sys: Is this person male?
User: Yes I think so.

Sys: Is this person an artist?
User: He is not an artist.

Sys: I guess this person is Bill Gates.
User: Correct.

We can formulate the game as a slot-filling di-
alog. Assume the system has |@Q)| available ques-
tions to select from at each turn. The answer to
each question becomes a slot and each slot has
three possible values: yes/no/unknown. Due to the
length limit and wrong guess penalty, the optimal
policy does not allow the agent to ask all of the
questions regardless of the context or guess every
person in the database one by one.



5.2 Simulator Construction

We constructed a simulator for 20Q. The simulator
has two parts: a database of 100 famous people
and a user simulator.

We selected 100 people from Freebase (Bol-
lacker et al., 2008), each of them has 6 attributes:
birthplace, degree, gender, profession and birth-
day. We manually designed several Yes/No ques-
tions for each attribute that is available to the
agent. Each question covers a different set of pos-
sible values for a given attribute and thus carries
a different discriminative power to pinpoint the
person that the user is thinking of. As a result,
the agent needs to judiciously select the question,
given the context of the game, in order to narrow
down the range of valid people. There are 31 ques-
tions. Table 1 shows a summary.

Attribute (), Example Question

Birthday 3 Was he/she born before 19507
Birthplace 9  Was he/she born in USA?
Degree 4 Does he/she have a PhD?
Gender 2 Is this person male?
Profession 8 Is he/she an artist?
Nationality 5 Is he/she a citizen of an Asian

country?

Table 1: Summary of the available questions. Q)
is the number of questions for attribute a.

At the beginning of each game, the simula-
tor will first uniformly sample a person from the
database as the person it is thinking of. Also there
is a 5% chance that the simulator will consider
unknown as an attribute and thus it will answer
with unknown intent for any question related to
it. After the game begins, when the agent asks
a question, the simulator first determines the an-
swer (yes, no or unknown) and replies using natu-
ral language. In order to generate realistic natural
language with the yes/no/unknown intent, we col-
lected utterances from the Switchboard Dialog Act
(SWDA) Corpus (Jurafsky et al., 1997). Table 2
presents the mapping from the SWDA dialog acts
to yes/no/unknown. We further post-processed re-
sults and removed irrelevant utterances, which led
to 508, 445 and 251 unique utterances with intent
respectively yes/no/unknown. We keep the fre-
quency counts for each unique expression. Thus
at run time, the simulator can sample a response
according to the original distribution in the SWDA

Corpus.
Intent SWDA tags
Yes Agree, Yes answers, Affirma-
tive non-yes answers
No No answers, Reject, Negative
Nnon-no answers
Unknown Maybe, Other Answer

Table 2: Dialog act mapping from SWDA to
yes/no/unknown

A game is terminated when one of the four con-
ditions is fulfilled: 1) the agent guesses the cor-
rect answer, 2) there are no people in the database
consistent with the current hypothesis, 3) the max
game length (100 steps) is reached and 4) the max
number of guesses is reached (10 guesses). Only
if the agent guesses the correct answer (condition
1) treated as a game victory. The win and loss re-
wards are 30 and —30 and a wrong guess leads to
a —b penalty.

5.3 Training Details

The user environment E* is the simulator that only
accepts verbal actions, either a Yes/No question or
a guess, and replies with a natural language utter-
ance. Therefore AV contains |Q| + 1 actions, in
which the first || actions are questions and the
last action makes a guess, given the results from
the database.

The database environment reads in a query hy-
pothesis h and returns a list of people that satisfy
the constraints in the query. h has a size of |Q|
and each dimension can be one of the three values:
yves/no/unknown. Since the cardinality for all slots
is the same, we only need 1 slot-filling policy net-
work with 3 Q-value outputs for yes/no/unknown,
to modify the value of the latest asked question,
which is the shared policy approach mentioned in
Section 4. Thus A" = {yes, no, unknown}. For
example, considering () = 3 and the hypothesis h
is: [unknown, unknown,unknown)|. If the lat-
est asked question is )1 (1-based), then applying
action a” = yes will result in the new hypothesis:
[yes, unknown, unknown].

To represent the observation o; in vectorial
form, we use a bag-of-bigrams feature vector to
represent a user utterance; a one-hot vector to rep-
resent a system action and a single discrete num-
ber to represent the number of people satisfying
the current hypothesis.



The hyper-parameters of the neural network
model are as follows: the size of turn embedding is
30; the size of LSTMs is 256; each policy network
has a hidden layer of 128 with tanh activation.
We also add a dropout rate of 0.3 for both LSTMs
and tanh layer outputs. The network has a total
of 470,005 parameters. The network was trained
through RM S Prop (Tieleman and Hinton, 2012).
For hyper-parameters of DRQN, the behavior net-
work was updated every 4 steps and the interval
between each target network update C' is 1000. e-
greedy exploration is used for training, where € is
linearly decreased from 1 to 0.1. The reward shap-
ing constant P, is 2 and the discounting factor
v is 0.99. The resulting network was evaluated
every 5000 steps and the model was trained up to
120,000 steps. Each evaluation records the agent’s
performance with a greedy policy for 200 indepen-
dent episodes.

5.4 Dialog Policy Analysis

We compare the performance of three models: a
strong modular baseline, RL and Hybrid-RL. The
baseline has an independently trained state tracker
and dialog policy. The state tracker is also an
LSTM-based classifier that inputs a dialog history
and predicts the slot-value of the latest question.
The dialog policy is a DRQN that assumes per-
fect slot-filling during training and simply con-
trols the next verbal action. Thus the essential
difference between the baseline and the proposed
models is that the state tracker and dialog policy
are not trained jointly. Also, since hybrid-RL ef-
fectively changes the reward function, the typical
average cumulative reward metric is not applica-
ble for performance comparison. Therefore, we
directly compare the win rate and average game
length in later discussions.

Win Rate (%) Avg Turn
Baseline 68.5 12.2
RL 85.6 21.6
Hybrid-RL | 90.5 19.22

Table 3: Performance of the three systems

Table 3 shows that both proposed models
achieve significantly higher win rate than the base-
line by asking more questions before making
guesses. Figure 4 illustrates the learning process
of the three models. The horizontal axis is the total
number of interaction between the agent and either

the user or the database. The baseline model has
the fastest learning speed but its performance sat-
urated quickly because the dialog policy was not
trained together with the state tracker. So the dia-
log policy is not aware of the uncertainty in slot-
filling and the slot-filler does not distinguish be-
tween the consequences of different wrong labels
(e.g classify yes to no versus to unknown). On the
other hand, although RL reaches high performance
at the end of the training, it struggles in the early
stages and suffers from slow convergence. This
is due to that fact that correct slot-filling is a pre-
requisite for winning 20Q, while the reward signal
has a long delayed horizon in the RL approach. Fi-
nally, the hybrid-RL approach is able to converge
to the optimal solution much faster than RL due to
the fact that it efficiently exploits the information
in the state tracking label.

100

/’\/—/\/\/ AN
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Figure 4: Graphs showing the evolution of the win
rate during training.

5.5 State Tracking Analysis

One of the hypotheses is that the RL approach can
learn a good state tracker using only dialog success
reward signals. We ran the best trained models
using a greedy policy and collected 10,000 sam-
ples. Table 4 reports the precision and recall of
slot filling in these trajectories. The results indi-

Unknown  Yes No
Baseline 0.99/0.60 0.96/0.97 0.94/0.95
RL 0.21/0.77  1.00/0.93 0.95/0.51
Hybrid-RL | 0.54/0.60  0.98/0.92 0.94/0.93

Table 4: State tracking performance of the three
systems. The results are in the format of preci-
sion/recall

cate that the RL model learns a completely dif-



ferent strategy compared to the baseline. The RL
model aims for high precision so that it predicts
unknown when the input is ambiguous, which is a
safer option than predicting yes/no, because con-
fusing between yes and no may potentially lead to
a contradiction and a game failure. This is very
different from the baseline which does not dis-
tinguish between incorrect labels. Therefore, al-
though the baseline achieves better classification
metrics, it does not take into account the long-
term payoff and performs sub-optimally in terms
of overall performance.

5.6 Dialog State Representation Analysis

Tracking the state over multiple turns is crucial be-
cause the agent’s optimal action depends on the
history, e.g. the question it has already asked,
the number of guesses it has spent. Furthermore,
one of the assumptions is that the output of the
LSTM network is an approximation of the belief
state in the POMDP. We conducted two studies to
test these hypotheses. For both studies, we ran the
Hybrid-RL models saved at 20K, 50K and 100K
steps against the simulator with a greedy policy
and recorded 10,000 samples for each model.

The first study checks whether we can recon-
struct an important state feature: the number of
guesses the agent has made from the dialog state
embedding. We divide the collected 10,000 sam-
ples into 80% for training and 20% for testing. We
used the LSTM output as input features to a lin-
ear regression model with [2 regularization. Ta-
ble 5 shows the correlation of determination r2 in-
creases for the model that was trained with more
data.

Model 20K
r? 0.05

50K
0.51

100K
0.77

Table 5: r2 of the linear regression for predicting
the number of guesses in the test dataset.

The second study is a retrieval task. The la-
tent state of the 20Q game is the true intent of the
users’ answers to all the questions that have been
asked so far. Therefore, the true state vector, s has
a size of 31 and each slot, s[k], k € [0,31) is one
of the four values: not yet asked, yes, no, unknown.
Therefore, if the LSTM output b is in fact implic-
itly learning the distribution over this latent state s,
they must be highly correlated for a well-trained
model. Therefore, for each b;,i € [0,10,000),

we find its nearest 5 neighbors based on cosine
distance measuring and record their latent states,
N(b;) : B — [S]. Then we compute the empirical
probability that each slot of the true state s differs
from the retrieved neighbors:

B, | Znzo LV Gk # silk])

paire(s[k]) = 3

(12)
where 1 is the indicator function, & is the slot in-
dex and n is the neighbor index.
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Figure 5: Performance of retrieving similar true
dialog states using learned dialog state embedding.

Figure 5 shows that the retrieval error contin-
ues to decrease for the model that was trained bet-
ter, which confirms our assumption that the LSTM
output is an approximation of the belief state.

6 Conclusion

This paper identifies the limitations of the conven-
tional SDS pipeline and describes a novel end-to-
end framework for a task-oriented dialog system
using deep reinforcement learning. We have as-
sessed the model on the 20Q game. The proposed
models show superior performance for both nat-
ural language understanding and dialog strategy.
Furthermore, our analysis confirms our hypothe-
ses that the proposed models implicitly capture es-
sential information in the latent dialog states.

One limitation of the proposed approach is poor
scalability due to the large number of samples
needed for convergence. So future studies will in-
clude developing full-fledged task-orientated dia-
log systems and exploring methods to improve the
sample efficiency. Also, investigating techniques
that allow easy integration of domain knowledge
so that the system can be more easily debugged
and corrected is another important direction.
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