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Abstract

This paper presents the SeeDev Task of the
BioNLP Shared Task 2016. The purpose
of the SeeDev Task is the extraction from
scientific articles of the descriptions of ge-
netic and molecular mechanisms involved
in seed development of the model plant,
Arabidopsis thaliana. The SeeDev task
consists in the extraction of many different
event types that involve a wide range
of entity types so that they accurately
reflect the complexity of the biological
mechanisms. The corpus is composed
of paragraphs selected from the full-texts
of relevant scientific articles. In this
paper, we describe the organization of the
SeeDev task, the corpus characteristics,
and the metrics used for the evaluation
of participant systems. We analyze and
discuss the final results of the seven partic-
ipant systems to the test. The best F-score
is 0.432, which is similar to the scores
achieved in similar tasks on molecular
biology.

1 Introduction

Since its first edition in 2009, BioNLP Shared
Task (BioNLP-ST) organizes information extrac-
tion (IE) tasks from scientific literature with a
focus on molecular mechanisms with the aim to
promote advances in IE research in the biomedical
domain. The SeeDev task is the first task on event
extraction about molecular biology of plants. It
gives an opportunity for the BioNLP community
to evaluate the reusability of methods, to charac-
terize the peculiarities of IE for the plant biology
domain and to develop dedicated approaches. For
this purpose, we manually annotated a new corpus
of scientific papers selected for their relevance

to the topic. We propose to the participants to
extract text-bound events that involve biological
entities provided as input. The performances of
the systems are evaluated by standard measures
through the comparison of their predictions to the
reference annotations.

2 Context

Seeds are the main vectors for breeding and pro-
duction of annual field crops. The accumulation
of seed storage compounds (e.g. sugars, lipids,
proteins) is of primary importance for food, feed
and industrial uses. Seed development requires
the coordinated growth of different tissues that
involves complex genetics and environmental reg-
ulations (Alberts et al., 2002). A comprehensive
understanding of the molecular networks that un-
derlie the regulation of seed development remains
a major scientific challenge with important poten-
tial impact on fundamental research, agriculture
and industry.

The SeeDev task of BioNLP Shared Task 2016
focuses on the accumulation of reserves in the seed
of the model plant, Arabidopsis thaliana (Ath),
for which research on regulatory networks is the
subject of a large and active international commu-
nity (Santos-Mendoza et al., 2008). Most of this
knowledge is spread in thousands of articles. As
such, this topic constitutes an excellent primer for
the development of event extraction methods. The
SeeDev corpus should then be largely reusable for
the study of other plants and other development
phases.

Information Extraction research applied to biol-
ogy mainly consists in automatic entity extraction,
their normalization and event extraction (Anani-
adou et al., 2014). The extraction of regulatory
network has become one of the most popular tasks
in shared tasks in recent years. The increasing
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complexity of the event scheme over the years
is driven by the significant scientific advances
in IE and the increasing need for computational
models in bioinformatics and systems biology. In
2005, the objective of the Learning Language
in Logic challenge (LLL’05) was the extraction
of gene interactions between proteins and genes
with the goal of reconstructing bacterial regulatory
networks (Nédellec, 2005). The diversity of the
biological events (molecular, physiological) and
entities (genes, proteins, families, sites, environ-
mental factors and phenotypes) has continuously
increased over the time together with the variety
of the biological mechanisms studied. These
mechanisms range from detailed networks as in
Bacteria Interaction (Bossy et al., 2012) and
Gene Regulation Network (Bossy et al., 2015)
tasks, signaling pathways as in GENIA task (Kim
et al., 2013a) and metabolism to diseases as
in Pathway Curation (PC) and Cancer Genetics
(CG) tasks (Pyysalo et al., 2015). Their extraction
from text makes an increasing use of existing
standards, nomenclatures and ontologies such as
Gene Ontology that facilitates the integration of
the text mining results into larger knowledge bases
and bioinformatics applications (e.g. GRO task
(Kim et al., 2013b)) or OntoBiotope (e.g. Bacteria
Biotope task (Bossy et al., 2015)).

The SeeDev task brings a new application
domain, plant development biology, with similar
goals and representation as previous IE shared
tasks on biological event extraction. This new
application domain has required the design of a
new knowledge model for the representation of
the events, a manually annotated corpus and new
metric that accounts for the varying importance of
the event arguments.

We refer to the SeeDev task knowledge model
as Gene Regulatory Network for Arabidopsis
(GRNA). GRNA meets the usual constraints of
manual annotation of texts (e.g. biological rel-
evance and computational tractability), and of
automatic annotation by IE methods ( e.g. learn-
ability from training examples). We have also
taken into account the expected use of GRNA
for the indexing and retrieval of textual events
and experimental data in a unified representation,
the modeling of other plant systems, and also
the integration of text knowledge with knowledge
derived from experimental data.

SeeDev corpus is composed of paragraphs from

a selection of recent full-text scientific papers
about molecular biology of seed development.

3 Task Description

The SeeDev Task consists in two subtasks (1)
SeeDev-binary on binary relation extraction and
(2) SeeDev-full on full event extraction. The
SeeDev-binary subtask has been conceived as a
first step towards the extraction of full n-ary
events, which is of interest for plant biology.
Both subtasks share the same GRNA model and
the same document set with different annotation
sets. The two annotations sets contain binary
relations and events respectively. The annotation
set of SeeDev-binary has been computed from
the annotation set of SeeDev-full through the
application of formal transformation rules.

3.1 Knowledge Representation
The GRNA model defines 16 entity types
(Figure 1) and 21 event types (Table 1). They are
classified into categories and subcategories for
readability purpose.

Molecule:
DNA: Gene, Gene Family, Box, Promoter
DNA product : RNA, Protein, Protein Family,

Protein Complex, Protein Domain
Hormone: Hormone
Dynamic Process: Regulatory Network,

Pathway
Context: Tissue, Development Phase,

Genotype, Environmental Factor

Figure 1. SeeDev entity types.

The Molecule category includes molecules that
are directly involved in regulation, such as Hor-
mone that plays a critical role in plant growth,
and Protein Domain and DNA regions (Box, Pro-
moter) for the representation of physical binding
events. Protein and gene families are also impor-
tant entities because they are mentioned as actors
of the regulations in some papers without more
precision on the exact molecule. The Dynamic
Process category is defined by two broad entity
types, Regulatory Network and Metabolic path-
way, with the purpose of keeping the complexity
of the extraction task tractable. Moreover, the
distinction in the SeeDev corpus between specific
kinds of networks or pathways would have been
difficult, if not impossible because the authors
themselves remain vague.
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Relation Name Definition # Train Dev Test Total
Regulation 1731 46% 22% 31% 48%

Regulates Accumulation (Reg-
ulation Of Accumulation)

A Molecule, Dynamic Process or Context regu-
lates the accumulation of a Functional Molecule
(in particular, [Protein], [RNA ], [Hormone]).

81 44% 36% 20% 2%

Regulates Development Phase
(Regulation Of Development
Phase)

A Molecule, Dynamic Process or Context regu-
lates the activity of a Development phase. 242 44% 24% 32% 7%

Regulates Expression (Regu-
lation Of Expression)

A Molecule, Dynamic Process or Context
regulates the expression of a DNA entity. DNA
entity includes [Promoter] and [ Box].

450 45% 25% 31% 13%

Regulates Molecule Activity
(Regulation Of Molecule Activ-
ity)

An Agent (Molecule, Dynamic Process or Con-
text) regulates the activity of a Molecule, such as
[Protein].

25 64% 0% 36% 1%

Regulates Process (Regula-
tion Of Process)

A Molecule, Dynamic Process or Context
regulates the activity of a Dynamic Process. 904 48% 20% 32% 25%

Regulates Tissue Development
(Regulation Of Tissue Develop-
ment)

A Molecule, Dynamic Process or Context regu-
lates the activity of a Tissue Development. 29 31% 31% 38% 1%

Function 257 42% 28% 30% 7%
Is Involved In Process (Involve-
ment In Process) A Molecule is involved in a Dynamic Process. 55 42% 36% 22% 2%

Transcribes Or Translates To
(Transcription Or Translation)

A DNA entity encodes for a RNA (Transcription)
or a RNA entity encodes a Protein (Translation).
Often, reference is made to the gene encoding the
protein, without mention of the RNA.

54 46% 24% 30% 2%

Is Functionally Equivalent To∗

(Functional Equivalence)
A Molecule, Dynamic Process or Context is
compared to a similar entity. 148 41% 26% 33% 4%

Interaction 264 46% 21% 33% 7%
Interacts With (Interaction) A molecule interacts with another molecule. 148 42% 22% 36% 4%

Binds To (Binding) A functional molecule physically binds to a
molecule. 116 52% 21% 28% 3%

Where and When 704 45% 23% 32% 20%
Exists At Stage (Presence At
Stage)

A Molecule is present during a Developmental
phase. 33 45% 24% 30% 1%

Exists In Genotype (Presence
In Genotype)

A Molecule or Element is present in a Geno-
type 377 45% 21% 34% 11%

Occurs During (Occurrence
During) A Process occurs during a Developmental Phase. 30 27% 33% 40% 1%

Occurs In Genotype (Occur-
rence In Genotype) A Process occurs in a Genotype 48 38% 33% 29% 1%

Is Localized In (Localization) A Molecule is found in a Tissue 216 50% 22% 29% 6%
Composition and Membership 532 44% 22% 34% 15%
Composes Primary Structure
(Primary Structure Composi-
tion)

A specific sequence of nucleotide is found in a
DNA entity. 51 39% 29% 31% 1%

Composes Protein Complex
(Protein Complex Description)

A specific DNA product is found in a Protein
complex. 19 84% 0% 16% 1%

Has Sequence Identical To∗

(Sequence Identity)

A Molecule, Dynamic Process or Context is com-
pared to a similar Molecule, Dynamic Process or
Context.

126 49% 16% 35% 4%

Is Member Of Family (Family
Membership)

A DNA, RNA or Protein belongs to another
DNA, Product or Factor. Used between entities
of the same nature to denote members of a set.

230 39% 24% 37% 6%

Is Protein Domain Of (Protein
Domain Composition)

A specific Protein Domain is found in an amino
acid sequence. 106 43% 27% 29% 3%

Specific to Binary scheme 87 51% 26% 23% 2%

Is Linked To∗
Used to derive binary relations from n-ary events:
it relates optional and main arguments of n-ary
events.

87 51% 26% 23% 2%

Total 3575 46% 23% 32% 100%

Table 1: Definition of relations and example distribution in SeeDev Binary subtask. Event names are
into brackets. (Event arguments are ordered, except events marked with *.)
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N-ary representation : Binding
Mandatory arguments Optional arguments

Role Functional
Molecule

Molecule Tissue Developmental
Stage

Organism
Genotype

Environmental
Factor

Hormone

Signature RNA, Protein,
Protein
Family,
Protein
Complex,
Protein
Domain,
Hormone

Gene, Gene
Family, Box,
Promoter,
RNA, Protein,
Protein
Family,
Protein
Complex,
Protein
Domain,

Tissue Development
Phase

Genotype Environmental
Factor

Hormone

Binary representation : Binds to

Figure 2: Representation of Binds to and Binding relation, with mandatory and optional arguments.
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Gene 5 6 3 3 3 5 5 5 3 3 3 3 1 1 1 1
Gene Family 5 6 3 3 3 5 5 5 3 3 3 3 1 1 1 1
Box 3 3 6 4 2 4 4 4 2 3 3 3 1 1 1 1
Promoter 3 3 4 6 2 4 4 4 2 3 3 3 1 1 1 1
RNA 3 3 3 3 6 6 6 6 4 4 3 3 1 2 2 1
Protein 4 4 4 4 4 7 8 6 3 4 3 3 1 2 2 1
Protein Family 4 4 4 4 4 7 8 6 3 4 3 3 1 2 2 1
Protein Complex 4 4 4 4 4 5 5 8 3 4 3 3 1 2 2 1
Protein Domain 4 4 4 4 4 6 6 7 6 4 3 3 1 2 2 1
Hormone 3 3 3 3 3 4 4 4 2 6 3 3 1 2 2 1
Regulatory Network 2 2 2 2 2 3 3 3 1 3 4 2 1 2 2 1
Metabolic pathway 2 2 2 2 2 3 3 3 1 3 2 4 1 2 2 1
Genotype 1 1 1 1 1 2 2 2 0 2 1 1 3 1 1 0
Tissue 1 1 1 1 1 2 2 2 0 2 1 1 1 3 1 0
Development Phase 1 1 1 1 1 2 2 2 0 2 1 1 1 1 3 0
Environmental Factor 2 2 2 2 2 3 3 3 1 3 2 2 1 2 2 3

Figure 3: Number of relation type by pairs of argument types.

The conditions in which the regulations occur
represent critical information about the event
context. The entity types represent spatial condi-
tions (Tissue), temporal conditions (Development
phase), the organism, which is genetically mod-
ified or not (Genotype), and the environmental
factors (biotic and abiotic external conditions).
The entities in the corpus are denoted by indi-
vidual words or by sets of words that may be
discontinuous.

The 21 GRNA event types are grouped in
6 sets, according to their biological role (Ta-
ble 1). The Regulation, Function and Interaction
categories are central for the description of the

biological mechanisms. Where and When event
types represent the context of the mechanisms,
whilst Composition and Membership events allow
to finely represent relations among the biological
entities. Some of the event types, e.g. Regulates
Expression / Process / Molecule Activity are very
similar to those of other molecular biology IE
event schemes such as the ones of GENIA (Kim et
al., 2013a), Cancer Genetics (Pyysalo et al., 2015)
and Arabidopsis Leaf Growth (LG) (Szakonyi
et al., 2015). Other GRNA event types are
specific to biological development, e.g. Regulates
Development Phase / Tissue Development or to the
storage process, e.g. Regulates Accumulation. The

4



LG model of Szakonyi et al. (2015) dedicated to
Ath does not include plant or development specific
events to be reused in GRNA. Protein modification
and metabolism in GENIA and PC tasks and
regulation of phenotype in LG, were not relevant
for the SeeDev corpus but will be addressed in
priority in further extensions of GRNA.

The first column of Table 1 displays the binary
relation names of SeeDev-binary subtask and the
n-ary event names of SeeDev-full subtask in
brackets, with their definition in column two. N-
ary events have two mandatory arguments and up
to five optional arguments: Tissue, Developmental
Stage, Organism, Genotype, Environmental Fac-
tor, and Hormone.

Furthermore, n-ary events may have a negation
modality. Participants are provided with text doc-
uments, gold entity annotations, and the detailed
signatures of each event, i.e. the list of allowed
types per slot. Figure 2 gives, for example, the
Binding event signature.

The use of a strongly typed model facilitates the
event prediction because it drastically reduces the
number of event candidates given the types of the
arguments. Figure 3 shows the number of relation
types per pair of argument types. For example the
argument pair (Arg1: Development Phase / Arg2:
Protein Domain) does not accept any relation
type; whereas the pair (Arg1: Protein / Arg2:
Protein Family) may be involved into 8 different
relations. The formal specification of event signa-
tures drastically reduces the exploration space of
possible events.

3.2 Sub-Task 1: SeeDev Binary Relation
Extraction

The goal of SeeDev-binary is the extraction of
binary relations of 22 different types without
modality (no negation) as described in Table 1.
The Is Linked To relation is computed from the
n-ary events, it links mandatory arguments to
optional arguments. Figure 4.a gives an example
of SeeDev-binary annotation with 3 different rela-
tions.

3.3 Sub-Task 2: SeeDev Full Relation
Extraction

SeeDev-full aims at extracting n-ary events where
the number of arguments ranges from two to
eight, plus a negation modality. There are three
arguments in average. There is no trigger word
in SeeDev event representation. Events relate

Figure 4: Examples of an annotated sentence in
(a) SeeDev-binary task and (b) SeeDev-full task

either entities or other events. Figure 4.b gives
an example of a Binding event with a Genotype
argument. In the binary version (Figure 4.a), the
Genotype becomes a mandatory argument of one
of the Exists In Genotype relations.

4 Corpus Description

The SeeDev corpus is a set of 86 paragraphs
from 20 full-text articles, selected by plant biology
experts, about seed development in Arabidopsis
thaliana. Table 2 summarizes the SeeDev corpus
statistics and data distribution in the Training,
Development and Test sets.

# Train Dev Test
Documents 20 90% 75% 80%
Paragraphs 87 45% 22% 33%
Words 44,857 45% 23% 33%
Entities 7,082 46% 23% 31%
Events 2,583 45% 23% 32%
Relations 3,575 46% 23% 32%

Table 2. SeeDev corpus statistics.

Paragraphs of the same document may be dis-
tributed into different sets. The “Documents” row
indicates the proportion of documents represented
in the set. The SeeDev corpus is smaller than
other BioNLP-ST corpora, e.g. a fifth of Cancer
Genetics corpus and a third of GENIA corpus. The
manual annotation of the SeeDev corpus required
a high level of expertise that do not allow for a
large corpus, as in many specific domains of Life
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Science. We identify small dataset processing as
a challenge to overcome by information extraction
tools.

Table 1 details the distribution of instances per
relation type in the training, development and test
sets of the SeeDev-binary task. The distribution
was balanced between the three data sets so that
the test set would represent approximately a third
of the annotations for each group of relations.
The most frequent relations are Regulation with
48% of annotations, which corresponds to what
is expected given the corpus domain. The three
relations Regulate Expression, Regulates Process
and Exist in Genotype, highlighted in Table 1,
account for half of the total, whilst seven of the
relations are relatively infrequent with 1% of the
total.

5 Annotation Methodology

We have successively refined the annotation
scheme of GRNA during the annotation process.
We have defined an initial annotation scheme
according to our expertise in A. thaliana seed de-
velopment and in BioNLP task definition, starting
from the GRN model (Bossy et al., 2015).

The scheme was improved through several
iterations of manual annotations and collective
discussions until it met the requirements, i.e. it
allowed unambiguous, consistent, readable and
detailed formal annotations. Together with the
scheme, a very precise guideline document (Chaix
et al., 2016) was produced that details the annota-
tion principles for each entity and event type, and
provides many examples and counter-examples.

The relevant paragraphs of the corpus were
chosen by the biologists, mostly from the abstract,
introduction, result and discussion sections. A
team of three experts in seed development and
two bioinformaticians has manually annotated the
corpus following the guidelines by using the
AlvisAE Annotation Editor (Papazian et al., 2012)
in accordance with the final version of the scheme.

5.1 Automatic Annotation

Rigid designators of named entities, such as Gene,
Protein, Tissues, and Developmental Phases were
automatically pre-annotated with the AlvisNLP
pipeline using relevant Ath databases (e.g. TAIR1)
and customized lexicons. The goal of automatic

1The Arabidopsis Information Resource http://
arabidopsis.org/

pre-annotation was to speed-up the manual anno-
tation process. The evaluation of the automatic
annotation compared to the gold standard annota-
tion shows a F-score equal to 0.41, with a high
precision (0.89) and low recall (0.26) due to a lack
of relevant lexicon for most entity types.

5.2 Manual Annotation

The manual annotation has been achieved in four
successive phases in order to both save expert time
and achieve a high quality annotation. First, a
bioinformatician who is not a specialist of Ath
annotated all the entities of the corpus. The
evaluation of the manual annotation of the entities
compared to the gold standard annotation yielded
a high 0.93 F-score with balanced Recall and
Precision, 0.93 and 0.95 respectively.

Then Ath experts revised the entity annotations
and annotated the events of the corpus in a
double-blind manner. Thanks to the manual
pre-annotation of entities, they could focus on
events which require more expertise. Next, the
annotators together with the bioinformatician used
the AlvisAE conflict resolution functionality to
build a consensus. Finally, the bioinformati-
cian carefully checked the compliance of each
annotation to the guidelines to produce the gold
annotation set.

To evaluate the inter-annotator agreement, we
measured the F-score between the annotation set
of each annotator (referred to as A and B) and the
consensus annotation set (i.e. gold annotations)
(Table 3). The differences between the individual
annotators vary according to the event types. The
recall measure of the annotations of events with
arguments of Process type without regulation (Is
Involved In Process) and events with Genotype
arguments (Exists In Genotype, Occurs In Geno-
type) is lower.

Mistyping Regulates Accumulation was fre-
quent because this event is easily confused with
Regulates Molecule Activity. Annotations from
annotator B are closer to the reference annotation,
but the examination of the union of both annota-
tion sets shows that annotator B missed events that
were well annotated by A. The 0.724 F-score of
the union of A and B annotation sets is quite high.
The last step of the SeeDev corpus construction is
the adjudication between the two annotators with a
third person as external referee. It was an essential
step to avoid event oversight.
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Annotator F1 Recall Precision
A 0.548 0.417 0.798
A (T) +0.048 +0.031 +0.058
B 0.653 0.575 0.754
B (T) +0.069 +0.071 +0.080
A U B 0.724 0.720 0.728
A U B (T) +0.045 +0.045 +0.045
Table 3: Evaluation of the inter-annotator

agreement by comparing each annotator output to
the reference annotation. (T) indicates the gain if

relation types are ignored. A U B denotes the
union of annotations from annotators A and B.

6 Evaluation Procedure

6.1 Shared Task Organization
As for previous challenges, BioNLP-ST 2016 pro-
vides resources and information to the participants
through the BioNLP-ST website2and mailing lists.
The schedule of the SeeDev task follows the usual
principles of BioNLP-ST tasks, it can be found on
dedicated pages.

We provided state-of-art automatic NLP anal-
ysis as supporting resources with the purpose
to speed-up the participant system development.
Nine tools were selected and applied to the
training, development and test sets: POS tagger
(GENIA Tagger (Tsuruoka et al., 2005)), parsers
(Stanford Parser (Manning, 2003) Enju (Miyao
and Tsujii, 2008) C&C CCG Parser (Clark and
Curran, 2007)), term extractor (BioYaTeA (Golik
et al., 2013)) named entity recognizers (Stanford
NER (Finkel et al., 2005) LINNAEUS (Gerner et
al., 2010) SR4GN (Wei et al., 2012)) and tokenizer
and sentence splitter (AlvisNLP suite (Ba and
Bossy, 2016)).

Community web tools (forum, FAQ and mailing
list) have been made available on the website with
the purpose to federate the community that partic-
ipates to the challenge. In this way participants
could interact with the task organizers and with
other participants.

Furthermore, participants could evaluate their
predictions through an online evaluation service.
During the training phase it was restricted to the
evaluation on training and development sets. The
service allows now to evaluate predictions on the
test set and will remain open. For the first time
in BioNLP-ST, participants could also keep track

2BioNLP-ST website http://2016.bionlp-st.
org/tasks/seedev

of the performance of various experiments through
the same online service. Thus, participants could
follow and compare their results and competing
team results. The recorded submissions were kept
anonymous to other participants. The aim of this
tool was to ease the interpretation of the scores
and to assist participants in the development-test
cycles.

6.2 Evaluation Metrics

The evaluation measures of the participant system
results are computed through the comparison of
predicted events against reference corpus events.
In SeeDev-binary the participants had to predict
relations between entities given as input. This
task can be viewed as a classification task of all
pairs of entities. Thus, we evaluate submissions
with Recall, Precision and F-score. Submissions
were ranked by F-score, however we also pro-
vided alternate evaluations in order to assess the
strengths of each submission for each relation type
separately, for each broad category of relations
separately and without taking into account the
relation types.

We also designed a measure for SeeDev-full
task evaluation that is permissive for optional
arguments. The evaluation is detailed on the
task web site and is available through the online
evaluation service to the benefit of teams that will
bravely tackle this task.

7 Results

7.1 Participating Systems

Seven teams from 4 continents submitted their
results to the test of the SeeDev binary task that
are: DUTIR (Dalian University of Technology,
China), LIMSI (CNRS, France), LitWay (Xidian
University, China), ULisboa (LaSIGE, Universi-
dade de Lisboa, Portugal), UniMelb (University
of Melbourne, Australia), VERSE (University of
British Columbia, Canada) and UTS (University
of Turku, Finland).

Their main background domains are Bioinfor-
matics, Machine Learning, Natural Language Pro-
cessing and Biology according to their responses
to a survey.

Table 4 summarizes the scores obtained by the
participant systems ranked by F1-score (detailed
results are available on the SeeDev site). The
results of the DUTIR system are not displayed
because they experienced a last minute hitch
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and ranked last. LitWay from Xidian University
achieves the best F1-score (0.432), 0.068 points
higher than the second team and 0.177 points
higher than the lowest score at 0.255. The two
systems that ranked first achieved a balanced recall
and precision, while the four others favored recall
over precision (VERSE, LIMSI), or the reverse
(UTS, ULISBOA). VERSE obtained the best recall
and UTS the best precision.

Participant F1 Recall Precision
LitWay 0.432 0.448 0.417
UniMelb 0.364 0.386 0.345
VERSE 0.342 0.458 0.273
UTS 0.335 0.245 0.533
ULISBOA 0.306 0.256 0.379
LIMSI 0.255 0.318 0.212

Table 4: Evaluation scores of the SeeDev binary
task ranked by F- score.

The best F1-scores are very similar to the ones
achieved by participants of previous shared tasks
on regulation event extraction around 50% ( e.g.
GRN, CG, PC), which is over what could be
expected given the complexity and the novelty
of the task and the variability of the example
distribution among the events.

As shown by Table 5, the detailed scores per
relation exhibit a high variability. Some relations
were difficult to predict (e.g. Regulates Tissue De-
velopment, Regulates Molecule Activity, Occurs
During) while others were well-predicted (e.g.
Composes Primary Structure with a maximum F1-
score of 0.67).

As usual in such corpus, the analysis of the
results shows that the causes are multifactorial, we
hypothesize that the number of training examples
combined with the regularity of the descriptions
and the constraints imposed by the event signature
are critical. For instance, the Composes Primary
Structure relation has only 51 examples, but it
links entities from a restricted range of types,
which makes it easier to predict (0.67 best F1-
score). However, other relations such as Regulates
Expression with a high number of examples (450
examples), inter sentence occurrences (23) and a
wide range of argument types (4 types for the
first argument and 16 for the second) were poorly
predicted (0.39 best F1-score).

The scores of most of the systems remain
unchanged when the dataset is restricted to the

Relation Best F1
score System

All Relations 0.432 LitWay
Where and When 0.142 LitWay
Exists At Stage 0.167 ULISBOA
Exists In Genotype 0.492 LitWay
Occurs During 0 -
Occurs In Genotype 0.167 VERSE
Is Localized In 0.450 LitWay
Function 0.255 ULISBOA
Is Involved In Process 0 -
Transcribes Or Translates To 0.343 VERSE
Is Functionally Equivalent To 0.708 LitWay
Regulation 0.416 LitWay
Regulates Accumulation 0.316 UniMelb
Regulates Development Phase 0.376 UniMelb
Regulates Expression 0.386 UniMelb
Regulates Molecule Activity 0
Regulates Process 0.504 LitWay
Regulates Tissue Development 0 -
Composition MemberShip 0.490 LitWay
Composes Primary Structure 0.667 LIMSI
Composes Protein Complex 0.500 UTS
Has Sequence Identical To 0.867 LitWay
Is Member Of Family 0.534 LitWay
Is Protein Domain Of 0.438 LitWay
Interaction 0.303 UniMelb
Interacts With 0.286 UniMelb
Binds To 0.310 VERSE
Is Linked To 0.154 VERSE

Table 5: Best F1-score per relation and per
category of relation.

relations that occur in a single sentence. The dif-
ference of the results obtained for intra-sentence
dataset are less than 1 point, except for Limsi that
gains 0.056 points; indeed, Limsi is the only team
that attempts to predict inter-sentence relations
whereas all other participant systems predicted
only intra-sentence relations. Given the proportion
of inter-sentence relations in the test set (4%),
the penalty of ignoring them could have been
considered as bearable.

In order to assess the difficulty to predict the
correct relation type, we computed the F-scores
when considering the category of the relations
instead of the actual type (first line per category
in bold and italic in Table 5). This did not yield
a significant improvement although some partici-
pants were able to successfully predict events in
categories with high biological relevance, such as
the Regulation category ( Litway F1: 0.416) and
the Interaction category ( UniMel F1: 0.303).
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7.2 Systems Description and Result
Discussion

All teams used supervised machine-learning ap-
proaches (Table 6). Five systems used support
vector machines (SVM) and two systems were
based on different algorithms, namely maximum
entropy (MaxEnt) (LIMSI) and convolutional neu-
ral network (DUTIR).

Participant General method
LitWay Hand crafted patterns + SVM
UniMelb SVM + Bayes classifiers
VERSE Linear SVM
ULISBOA SVM kernel based
UTS SVM multi-classification
LIMSI Bag of words
DUTIR Convolutional neural network

Table 6: General methods of the participants

SVM are widely used for information extrac-
tion tasks, because they are powerful versatile
classifiers. SVM are kernel-based and there are
several existing kernels available (Zelenko et al.,
2003) adapted to different object representations.
For instance, dependency-path kernels (Bunescu
and Mooney, 2005; Airola et al., 2008) handle
candidates represented as syntactic dependency
paths. Moreover, the usual feature selection
methods can be handled by kernels that work on
vectorial representations. MaxEnt and neural net-
works are also popular algorithms in information
extraction tasks (McCallum et al., 2000). The
most notable characteristic of the best performing
system, LitWay, is that it combines supervised
machine learning for the prediction of a selection
of event types with hand-crafted rules for the
prediction of other types.

All teams used token segmentation, sentence
splitting and token normalization (stemming,
lemmatization, POS-tagging). Four teams, among
which the three top ranking also used deep syn-
tactic parsing, which confirms that parsing is a
powerful pre-processing step for information ex-
traction. Finally, the LitWay system also designed
features based on word embedding which is a
novelty in the BioNLP-ST.

8 Conclusion

We have described the SeeDev task that we
have designed with the goal to promote progress
in information extraction in the field of plant

development and more precisely plant regulatory
networks. Two sub-tasks were proposed with
increasing levels of complexity, SeeDev-binary on
binary relations and SeeDev-full on events.

The lack of participation to SeeDev-full shows
that the extraction of n-ary events with optional
arguments remains challenging.

Seven teams from different countries partici-
pated in the SeeDev-binary task with different
approaches. The results are very promising, given
the novelty of the task and the complexity of the
model. The best F-score, 0.432, is close to what
has been previously obtained in similar IE tasks
on molecular biology.

The good results achieved by hybrid methods
using machine learning and handcraft patterns
show that efficient adaptation of generic methods
to the task could rely not only on machine
learning, but also on alternative approaches. This
observation may also be true for the extraction of
n-ary events from binary relations where rewriting
rules may complement machine learning methods.
This may be particularly appropriate for relatively
small corpora as SeeDev, which belongs to a
domain where a trade-off has to be found between
the time needed for the training corpus annotation
and the time needed for the manual development
of dedicated rules for the IE method.
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