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Abstract. This paper introduces the problem of measuring coherence in Machine Translation.
Previously, local coherence has been assessed in a monolingual context using essentially coherent
texts. These are then artificially shuffled to create an incoherent one. We investigate existing mod-
els for the task of measuring the coherence of machine translation output. This is a much more
challenging case where coherent source documents are machine translated into a target language
and the task is to distinguish them from their human translated counterparts. We benchmark state-
of-the-art coherence models, and propose a new model which explores syntax following a more
principled method to learn the syntactic patterns. This extension outperforms existing ones in the
monolingual shuffling task on news data, and performs well in our new, more challenging task.
Additionally, we show that breaches in coherence in the translation task are much more difficult
to capture by any model.
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1 Introduction

A coherent discourse is said to be one that has meaningful connections between its
utterances (Jurafsky and Martin, 2009). The task of automatically evaluating text co-
herence has been addressed within applications such as text summarisation and order-
ing (Lapata, 2005; Barzilay and Lapata, 2008), where shuffled sentences or inadequate
summaries can lead to less coherent documents. Coherence has then been measured
with entity grids, discourse relations and syntax patterns, with experiments run on the
original and the artificially modified texts to distinguish coherent from incoherent texts.

We introduce the more challenging problem of evaluating the coherence of docu-
ments generated by Machine Translation (MT) systems. This is a very different sce-
nario. Firstly, it is more subtle as the sudden breaks in transitions or shifts of focus
which result from shuffling in the traditional monolingual test scenario are absent, as
sentences are translated in their original (source) order. Secondly, the machine trans-
lated output may contain other textual issues, such as ungrammatical fragments, which
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can affect the application of such models in various ways, making it harder to pin-
point coherence-related problems. Finally, judgements on the coherence of the transla-
tions may be dependent on the source text. Nevertheless, measuring coherence in MT
is important: given the way translations are generated by standard MT systems, on a
sentence-by-sentence basis, several phenomena spanning sentence boundaries can lead
to incoherent document translations, such as incorrect co-referencing, inadequate dis-
course markers, and lack of lexical cohesion, as established by previous corpus analyses
(Sim Smith et al., 2015).

We apply three existing coherence models to original, shuffled and machine trans-
lated texts in an attempt to evaluate their ability to discriminate between coherent and in-
coherent documents: an entity-grid model (Barzilay and Lapata, 2008), an entity graph
similarity metric (Guinaudeau and Strube, 2013), and a model based on syntactic pat-
terns (Louis and Nenkova, 2012). In addition, we propose a fully generative extension
of the syntax-based coherence model. We illustrate the difference between assessing
the output from MT systems and assessing the coherence of shuffled texts in a highly
consistent, structured corpus.

The remainder of this paper, is organised as follows: in Section 2 we review related
work on coherence and cohesion in the context of MT. Section 3 covers the background
of the coherence models used in this paper. Experiments and results are discussed in
Section 4.

2 Related Work

There has been recent work in the area of lexical cohesion in MT (Wong and Kit, 2012);
Xiong et al., 2013a; Xiong et al., 2013b; Tiedemann, 2010; Hardmeier, 2012; Carpuat
and Simard, 2012), as a sub-category of coherence, looking at the linguistic elements
which hold a text together. However, there seems to be little work in the wider area of
coherence as a whole. Coherence is indeed a more complex discourse element to define
in the first place. While it does include cohesion, it also describes how a text becomes
semantically meaningful overall, and how easy it is for the reader to follow.

Louwerse (2005) defines “cohesion as continuity in word and sentence structure,
and coherence as continuity in meaning and context”. While lexical cohesion can be
detected and addressed to some extent, the semantics, meaning and contextual indica-
tors necessary for coherence assessment are much more difficult to capture, even though
judging coherence is an intuitive process for a human reader. Coherence is undeniably
a complex cognitive process, which is however guided by elements of discourse that we
believe can be modelled automatically to some extent.

Most previous computational models for assessing coherence have focused on entity
transitions, syntactic patterns and discourse relations. The most popular models are
detailed in Section 3. In what follows we describe these models, and our work to apply
these models to MT. Lin et al. (2011) evaluate the coherence of texts from discourse
role transitions in a grid-based model, on the basis that there is a preferential, canonical,
ordering of discourse relations that leads to coherent texts. Burstein et al. (2010) use the
entity-grid for student essay evaluation, which is a scenario closer to ours. They used
a range of additional features specifically targeting grammar and style. These proved
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useful for discriminating good from bad quality essays, but it is unclear how much of
the problem with low quality essays was due to coherence issues. Their features are not
publicly available for us to assess this.

Somasundaran et al. (2014) consider how lexical chains affect discourse coherence.
They use lexical chaining features such as length, density, and link strength to detect
textual continuity, elaboration, lexical variety and organisation, all vital aspects of co-
herent texts. They claim that the interaction between lexical chains and discourse cues
can also show whether cohesive devices are organised in a coherent fashion.

Recently, Li and Hovy (2014) developed a coherence model based on distributed
sentence representation. They used recurrent and recursive neural networks to perform
ordering and readability tasks. They leverage semantic representations to establish co-
herent orderings, using original texts as positive examples and shuffled versions as neg-
ative ones for optimising the neural networks.

Li et al. (2015) train a hierarchical Long-Short Term Memory (LSTM) to explore
neural Natural Language Generation, and assess whether local semantic and syntactic
coherence can be represented at a higher level, namely paragraphs. In their model, dif-
ferent LSTM layers represents word embeddings, sentences, and paragraphs. They are
then able to regenerate the text to a degree that indicates neural networks are able to
capture certain elements of coherence.

Lin and Li (2015) use a hierarchical recurrent neural network language model
(RNNLM) to combine a word-level model with a sentence-level model for document
modeling. They claim that their model captures both intra- and inter-sentential se-
quences. They assess their model on an MT reranking task, progressively reranking
consecutive sentences. In the MT domain, Xiong et al. (2013) attempt to improve lexi-
cal coherence with a topic-based model. They extract a coherence chain for the source
sentence, and project it onto the target sentence to try and make lexical choices taken
during decoding more coherent. They report very marginal improvement with respect
to a baseline system in terms of automatic evaluation. This could indicate that current
evaluation metrics are limited in their ability to account for improvements related to
discourse. Gong et al. (2015) attempt to integrate their lexical chain and topic-based
metrics into traditional BLEU and METEOR scores, showing greater correlation with
human judgements on MT output.

While the task of automatically evaluating text coherence has been addressed pre-
viously within applications such as multi-document text summarisation or in terms of
optimal ordering within shuffled texts, our aim is to further investigate these compo-
nents in an MT context without the use of a reference translation. We ultimately expect
to be able to bias the translation process to ensure coherence in MT.

3 Coherence Models

Here we describe some of the most popular coherence models, all of which we reim-
plement and test in our experiments, as well as our improvement over a syntax-based
model (Section 3.4).
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3.1 Entity-grid approach

The entity-based approach (Lapata, 2005; Barzilay and Lapata, 2008), in particular the
Centering Theory (Grosz et al., 1995) it is based on, derives from the idea that entities
in a coherent text are distributed in a certain manner. This theory states that coherent
texts are characterised by salient entities in strong grammatical roles, such as subject or
object. The focus of the entity-based approach uses this knowledge, via patterns in terms
of prominent syntactic constructions, to distinguish coherent from non-coherent texts.
Entity grids are constructed by identifying the discourse entities in the documents under
consideration and constructing a 2D grid for each document, whereby each column
corresponds to the entity, i.e. noun being tracked, and each row represents a particular
sentence in the document.

An entity transition is defined as a consecutive occurrence of an entity with a
given syntactic role, namely, subject (S), object (O), or other (X). Absences of entities
in sentences, or nulls, are recorded with a dash. Transitions are observed by examining
the grid vertically for each entity. The assumption is that incoherent texts have more
breaks in the entity transitions, and thus lower scores.

Lapata (2005) introduces a generative model of document coherence based on entity
transitions. Equation 1 shows this formulation, where m is the number of entities, n
is the number of sentences in a document D, and r, . is the role taken by entity e
in sentence s. Observe that the model makes a Markov assumption, under which an
entity’s role is independent of all but its & preceding roles.

m n

1
p(D) = m H Hp(Ts,eV(sfh),e <o r(sfl),e) (1)

e=1s=1

Our objective with this model, as with all others in this paper, is to assess whether
the coherence model allows us to discriminate between Human Translation (HT) and
MT.

For our experiments, a POS tagger! is used to identify nouns and subsequently a
parser? is used to establish the grammatical role of each of these nouns. The original
model presumes that grids of coherent texts have a few dense columns and many sparse
ones, and that entities occurring in the dense columns are more often be subjects or
objects. It assumes that these characteristics are less common in texts exhibiting lower
coherence (Lapata, 2005). In our experiments, the MT displays no more sparse columns
than the reference counterpart. It would seem that given how preeminent the focused
nouns are, these are captured in the MT output. There are, however, differences in tran-
sition patterns, in that some patterns are more common in the MT than the HT, such as
‘0O0’, or other patterns with strong object positions. This seems to indicate a more sim-
plistic style by MT systems. Quantitative results for the experiments with the entity-grid
model are given in Section 4.

! http://nlp.stanford.edu/software/tagger.shtml
2 http://nlp.stanford.edu/software/lex-parser.shtml
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3.2 Entity graph approach

Guinaudeau and Strube (2013) adapted the entity-grid into a graph format using a bi-
partite graph which they claim avoids the data sparsity issues encountered by Barzi-
lay and Lapata (2008) and achieves equal performance, without training. Additionally,
their representation can track any cross-sentential references, as opposed to only those
present in adjacent sentences.

The graph tracks the presence of all entities and connections to the sentences they
occur in, taking all nouns in the document as discourse entities, as recommended by
Elsner and Charniak (2011). The coherence of a text in this model is measured by
calculating the average outdegree of a projection, summing the shared edges.

The general form of the coherence score assigned to a document in this approach
is shown in Equation 2. This is a centrality measure based on the average outdegree
across the IV sentences represented in the document graph. The outdegree of a sentence
s;, denoted o(s;), is the total weight of edges leaving that sentence, a notion of how
connected (or how central) it is. This weight is the sum of the contributions of all edges
connecting s; to any s; € D.

1 A
s(D) = N 20(571) - N Z Z Wi ©))
=1 . j

We reimplemented the algorithm in Guinaudeau and Strube (2013) (using syntactic
projection) and ran experiments with the same objective and datasets as for the grid
model. Quantitative results for the experiments with the entity-graph model are given
in Section 4.

We have also experimented with other languages and noted that syntactic differ-
ences do indeed change the transition parameters. This varies depending on the lan-
guage pair. In particular, it has been proven that the same patterns of syntactic construc-
tions do not hold for German, for example, where topological fields are more relevant.
We therefore limit ourselves to reporting results on English.

3.3 Syntax-based model

Motivated by the strong impact syntax has in text coherence, Louis and Nenkova (2012)
propose both a local and a global coherence model based on syntactic patterns. Our
implementation focuses on their local coherence model. It follows the hypothesis that
in a coherent text consecutive sentences will exhibit syntactic regularities, and that these
regularities can be captured in terms of co-occurrence of syntactic items.

The units of syntax can be context-free grammar productions (e.g. S — NP VP)
or d-sequences (a sequence of sibling constituents at depth d starting from the root,
possibly annotated with the left-most child node they dominate, e.g. NPxn VPyp). The
model conditions each sentence on the immediately preceding sentence, both seen as
sequences of syntactic patterns. Each sentence is assumed to be generated one pattern
at a time and patterns are assumed independent of each other.

The parameters of the model are “unigram” and “bigram” patterns over a vocabulary
of syntactic items (i.e. productions or d-sequences) which are directly observed from
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training data by relative frequency counting.
(D) = H Hlic(ui,vj)-i-a 3)
b LLm £ c(u;) + a|V|

The coherence of a document under the model is given by Equation 3, where
(uf™, v7) represents adjacent sentences, and c(-) is a function that counts how often
a pattern (or a pair of patterns) was observed in the training data. To account for unseen
syntactic patterns at test time, their model is smoothed by a constant « (and |V| is the
size of the vocabulary of syntactic tokens).

In our experiments, we derived the syntactic items in the form of the d-sequence,
defined as the leaves of the parse tree at a given depth (in our experiments of depth 2, 3,
4), and annotated with the left-most leaf. The choice of d-sequences results in what we
believe to be an informative representation. Further experiments could use grammatical
productions as an alternative.

3.4 Syntax-based model with IBM 1

The syntax model by Louis and Nenkova (2012) does not model latent alignments.
This is possible under the assumption that all available alignment configurations have
been directly observed in the training data. It is worth highlighting that in reality the
training data is incomplete in the sense that it lacks alignment information. We introduce
alignments between syntactic patterns in adjacent sentences as a latent variable. Our
model does that based on the IBM model 1 (Brown et al., 1993), where the current
sentence is generated by the preceding one, one pattern at a time, with a uniform prior
over alignment configurations. The latent alignment variable allows us to model the fact
that some patterns are more likely to trigger certain subsequent patterns.

In IBM model 1, a latent alignment function a : j — ¢ maps patterns in v{* (current
sentence) to patterns in ug" (preceding sentence), where v is a special NULL symbol
which models insertion. The score of a document is given by Equation 4.

P(D) = H p(v1...Vn, a1 .. Ap|Ug .. Up) )

(up op)eD

Here n is the current sentence and m the preceding sentence. As the alignment is
hidden, we marginalise over all possible configurations, which is tractable due to an
independence assumption (that items align independently of each other). Equation 5
shows this tractable marginalisation.

pD)= I TI> elvjluw) (5)

(up wp)ED j=1 i=0

We resort to Expectation Maximisation (EM) to estimate the parameters in Equation
5 (Brown et al., 1993): due to the convexity of IBM model 1, EM is guaranteed to
converge to a global optimum. Moreover, as we observe more data this model converges
to better parameters.

A similar solution was proposed in a different context by Soricut and Marcu, (2006)
in their work on word co-occurrences.
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Table 1: Number of documents and sentences in the training (Gigaword) and test (WMT14) sets.

Corpus | Portion [Documents|Sentences
Gigaword|12/2010 41,564| 774,965

WMTI14 | de-en 164 3,003
WMTI14 | fr-en 176 3,003
WMTI14 | ru-en 175 3,003

To avoid assigning 0 probability to documents containing unseen patterns, we mod-
ify the training procedure to treat all the singletons as pertaining to an unknown cat-
egory (UNK), thus reserving probability mass for future unseen items.® In addition to
this special UNK item, we also include NULL alignments, which together with UNK
will smooth the bigram counts.

4 Experiments and Results

4.1 Datasets

To estimate the parameters of the entity-grid and syntax-based models (e.g. distribution
over entity role transitions and syntactic patterns), we use the most recent portion of
English LDC Gigaword corpus, excluding 2 sections.* Table 1 displays information
about the size of these datasets.

To test our models on the translation task, we use WMT14 test data as corpus (Bojar
et al., 2014), considering submissions from all participating MT systems (including
statistical, rule-based, hybrid) in the translation shared task for three language pairs,
namely, 13 German-English (de-en) systems, 9 French-English (fr-en) systems, and 13
Russian-English (ru-en) systems.

We assume that the HT (reference) is a coherent text, and that the MT output may
or may not be coherent. While the former is a fair assumption, we do acknowledge
that many outputs from MT systems may be coherent. However, we are not aware of
any datasets with translated data which have been annotated for coherence. This is a
challenging task in itself, as judging coherence is a complex and subjective task which
requires, at the very least, well trained annotators. Our hypothesis is that a good coher-
ence model should be able to score human translations as having higher coherence than
their counterpart machine translations in most cases.

For the shuffling task we also use the MT data, taking the HT documents as the
coherent texts and shuffled versions of them to create incoherent ones.

4.2 Metrics

We evaluated the results according to a number of metrics, defined as follows: m is a
model, d € D a document, r the reference or original (non-shuffled) version and s € .S

3 The hypothesis, backed by the Zipf’s law, is that unseen items are singletons that we have not
yet observed, and that singletons we did observe would remain so if we had observed some
more data.

4 https://catalog.ldc.upenn.edu/LDC2003T05
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shuffled or MT output. Then let win,, (d,,ds) return 1 if model m scores reference
document d,. higher than a shuffled or MT document d,, and 0 otherwise. We can de-
fine tie and lose analogously. Finally, first,, (d,.) returns 1 if the reference ranks first,
and solo,, (d,.) returns 1 if the reference occupies a position alone in the ranking. Our
various model evaluation methods are defined as follows:

ref- how often a model ranks reference documents higher than any of their shuffled or
MT counterparts: W Doa > Wiy, (dy, ds)
ref> how often a model ranks the reference no worse than any of their shuffled or MT
_counterparts: m Yo s Wiy, (dr, dg) + tiep, (dy, ds)
ref;- how often the reference is ranked strictly higher than every other system:
ﬁ > qfirsty, (dy) x soloy, (d;)

4.3 Results on shuffling task

To test our hypothesis that patterns of syntactic items between adjacent sentences can
be better modelled through a latent alignment, we conducted the traditional shuffling
experiment with our reference text and a randomly shuffled version of it. The aim was
to check whether our formulation for the syntax model, based on IBM model 1, out-
performs the original syntax model. Thus we are comparing grammatically correct and
coherent sentences instead of MT output.

From our results (Table 3), it is clear that our adaptation (henceforth IBM1) im-
proves over the original syntax model (LN) by a large margin. In fact, in most cases it
also outperforms the entity grid. Noteworthy is the fact that the refs metric discrimi-
nates how often a model ranks the unshuffled documents strictly higher than any other
version, not just equal to them, as the ref> does. We experimented at varying depths,
displayed as d in our results, but display only the best performing ones.

The difference between our experiment and those reported elsewhere (Barzilay and
Lapata, 2008; Louis and Nenkova, 2012) is that the experiments elsewhere have been on
a specific corpus widely used for coherence prediction, the Earthquakes and Accidents
corpus’. The scores we report are therefore not as high. By way of comparison, we also
include results on the aforementioned corpus (Table 2). Here the ref> metric results for
our reimplementation of the syntax model are close those of the original local model
with d-sequences (Louis and Nenkova, 2012).

Results for previous grid experiments were obtained using supervised training
where the parameters are trained on this same Earthquakes and Accidents corpus, then
tested on a heldout section of the same dataset. We adopted a more automated approach,
training on more general data. This does, however, affect the results, particularly given
the consistent nature of the Earthquakes and Accidents corpus.

4.4 Results on translation task

This evaluation is conducted under the assumption that the reference documents are co-
herent. An obvious benefit of such a strategy is that we can assess models automatically

5 http://people.csail.mit.edu/regina/coherence/CLsubmission/
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Table 2: Model comparisons for shuffling experiment on Earthquakes and Accidents corpus, ref; «
is “accuracy” used in previous work with this corpus.

Earthquakes ref;~ ref> Accidents refi~ ref>
IBM1-d2  80.88 80.88 GRAPH 86.51 86.51
IBM1-d3  77.10 77.10 IBM1-d3 72.61 72.61
GRID 66.21 66.21 IBM1-d2 67.32 67.37
GRAPH 60.53 60.58 GRID 50.25 50.25
LN-d2 57.62 71.73 LN-d4  46.58 55.89
LN-d3 57.00 67.69 LN-d2  38.82 57.15

Table 3: Model comparisons for shuffling experiment

fr-en refy«  ref> de-en refy«  ref> ru-en refy«  ref>
IBM1-d3 82.95 85.23 GRID 79.27 80.49 IBM1-d3 79.43 80.00
GRID 75.00 77.84 IBM1-d3 76.83 76.83 GRID 74.86 76.00

IBM1-d4 71.59 73.86
GRAPH  50.00 53.98
LN-d3  46.59 59.66
LN-d4 41.4854.55

IBM1-d2 71.34 71.34
GRAPH 62.80 65.24
LN-d4  53.66 62.20
LN-d2  47.56 59.15

IBM1-d2 74.86 75.43
GRAPH  50.29 54.29
LN-d4  46.29 57.71
LN-d3 45.14 57.14

and objectively without the need for any particular type of annotation (e.g. reference
translations). To provide a concise summary of our findings, we aggregate the results
for all MT systems in this section.

Table 4 shows the performance of our models according to different evaluation
methods (scores are percentages), ranked by the first method.

Table 4: Model comparisons for translation task.

fr-en refs ref> refi« de-en refs refs refi« ru-en refs ref> refy«

IBM1-d4 58.24 58.66 20.45
GRID 55.54 56.68 22.16
IBM1-d3 54.19 54.62 17.61

GRAPH 67.03 68.62 28.66
IBM1-d2 53.52 53.56 12.20
IBM1-d3 53.05 53.05 17.68

GRAPH 60.84 63.21 20.57
IBM1-d3 58.02 58.02 10.86
IBM1-d2 57.41 57.54 13.14

LN-d4

45.17 55.82 1477 LN-d3  43.67 60.55 8.54 LN-d3 48.62 63.47 9.14
GRAPH 41.6245.60 11.93 LN-d4 43.34 53.38 10.37 LN-d4 47.2158.42 8.57
LN-d3  41.26 59.23 15.34 GRID 37.71 37771 6.10 GRID 31.38 31.38 5.14

Our results show that all the models tested are more limited in their ability to assess
coherence in an MT context, as the task is more difficult than that of distinguishing
shuffled from original texts. The models can score machine translated texts as well as
reference translations, and in some cases, even better than reference translations.

Our extension of the syntax-based model — IBM1 — consistently outperforms LN
(Louis Nenkova) according to all metrics. That is because IBM1 learns a distribution
over hidden alignments between syntactic items. These alignments can be seen as more
plausible explanations for certain syntactic patterns. Moreover, in experiments using
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held out data (from WMT13), we noticed that increasing the amount of training data
helps IBM 1, which is guaranteed to move towards better parameters.

Overall, for a given language pair, we found that the best coherence model was able
to score the human translations higher than any particular MT system for more than
58% of the documents. The best score was 67%, which is a good basis to make future
improvements on.

Some models are clearly more heavily affected by the use of methods that disre-
gard ties. The LN model typically clusters the reference together with MT systems.
The other models, IBM1 and GRAPH, are less affected by differences in evaluation
methods. While the figures change across methods, the trend in the ranking of models
is maintained.

In general, IBM1 and GRAPH are the strongest in terms of scores, with GRID per-
forming poorly (except for the fr-en language pair). Overall GRAPH performs better
than GRID, perhaps because it offers a broader view of entity-based coherence, in that it
captures links between all entities in all sentences in the text, including links over non-
adjacent sentences, and as such is not as dependent on consecutive transitions. If ties
are not considered, GRAPH features as the best model for two out of the three language
pairs, with IBM1 performing similarly well.

Interestingly, there is a difference between language pairs. It is worth emphasis-
ing that among our three language pairs, fr-en is arguably the one with the highest
MT quality. Low translation quality may have affected the performance of the models
differently, as they rely on linguistic information to different extents. GRID, which per-
formed the best for fr-en, relies heavily on the correct identification of nouns and their
syntactic roles in sentences. Therefore, for the other languages, an excessive number
of ungrammatical translations — and unreliable syntactic roles as a consequence — may
have affected the model more significantly. Moreover, the fr-en language pair is closer
than the other two, and therefore more likely to be similar syntactically in the output,
which could improve performance of the GRID model. If the MT output remained simi-
lar syntactically to the source language, then GRID would not perform as well for other
language pairs (it is known that the syntactic assumptions which hold for English do
not do so for German). Although this potentially affects GRAPH too, it does not de-
pend on entity transitions but models connections among all sentences in a document.
Moreover, a closer inspection of the data showed that the quality of the fr-en reference
translation was not as good as the de-en reference translation. Coupled with better MT
output for the fr-en language pair, this would make it a harder task for the models to
differentiate between HT and MT.

While GRID does well in the shuffling experiment, it does not do so well with the
MT output. Clearly, shuffling and reordering is a different task entirely, as illustrated by
the difference in the scores between Table 3 and Table 4. By comparison, the ability of
GRAPH (as the other entity-based method) to distinguish between HT and MT output
is presumably due to it not relying on the transitions between sentences, unlike GRID.

5 Conclusions and Future Work

Work on measuring text coherence has thus far been commonly limited to somewhat
artificial scenarios such as sentence shuffling or insertion tasks. These operations natu-
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rally tend to break the overall logic of the text. In this paper we have investigated local
coherence models for a very different scenario, where texts are automatically trans-
lated from a given language by systems of various overall levels of quality. Coherence
in this scenario is much more nuanced, as elements of coherence are often present in
the translations to some degree, and their absence may be connected to various types of
translation errors at different linguistic levels. There are undeniably grammatical issues,
but arguably a proportion of these do indirectly affect coherence.

For a given language pair, we found that the best coherence model was able to score
the human translations higher than any particular MT system for more than 67.03%
of the documents. Our IBM1 model performs strongly, detecting MT output from HT
58.24% of the time, which is a strong result considering that it is based on syntax alone.
This model did well in the standard shuffling experiment.

We believe that the source language of the training data is crucially important in
this MT domain, as noted by others (Cartoni et al., 2011), as is whether the text is
original or translated (Lembersky et al., 2012). We plan to investigate filtering input
data and to further expand our coherence models to integrate discourse relations and
distributed representations. In addition, by way of a supplementary test to determine
that our models are indeed measuring coherence not simply the differences between the
MT and HT, we intend to test them on an artificial corpus containing injected coherence
errors (Sim Smith et al., 2015).
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