
Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pages 18–26,
Düsseldorf, Germany, June 29 - July 1, 2016.

ArabTAG: from a Handcrafted to a Semi-automatically Generated TAG

Chérifa Ben Khelil1,2 Denys Duchier1 Yannick Parmentier1 Chiraz Zribi2 Fériel Ben Fraj2

(1) LIFO - Université d’Orléans, France
firstname.lastname@univ-orleans.fr

(2) RIADI - ENSI, Université La Manouba, Tunisia

Abstract

In this paper, we present the redesign of an
existing TAG for Arabic using a descrip-
tion language (so-called metagrammatical
language). The use of such a language
makes it easier for the linguist to share in-
formation among grammatical structures
while ensuring a high degree of modular-
ity within the target grammar. Addition-
ally, this redesign benefits from a gram-
mar testing environment which is used to
check both grammar coverage and over-
generation.

1 Introduction

Precision grammars provide fine-grained descrip-
tions of languages, which are beneficial for
many NLP applications such as Dialog systems,
Question-Answering systems, Automatic Summa-
rization systems, etc. Still the development of
such language resources is limited for it comes
at a high cost. For instance, the development of
the first large-coverage TAG for French took more
than 10 person-years (Abeillé et al., 1999). In
this context, many efforts have been put into semi-
automatic grammar production, either in a data-
oriented fashion (that is, by acquiring grammar
rules from annotated corpora), or in a knowledge-
based fashion (that is, by using description lan-
guages to capture generalizations among grammar
rules).

A particularly interesting feature of the latter is
that it offers a relatively good control on the gram-
mar being produced. This allows among others
to extend the produced grammar with various lev-
els of description such as morphology or seman-
tics (see e.g. (Duchier et al., 2012) or (Gardent,
2008)).

In this paper, we are interested in applying such
grammar production techniques to the description
of Arabic. Arabic is a challenging language when
it comes to grammar production for it exhibits spe-
cific features such as (i) a relatively free word or-
der, combined with (ii) a rich morphology, and
(iii) the omission of diacritics (vowels) in written
texts. These features motivates the use of highly-
expressive description languages. In this work, we
use the XMG description language (Crabbé et al.,
2013) to describe in an expressive and yet con-
cise way the syntax of Arabic. This description is
based on an existing handcrafted Tree-Adjoining
Grammar for Arabic named ArabTAG (Ben Fraj,
2011), which serves as a model for the current de-
velopment.

The paper is organized as follows. In Section 2,
we present the grammatical resource, namely
ArabTAG, this work is based on. We particu-
larly comment on the ArabTAG grammar cover-
age, its design choices and limitations. In Sec-
tion 3, we present the XMG description language,
together with recent advances in its implemen-
tation. These advances include a new level of
modularity brought by the possibility to dynam-
ically define the description language needed by
the linguist in a given context and to compile the

compiler for this description language.1 In Sec-
tion 4, we present a concise description of the
syntax of Arabic using XMG. In particular, we
show how to deal with the free word order of this
language. We also present a testing environment
which was designed to facilitate grammar devel-
opment. In Section 5, we compare our approach
with related work. Finally in Section 6, we con-

1As such, XMG2 can be seen as a meta interpreter which
takes as an input a compiler specification and produces as an
output a compiler for a description language. The latter is
used by linguists to describe grammatical resources, as ex-
plained later in this paper.

18

clude and present some short-term perspectives of
development of the grammar (including morpho-
logical and semantic information).

2 ArabTAG: a Tree-Adjoining Grammar

for Arabic

As mentioned above, Arabic language combines
complex linguistic phenomena that make its pro-
cessing particularly ambiguous. Let us recall
briefly what these are:

• The diversity of lexical and grammatical in-
terpretation of an Arabic word. This ambi-
guity is due to the absence of vocalic signs,
which is frequent in modern Arabic.

• The order of the sentence’s constituents in
Arabic language is free. For a verbal sen-
tence composed of Verb, Subject and Object,
we can have three combinations (VSO, VOS,
SVO) that are all syntactically correct.

• The phenomenon of agglutination: in order
to have more complex forms, clitics can tie
up with words. Thus, a sentence can cor-
respond to just one agglutinative form as in

the example èñÒ» A 	JJ

�®�

A 	̄ (which is the longest

word in Quran) :

(1) è
it

ð
to

Õ»
you

A 	K
we

ù

�®�

@

gave-to-drink

	¬
and

‘and we gave it to you to drink’

It is composed of a conjunction, verb, subject
and two objects which are all enclosed in the
same textual form.

• The recursive structures whose length is not
limited:2

(2) ÉJ

�
ÊË @

the-night

È@ñ£
during

©¢�®	JK

stop

ÕË
not

ø

	YË@

that

AêkAJ.
	�K.

with-their-barking

é�J 	¢�®K

@

aroused-that-him

ú

�æ
�
Ë @

those

ù
 ë
are

H. C¾Ë@
the-dogs

‘the dogs are those that aroused him
with their barking that does not stop
during the night’

2This example is taken from (Ben Fraj, 2010).

Digital resources (grammars and treebanks) which
can be used for parsing Arabic texts are scarce.
In this context, let us describe a semi-lexicalized
Arabic Tree-Adjoining Grammar called ArabTAG
(Ben Fraj, 2010).

ArabTAG has been developed at RIADI Lab-
oratory, National School of Computer Sciences,
University of La Manouba, Tunisia. It includes
a set of elementary trees representing the basic
syntactic structures of Arabic. The construction
of these structures was based on school gram-
mar books and books of Arabic grammar such as
(Kouloughli, 1992). To enhance interoperability
between tools and resources, all these structures
were encoded in XML.

ArabTAG has been used to build a treebank for
Arabic. More precisely, ArabTAG’s elementary
trees served as representative structures to anno-
tate syntactically a corpus. The resulting treebank
consists of 950 sentences (5000 words) annotated
with their corresponding TAG derivation trees.

2.1 ArabTAG and lexicalization

ArabTAG is semi-lexicalized since it contains
trees where all nodes are labelled with non-
terminal symbols (that is, syntactic categories).
More precisely, ArabTAG contains two sets of el-
ementary trees: lexicalized trees (that is, having
at least one lexical item as a leaf node) and pat-
terns trees. The choice of the semi-lexicalized
TAG variant was made in order to reduce the im-
portant number of possible syntactic structures.
The lexicalized trees are reserved to prepositions,
modifiers, conjunctions, demonstratives, etc. On
the other hand, the patterns trees represent verbs,
nouns, adjectives or any kind of phrases.3 These
elementary trees are enriched by different infor-
mation organized in feature structures.

2.2 ArabTAG coverage

To represent Arabic basic structures, ArabTAG
contains 24 lexicalized elementary trees and 241
pattern-based elementary trees. Lexicalized trees
correspond to the particles as the prepositions,
conjunctions, interrogatives, etc.

These trees correspond to the simple syn-
tactic structures of the Arabic sentences (nom-
inal and verbal), all classes of phrasal struc-
tures (NP (Nominal Phrase), PP (Prepositional

3Concretely, this means that ArabTAG is largely made of
tree schemata (unanchored lexicalized TAG trees) like XTAG
(XTAG Research Group, 2001).

19

Phrase)) as well as the different sub-classes of
the phrasal structures (Adjectival NP, Comple-
ment NP, Propositional NP). Moreover, ArabTAG
presents different kinds of sentences: active, pas-
sive, interrogative, complex sentences. In addi-
tion, it covers elliptical, anaphoric and subordinate
structures. It takes into account the change of the
order of the sentence’s components and the agglu-
tinative forms. The current version of this gram-
mar has some limitations that can be summarized
as follows:

• The syntactic structures enriched with sup-
plements (circumstantial complements of
time, place, etc.) are not described.

• The representation of forms of agglutina-
tion is not well reflected in ArabTAG. These
forms should be extended to improve the cov-
erage of the grammar.

• ArabTAG emphasizes syntactic relations
without regard to semantic information.
However, syntactic interpretation cannot be
complete if it does not involve semantic in-
formation.

• ArabTAG consists of a flat set of elementary
trees (that is, without any structure sharing).
In particular, it is not organized in a hierar-
chical way.

Therefore we propose a new version ArabTAG
V2 that takes into account the aspects mentioned
above. This new version is being enhanced with a
new organization (using a description language to
specify elementary trees) and new unification cri-
teria (both at the syntactic and semantic-syntactic
levels). Coverage is also being extended by adding
elementary trees for the representation of addi-
tional complements. Finally, as will be shown in
Section 4, we are currently in the process of struc-
turing the grammar into a hierarchical organiza-
tion.

3 XMG2: a new Generation of

Description Languages

As mentioned above, a common strategy to semi-
automatically produce precision grammars is to
use a description language. Such a language per-
mits the linguist to formally specify the structures
of a target grammar. When this language comes
with an implementation (that is, a compiler), the

grammar specification (so-called metagrammar)
can be compiled into an actual electronic gram-
mar.

Designing and implementing description lan-
guages for grammar specification is a field which
has been quite active over the past decades, sem-
inal work includes languages such as PATRII
(Shieber et al., 1983), DATR (Evans and Gaz-
dar, 1996), LexOrg (Xia, 2001), DyALog (Ville-
monte De La Clergerie, 2010), or more recently
XMG (Crabbé et al., 2013). These languages dif-
fer among others, in the way variables are han-
dled (local versus global scopes) and how structure
sharing is represented (inheritance versus transfor-
mations). Here, we propose to use XMG to de-
scribe Arabic for it exhibits particularly pertinent
features :

• it is highly expressive, which makes it possi-
ble to define highly factorized grammar de-
scriptions (in our case, this will be used to
deal with semi-free word order) ;

• it is particularly adapted to the description
of tree grammars (it has been used to de-
velop several electronic TAG grammars for
e.g. French, English, German, Vietnamese,
Korean) ;

• it is highly extensible (as will be described in
this Section, it can be configured to describe
various levels of language, such as semantics
or morphology) ;

• it is open-source and actively developed.

The first version of XMG was based on the fol-
lowing two main concepts:4

1. elementary trees are made of common
reusable tree fragments, which can be com-
bined conjunctively or disjunctively ;

2. each of these fragments can be (i) specified
using a tree description logic such as the one
defined by Rogers and Vijay-Shanker (1994)
and (ii) encapsulated within classes.

On top of these, XMG includes a facility to define
other types of reusable information (so-called di-

mensions), which can be used to extend tree frag-
ments with e.g. semantic formulas.

4A detailed introduction to XMG can be found in (Crabbé
et al., 2013).

20

An important limitation of XMG was the
limited number of dimensions it can handle,
namely syntax (tree fragments), semantics (predi-
cate logic formulas) and syntax-semantic interface
(attribute-value matrices). In order to make it pos-
sible for the linguist to describe several levels of
language (whatever their number is), and to com-
bine various data structures (not only tree frag-
ments or predicate logic formulas), XMG was ex-
tended5 as described in the following subsections.

3.1 Describing description languages

In order to allow for the description of an unlim-
ited number of dimensions, XMG should include
a support for user-defined dimensions. This in-
volves (i) being able to formally define the de-
scription language for this dimension and (ii) be-
ing able to interpret formulas of this language to
output valid linguistic structures.

To do this, XMG2 extends XMG by includ-
ing a meta metagrammar compiler (Petitjean,
2014).6 More concretely, the modular architec-
ture of XMG2 makes it possible for contributors to
develop so-called language bricks. A brick is the
formal definition of a description language (that is,
the CFG underlying this language) together with
the implementation of the interpretation procedure
for (abstract syntax trees of) formulas of this lan-
guage. The meta metagrammar compiler can then
compile on-demand sets of language bricks, which
can then be used together to describe various levels
of linguistic structures. In other words, the meta-
grammar compiler is now compiled from language
bricks (hence the arbitrary number of dimensions).

As an illustration, let us consider the following
bricks which are used to describe TAG grammars.7

Language brick for combining descriptions:

Desc ::= Stmt

| Stmt ∧ Desc

| Stmt ∨ Desc

Basically descriptions are made of statements
which can be combined either conjunctively or
disjunctively.

5And at the same time re-implemented in Prolog for the
previous version of XMG was coded in the Oz Programming
Language, which is no longer maintained.

6See https://launchpad.net/xmg-ng.
7For a detailed introduction to the description of TAG

grammars with XMG2, see (Petitjean, 2014).

Language brick for describing tree fragments:

Stmt ::= node id

| node id AVM

| id ⊳ id | id ⊳+ id

| id ≺ id | id ≺+ id

Tree fragments are described using a tree descrip-
tion logic based on dominance (written ⊳) and
precedence (written ≺) relations between node
variables (identifiers).8

Language brick for describing Attribute-Value

Matrices (AVMs):

AVM ::= [Feats]

Feats ::= Feat

| Feat,Feats

Feat ::= id = Value

AVMs are sets of pairs (written Feats here). Each
pair associates a feature (i.e. an identifier) with a
value.

The interpretation of descriptions based on
these bricks requires (i) unification (for interpret-
ing AVMs and node or feature variable unification)
and (ii) tree description solving. Hence the con-
tributor has to write the Prolog code which per-
forms these treatments.9

3.2 Assembling description languages

From the library of language bricks available
within XMG2, metagrammar designers can load
the necessary bricks to describe their target for-
malism. This is done by declaring within a YAML
file, which bricks are to be loaded.

For instance, in order to describe TAG gram-
mars using the above-mentioned bricks, one
would have to write the following YAML file:
mg:

_Stmt: control

control:

_Stmt: dim_syn

dim_syn:

tag: "syn"

_Stmt: syn

syn:

_AVM: avm

avm:

_Expr: feats

feats:

_Value: value

8The + refers to the relation’s transitive closure.
9As described in (Petitjean, 2014), the contributor actu-

ally has to provide a repository where each compilation step
is specified in Prolog.

21

Such a specification indicates that a metagram-
mar (mg) uses statements of type control (that is,
which make use of our language brick for combin-
ing descriptions). This control brick itself uses
statements of type dim_syn. Formulas of this type
are declared using the keyword "syn" and con-
tain statements of type syn. This brick syn itself
uses externally defined AVMs. AVMs are made
of features whose expressions are values. Again,
note that this example is simplified, for instance
nodes here are only decorated with AVMs, while
in XMG2, they are also decorated with properties
such as marks (e.g. ↓ for substitution) or colors
(to guide node identification when solving tree de-
scriptions).

3.3 Using assembled languages to describe

natural language

Once the metagrammar language is fully specified
and the compiler for this language compiled, the
metagrammar designer can write the description
of the target linguistic resource. In our case, such
a resource is a TAG grammar. It is described as
(conjunctive and disjunctive) combinations of tree
fragments. Such fragments are defined as formu-
las of a tree description logic based on dominance
and precedence relations between node variables.

For instance the following tree fragment:

S[cat=s]

N SV[cat=sv]

would be represented in an XMG2 metagram-
matical description as follows:

node S [cat=s]

∧ node N [cat=n]

∧ node SV [cat=sv]

∧ s ⊳ n ∧ s ⊳ sv ∧ n ≺ sv

Note that, like in XMG, tree fragments in
XMG2 are encapsulated within classes. A class
corresponds to the association of a description
(i.e., a combination of statements) with a name
(making it possible to reuse a given description in
various contexts). Unification variables (used to
refer either to a node, a feature, or a value) are de-
clared within classes (and their scope is by default
limited to the class). When classes are combined,
variables denoting the same information need to
be explicitly unified (using the operator =). While
providing the user with flexibility (variable names

can be freely used without any risk of conflict),
this local scope and explicit unification hampers
grammar design as shown by Crabbé et al. (2013).
So XMG2 comes with an alternative handling of
unification which was already present in XMG,
namely node coloring. Each node of the meta-
grammatical description can be colored in either
black, white or red. A black node is a resource and
can be unified with 0 or more white nodes; a white
node is a need and must be unified with a black
node; a red node is saturated and cannot be unified
with any other node. Since metagrammar compi-
lation solves descriptions in order to compute min-
imal tree models, variable denoting nodes are im-
plicitly unified due to dominance constraints but
also the above-mentioned color constraints. Col-
ors are an elegant way to restrict and guide the
ways in which variables can be unified, and so in
which tree fragments can be combined.

In the next section, we will see how such a mod-
ular and expressive description language is being
used to (re)describe the syntax of Arabic.

4 ArabTAG Revisited using XMG2

In this section, we aim to illustrate the flavor of
the new formulation of ArabTAG by focusing on
the modelization of simple verb subcategorization
frames for matrix clauses. In order to make this
presentation more easily accessible, we use a com-
bination of logical and graphical notation rather
than XMG’s concrete syntax.

4.1 Describing verbal predicates in Arabic

with XMG2

In an Arabic matrix clause, the verb and its ar-
guments can mostly be freely reordered.10 Since
ArabTAG made the choice of flat trees for verbal
constituents, the TAG grammar must supply ini-
tial trees for all possible permutations of the argu-
ments. Thanks to the tree description based ap-
proach of XMG, this is easily achieved simply by
not stipulating any precedence constraint among
these arguments.

EpineVerbe(C) is an abstraction that contributes
a fragment of tree description for the verbal spine
of a matrix clause. Since adverbs can be freely
interspersed between arguments, we need to pro-
vide appropriate adjunction points for them. AG

10Words are usually represented in Arabic in a VSO order,
still alternative orders may be used as well with morphologi-
cal constraints on the verb. See e.g. (El Kassas and Kahane,
2004).

22

is an adjunction point allowing an adverb at the
front of the clause. AD is an adjunction point for
inserting an adverb after the verb (or after an argu-
ment as we will see later). Nodes here are colored
(represented by B, W and R for black, white and
red respectively). EpineVerbe is parameterized by
a color C as depicted below:11

EpineVerbe(C) −→

SVC[cat=sv]

AGC[cat=advg]

ADC[cat=advd]

VC
⋄ [cat=v]

MatrixClause contributes the actual verb spine
(which can be seen as a resource) and therefore
instantiates EpineVerbe with the color black:

MatrixClause −→ EpineVerbe(B)

EpineArg is an abstraction used for attaching to
the verbal spine a tree description for an argument
(seen as a need).

EpineArg −→
[AG] ⇐ EpineVerbe(W)
∧ ADR[cat=advd] ∧ AG ⊳ AD

It instantiates EpineVerbe with the color white,
thus forcing it to unify with the actual verb spine.
[AG] ⇐ EpineVerbe(W) additionally imports into
the current scope the variable AG provided by
EpineVerbe, and attaches a new AD adjunction
node for optional insertion of an adverb after the
argument. Note that AG ⊳ AD only specifies that
AG immediately dominates AD, but introduces no
precedence constraint.

SujetCanon instantiates EpineArg and attaches an
SN substitution node below the argument AD sup-
plied by EpineArg:

SujetCanon −→
[AD] ⇐ EpineArg()
∧ SNR

↓[cat=sn,cas=nom]

∧ AD ⊳ SN

A direct object normally appears after the verb.
If it appears before the verb, then it gives rise to
a cleft-construction and requires an object-clitic
marker on the verb (boolean feature oclit):

11In our metagrammatical description of Arabic syntax,
tree fragment names are in French (e.g. EpineVerbe) and so
are syntactic categories (e.g. SV for Syntagme Verbal).

ObjetCanonSN −→
[AD, V] ⇐ EpineArg()
∧ SNR

↓[cat=sn, cas=acc]

∧ AD ⊳ SN
∧ ((V[oclit=−] ∧ V ≺+ SN) ∨

(V[oclit=+] ∧ SN ≺+ V))

The direct object can also be just a clitic:

ObjetCanonClit −→
[V] ⇐ EpineVerbe(W)
∧ V[oclit=+]

ObjetCanon −→ ObjetCanonSN ∨
ObjetCanonClit

The indirect object requires a particle PV (stip-
ulated by the verb) that is realized either as a sepa-
rate preposition or as a morphological affix on the
noun.

ObjetIndCanon −→
[AD, V] ⇐ EpineArg()
∧ SPB[cat=sp]

PR
⋄ SNR

↓[cat=sn, cas=gen]

∧ AD ⊳ SP ∧ V[p=PV]
∧ ((P[phon=ε] ∧ SN[p=PV]) ∨

(P[phon=PV] ∧ SN[p=ε]))

Finally the 3 basic verb families can be obtained
as follows:

Intransitive −→ MatrixClause ∧ SujetCanon
Transitive −→ Intransitive ∧ ObjetCanon
DiTransitive −→ Transitive ∧ ObjetIndCanon

We saw that using a metagrammatical language
based on (i) combinations of reusable tree frag-
ments together with (ii) a tree description logic al-
lowing for expressing (underspecified) dominance
and precedence relations between nodes, makes
it possible to describe the syntax of verbal pred-
icates in Arabic in a concise and modular way.
This metagrammatical description relies on lin-
guistic motivations (e.g., alternative realizations of
grammatical functions, valence, etc.), and can be
easily extended by just adding missing tree frag-
ments and combination rules (in this sense, the
metagrammatical language is monotonic, since no
fragment deletion needs to be expressed, only al-
ternatives).

Note that this metagrammatical description lan-
guage was already available within XMG. The
benefit of using XMG2 will come shortly once the
metagrammar will be extended with additional in-
formation such as morphological descriptions (see
infra). Indeed, XMG2 will be needed to assem-
ble a metagrammatical language that does not only

23

permit the linguist to describe syntactic trees but
other levels of description (e.g. morphological
structures), which could be connected with each
other (via shared unification variables).

4.2 Current state of ArabTAGv2

As mentioned above, the work presented here
is based on an existing TAG for Arabic (Arab-
TAGv1), which is handcrafted (the linguist uses
a specific tool to describe elementary trees, this
tool performs additional consistency checks dur-
ing grammar development and also some predic-
tions on the structures being described). Arab-
TAGv1 contains 380 elementary trees, and was de-
veloped in the context of (Ben Fraj, 2010). 83%
out of these 380 trees (that is, 315 trees) represent
verbal predicates.

Our work is still in its early stage. The re-
design of ArabTAG using a metagrammar started
4 months ago in the context of a PhD co-
supervision. So far, we generated 114 trees from
a description made of 30 classes (that is, 30 tree
fragments or combination rules). The metagram-
mar is about 600 lines long. We focused on ver-
bal predicates and are now working on nominal
phrases. We aim at out-performing the coverage
of ArabTAGv1 within a couple of years, while ex-
tending it with morphological and semantic infor-
mation (which impact syntax, e.g. word order or
agreements).

Arabic exhibits challenging properties includ-
ing its rich morphology (making use, among oth-
ers, of agglutination). We plan to integrate a mor-
phological dimension in our metagrammatical de-
scription following seminal work by Duchier et al.

(2012). The idea is to generate inflected forms
from a morphological meta-description. This
meta-description uses a two-layer representation.
First a constraint-based description of morpholog-
ical information (represented as ordered and po-
tentially empty fields) is defined. Then, surface
transformations (e.g. related to agglutination) are
captured by means of postprocessings (in our case
rewriting rules). The metagrammar compiler for
this morphological meta-description is compiled
from the selection of adequate description lan-
guages from XMG2’s library of language bricks.

4.3 About metagrammar development

While designing ArabTAG with XMG2, we set
up a development environment in order to check
grammar coverage (in particular aiming at re-

ducing both under and over-generation).12 More
concretely, together with the metagrammar which
actually consists of tree templates, we are also
designing proof-of-concept syntactic and mor-
phological lexicons for Arabic, following the 3-
layer lexicon architecture (tree templates, lemmas,
words) of the XTAG project (2001). Each new
syntactic phenomena included in ArabTAG leads
to the extension of a test corpus gathering both
grammatical and ungrammatical sentences (asso-
ciated with the number of expected parses). The
TuLiPA parser (Parmentier et al., 2008) is then run
on the test corpus to check the quality of the gram-
mar, producing logs which can help metagrammar
designer to fix potential bugs in the metagram-
matical description. An extract of these logs is
given in Fig. 1, and an example of derived tree in
Fig. 2.13

Axiom: sv

Anchoring failed on tree

Interrogative 2--ú �æÓ for lexical item

ú �æÓ
Grammar anchoring time: 0.023071728

sec.

@@##Tree combinations before classical

polarity filtering : 16

@@##Tree combinations after classical

polarity filtering : 2

Grammar conversion time: 0.051578702

sec.

Parsing time: 0.044386232 sec.

Sentence " �ú
Î«
�ÐA 	K ú �æÓ úÍ@
" parsed.

Forest extraction time: 0.003370246

sec.

Number of derivation trees 1

Parses available (in XML) in

corpus0.xml.

XML production time: 0.418911166 sec.

Total parsing time for sentence

" �ú
Î«
�ÐA 	K ú �æÓ úÍ@
" : 0.541318074 sec.

Figure 1: Log file produced during the develop-
ment of ArabTAG (extract)

5 Related Work

To our knowledge, there are very few TAG-based
descriptions of Arabic, the main attempt at such
a description being work by Habash and Rambow
(2004), where a tree-adjoining grammar was ex-
tracted from an Arabic Treebank (namely the Penn

12This development environment consists of Python
scripts.

13Note that the sentence is displayed in the discourse di-
rection (e.g., from left to right), a post-processing could be
applied to display the syntactic tree using the sentence direc-
tion (e.g., from right to left).

24

Figure 2: Derived tree for the sentence �ú
Î«
�ÐA 	K ú �æÓ úÍ@
 (’until when did Ali fall asleep ?’)

Arabic TreeBank – PATB). The corpus they used
is the Part 1 v 2.0 of PATB (Maamouri et al., 2003;
Maamouri and Bies, 2004). This extraction in-
volved a reinterpretation of the corpus in depen-
dency structures. The number of elementary trees
generated was very high but they did not necessar-
ily offer a good syntactic coverage. In fact, dur-
ing the process, the authors were able to extract
structures with varying positions of the sentence’s
component (grammatical functions). The resulting
combinations are VSO, SVO and OVS. However
they could not obtain the VOS combination. This
failure is due to the absence of such structures in
the corpus used for extraction. Furthermore, the
resource is redundant because the researchers ma-
nipulated textual forms and not parts-of-speech.
As acknowledged by the authors, this extraction
was not optimal (grammar cleaning was needed).
This somehow advocates for the conjoint use of
description languages (that is, not only automatic
extraction) to control the output grammar struc-
tures.

6 Conclusion and Future Work

In this paper, we showed how to produce a core
TAG for Arabic by using the XMG2 system (Pe-

titjean, 2014). First, a modular metagrammatical
language for TAG is described by assembling lan-
guage bricks and the corresponding metagrammar
compiler automatically built using the XMG2 sys-
tem. Then, this metagrammatical language is used
to describe TAG trees.

This metagrammatical description benefits from
XMG2’s high expressivity (e.g. parameterized
reusable tree fragments, node identification by
means of colors). In particular, we showed how
to describe in a relatively concise and yet eas-
ily extensible way, simple verbal subcategoriza-
tion frames in Arabic. Such a description uses a
verbal spine containing adjunction points to deal
with the various constituent orders in Arabic.

While this work is still in progress, we are con-
sidering several extensions of this approach be-
sides improving ArabTAG’s coverage. Namely,
we plan to integrate morphological and seman-
tic dimensions to ArabTAG borrowing ideas from
(Petitjean et al., 2015).

Acknowledgments

We are grateful to Simon Petitjean and three
anonymous reviewers for useful comments on this
work. This work was partially funded by LIFO.

25

References

Anne Abeillé, Marie Candito, and Alexandra Kinyon.
1999. FTAG: current status and parsing scheme. In
Proceedings of Vextal-99, Venice, Italy.

Fériel Ben Fraj. 2010. Un analyseur syntaxique pour
les textes en langue arabe à base d’un apprentissage
à partir des patrons d’arbres syntaxiques. Ph.D.
thesis, ENSI La Manouba, Tunisia.

Fériel Ben Fraj. 2011. Construction d’une grammaire
d’arbres adjoints pour la langue arabe. In Actes
de la 18e conférence sur le Traitement Automa-
tique des Langues Naturelles, Montpellier, France,
June. Association pour le Traitement Automatique
des Langues.

Benoı̂t Crabbé, Denys Duchier, Claire Gardent, Joseph
Le Roux, and Yannick Parmentier. 2013. XMG :
eXtensible MetaGrammar. Computational Linguis-
tics, 39(3):591–629.

Denys Duchier, Brunelle Magnana Ekoukou, Yan-
nick Parmentier, Simon Petitjean, and Emmanuel
Schang. 2012. Describing Morphologically-rich
Languages using Metagrammars: a Look at Verbs
in Ikota. In Workshop on ”Language technology
for normalisation of less-resourced languages”, 8th
SALTMIL Workshop on Minority Languages and
the 4th workshop on African Language Technology,
pages 55–60, Istanbul, Turkey.

Dina El Kassas and Sylvain Kahane. 2004.
Modélisation de l’ordre des mots en arabe standard.
In Atelier sur le traitement de la langue arabe, JEP-
TALN 2004, page 6. Modélisation de l’ordre des
mots en arabe standard. Journées déroulées du 19
au 23 avril à Fès (Maroc).

Roger Evans and Gerald Gazdar. 1996. DATR: A lan-
guage for lexical knowledge representation. Com-
putational Linguistics, 22(2):167–216.

Claire Gardent. 2008. Integrating a unification-based
semantics in a large scale Lexicalised Tree Ad-
joininig Grammar for French. In Proceedings of the
22nd International Conference on Computational
Linguistics (COLING’08), pages 249–256, Manch-
ester, UK.

Nizar Habash and Owen Rambow. 2004. Extracting a
tree adjoining grammar from the penn arabic tree-
bank. Proceedings of Traitement Automatique du
Langage Naturel (TALN-04), pages 277–284.

Djamel Kouloughli. 1992. La grammaire Arabe pour
tous. Press Pocket.

Mohamed Maamouri and Ann Bies. 2004. Develop-
ing an arabic treebank: Methods, guidelines, pro-
cedures, and tools. In Ali Farghaly and Karine
Megerdoomian, editors, COLING 2004 Compu-
tational Approaches to Arabic Script-based Lan-
guages, pages 2–9, Geneva, Switzerland, August
28th. COLING.

Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim
Buckwalter. 2003. Arabic treebank: Part 1 v 2.0.
LDC Catalog No.: LDC2003T06, ISBN: 1-58563-
261-9, ISLRN: 333-321-196-670-5.

Yannick Parmentier, Laura Kallmeyer, Timm Lichte,
Wolfgang Maier, and Johannes Dellert. 2008.
TuLiPA: A Syntax-Semantics Parsing Environment
for Mildly Context-Sensitive Formalisms. In 9th In-
ternational Workshop on Tree-Adjoining Grammar
and Related Formalisms (TAG+9), pages 121–128,
Tübingen, Germany.

Simon Petitjean, Younes Samih, and Timm Lichte.
2015. Une métagrammaire de l’interface morpho-
sémantique dans les verbes en arabe. In Actes de la
22e conférence sur le Traitement Automatique des
Langues Naturelles, pages 473–479, Caen, France,
June. Association pour le Traitement Automatique
des Langues.

Simon Petitjean. 2014. Génération Modulaire de
Grammaires Formelles. Ph.D. thesis, Université
d’Orléans, France.

James Rogers and K. Vijay-Shanker. 1994. Obtaining
trees from their descriptions: An application to tree-
adjoining grammars. Computational Intelligence,
10:401–421.

Stuart M. Shieber, Hans Uszkoreit, Fernando Pereira,
Jane Robinson, and Mabry Tyson. 1983. The for-
malism and implementation of PATR-II. In Bar-
bara J. Grosz and Mark Stickel, editors, Research
on Interactive Acquisition and Use of Knowledge,
techreport 4, pages 39–79. SRI International, Menlo
Park, CA, November. Final report for SRI Project
1894.

Éric Villemonte De La Clergerie. 2010. Building fac-
torized TAGs with meta-grammars. In The 10th
International Conference on Tree Adjoining Gram-
mars and Related Formalisms - TAG+10, pages
111–118, New Haven, CO, United States, June.

Fei Xia. 2001. Automatic Grammar Generation from
two Different Perspectives. Ph.D. thesis, University
of Pennsylvania.

XTAG Research Group. 2001. A Lexicalized Tree
Adjoining Grammar for English. Technical Report
IRCS-01-03, IRCS, University of Pennsylvania.

26

