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Abstract

In this paper we describe SoMaJo, a rule-
based tokenizer for German web and social
media texts that was the best-performing
system in the EmpiriST 2015 shared task
with an average F1-score of 99.57. We give
an overview of the system and the phenom-
ena its rules cover, as well as a detailed
error analysis. The tokenizer is available as
free software.

1 Introduction

At first sight, tokenization is not only boring but
also trivial. Humans have few problems with this
task for at least two reasons: (1) They are experts
at pattern-finding (see, for example, Tomasello,
2003). Thus, whether the form “your” in an En-
glish Facebook post is to be read as one unit (the
possessive determiner) or as two (a common mis-
spelling of “you’re”), usually causes less problems
due to the highly disambiguating grammatical con-
text. (2) They are happy to accept meaningful units
without having to determine the exact number of
units. While most tokenization guidelines force us
to treat “ice cream” as two tokens and “ice-cream”
as one token, there often is no difference to na-
tive speakers – though it is possible to predict the
spelling to some extent based on linguistic con-
text, frequency, etc. (cf. Sanchez-Stockhammer, in
preparation).

However, given the layered approach typically
taken by NLP pipelines, no analysis of the gram-
matical context is available at the time when tok-
enization takes place since tokenization is one of
the first steps in an NLP text processing pipeline, of-
ten only preceded by sentence splitting.1 However,

1In order to arrive at a sensible text corpus, there may of
course be other preprocessing steps involved, such as boiler-
plate removal or duplicate detection.

tokenization is not fully independent of sentence
splitting due to the ambiguity of some punctuation
marks, most notoriously the baseline dot, which
can for instance occur as (1) period/full stop to
mark the end of a sentence, (2) marker of abbrevi-
ated forms, (3) decimal mark separating the integer
from the fractional part of a number, (4) separator
of host name, subdomain, domain, top-level do-
main in Internet addresses, (5) part of a so-called
horizontal ellipsis (“...”). When all these restric-
tions are in place, tokenization immediately be-
comes more challenging as a task, also for humans.
Thus whether the string “No.” should be treated
as one token or as two is impossible to decide out
of context, since it could be a short answer to a
question (“Would you like to join us for lunch?” –
“No.”) or it can be an abbreviation for “number”
(“No. 6”). In the former case, tokenization should
identify two tokens, in the latter only one. Thus the
challenge for any tokenizer is to make use of the
linguistic context to disambiguate potentially am-
biguous forms even though no higher-level gram-
matical analysis (i. e. PoS-tagging, lemmatization
or even syntactic or semantic analysis) is available.
In a way, some of the work done by these high-level
tools is thus duplicated in the tokenizer, e. g. identi-
fying numbers, identifying punctuation, identifying
proper names (in English) or nouns in general (in
German) based on capitalization, where necessary
for the tokenization.

Of course, an extremely large proportion of tok-
enization is indeed straightforward. A simple split
on white space and common punctuation marks
will result in an average F1-score of 96.73 on the
test data set used for the present task (cf. Section 4).
However, the amount of work that is required to get
closer to 100% is inversely proportional to the ef-
fect size of the improvements that can be achieved,
which means that the bulk of this paper is devoted
to the remaining 3.27%.
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The EmpiriST 2015 shared task on automatic
linguistic annotation of computer-mediated com-
munication / social media (Beißwenger et al., 2016)
consists of two subtasks that deal with NLP for
web and social media texts: (1) Tokenization and
(2) part-of-speech tagging. We participated in the
first subtask and developed a rule-based tokenizer
that implements the EmpiriST 2015 tokenization
guidelines (Beißwenger et al., 2015; EmpiriST
team, 2015). Our system, SoMaJo, won the shared
task and is freely available from PyPI, the Python
Package Index.2

2 Related work

The most widespread approach to tokenization is
probably the application of substitutions based on
regular expressions, as examplified by the simple
sed script for Penn-Treebank-style tokenization.3

Typically, every piece of software that relies on
tokenized input ships with its own tokenizer (usu-
ally rule-based), e. g. TreeTagger (Schmid, 1994;
Schmid, 1995) or the Stanford Parser (Klein and
Manning, 2003). There are, however, also sys-
tems that use supervised or unsupervised machine
learning techniques, e. g. the maximum entropy to-
kenizer offered by the Apache OpenNLP project4

or the HMM-based one presented by Jurish and
Würzner (2013). For an overview of existing ap-
proaches to tokenization (and the related task of
sentence splitting), see Jurish and Würzner (2013).

3 System description

3.1 General approach

SoMaJo is a rule-based tokenizer that applies a
cascade of regular expressions to the input text to
arrive at a tokenized version. In that process, rec-
ognized tokens that could be “problematic” further
down the rule chain are replaced with unique pseu-
dotokens. The major reason for why tokens could
be problematic for subsequent rules is that they can
contain certain characters that trigger those rules.
URLs, for example, should be treated as single
tokens and should not be split at dots, hyphens,
slashes, etc. After all the rules have been applied,
the original tokens are restored from the pseudoto-
kens. Additionally, SoMaJo can output the token

2https://pypi.python.org/pypi/SoMaJo
3https://www.cis.upenn.edu/~treebank/

tokenizer.sed
4https://opennlp.apache.org/

class for each token, e. g. if it is a number, an XML
tag, an abbreviation, etc.

3.2 Specifics

In this subsection, we will give a high-level
overview of the most important rules, in the order
in which they are applied. The ultimate reference
to what the tokenizer does is of course its freely
available source code.

• The identification of XML tags was per-
formed with a regular expression taken from
Goyvaerts (2012). XML tags are special be-
cause they are among the few tokens that can
contain spaces. Spaces are normally unam-
biguous token delimiters, therefore we want to
deal with XML tags as early as possible. Since
there is no syntax check, non-XML conform-
ing standalone tags without trailing slash, eg.
“<br>” as used in traditional HTML/SGML
will also be detected. Attributes without quo-
tation marks – as allowed in SGML – are not
covered.
• The regular expression for email addresses

is a revised version of the pattern given in
Goyvaerts (2012) available from Goyvaerts
website,5 where he claims that it covers “99%
of the email addresses in use today”. As dis-
cussed in Section 4.4, email address obfusca-
tion was not taken into consideration in the
original system, but a basic detection has now
been incorporated for the release.
• The detection of URLs that include the pro-

tocol used is relatively straightforward. Our
system currently detects “http”, “https”, “ftp”,
“svn”, “doi” and treats strings with a leading
“www.” the same, even though it is not techni-
cally a protocol.
URLs without a protocol and the “www” give-
away are detected based on a very conserva-
tive list of top-level-domains in order to min-
imize false positives that could occur when
spaces at the end of a sentence are omitted,
which often occurs in CMC, particularly in
restricted-length messages such as the Twitter
messages given in the training and test data.
A small list of three-letter file extensions was
also added to detect file names with internal
dots.

5http://www.regular-expressions.info/
email.html
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• For emoticons it was possible to build on
top of a list taken from the SentiKLUE po-
larity classifier (Proisl et al., 2013; Evert et
al., 2014), which was extended based on web-
sites with technology-mediated communica-
tion such as Chat von gestern Nacht6 and com-
plemented by a generic regular expression to
account for further emoticons consisting of
eyes, optional nose and/or tear and mouth.
• Further phenomena that are specific to Twit-

ter and chat are also identified with relatively
simple regular expressions and treated accord-
ing to the tokenization guidelines. These in-
clude mentions (“@MimiSchmitz”), hashtags
(“#lyrik”) and actions words (“*kopfkratz*”).
• In order to be able to distinguish between ad-

hoc combinations with plus signs (“+”) or
ampersands (“&”) such as “Thomas&Peter”,
and institutionalized combinations such as
“Taylor&Francis”, a lexicon of the latter was
constructed based on a manually curated list
of all Wikipedia page titles in the German
Wikipedia that contain a plus sign and/or an
ampersand, which results in a total of 643
items.
• Items written in CamelCase, i. e. single or-

thographic words with internal capitalization
(“deineMutter”), had to be split up according
to the tokenization guidelines unless they were
proper names (“MySpace”) or textual repre-
sentations of emojis (“emojiQcatFaceWith-
WrySmile”). In order to distinguish the two
cases, a lexicon of potential proper names (in
a broad sense) and established forms was cre-
ated based on a list of all words in Wikipedia
page titles in the German Wikipedia that in-
clude an internal upper-case letter following
at least one lower-case letter. The lexicon
comprises 7,005 such items.
However, the splitting of CamelCase can
be switched off in our system since the be-
haviour propagated by the tokenization guide-
lines is in fact highly problematic in unre-
striced input. Thus CamelCase is used in
certain wikis, in particular the original wiki
software Wiki Wiki Web by Ward Cunning-
ham7 to create links to other pages and it is
often found in naming conventions of pro-
gramming languages such as Java or C#. So

6http://www.chatvongesternnacht.de
7http://c2.com/cgi/wiki?WikiWikiWeb

if the input to tokenize contains computer-
mediated communication from sources such
as stackoverflow.com, it would be advisable to
switch CamelCase splitting off. Furthermore,
CamelCase splitting makes corpora useless
for reasearch on non-standard graphemics.
An exception was also made for the German
internal I as in “StudentInnen”, which is never
split up. URLs written in CamelCase, e. g.
“ImmobilienScout24.de”, are already recog-
nized as a single token by the earlier rule iden-
tifying URLs.
• According to the tokenization guidelines, ab-

breviations representing multiple tokens (e. g.
“d. h.” for “das heißt”) have to be split up un-
less they are established netspeak units such
as “aka” or “cu”. Thus three cases have to be
distinguished: (1) Abbreviations that do not
consist exclusively of single letters followed
by a full stop have to be listed in a lexicon in
order to not mistake them for sentence bound-
aries. For this, all 4,027 abbreviations listed in
the German Wiktionary8 on 10 February 2016
were downloaded and then manually checked
for candidates that represented a single token
(and did so unambiguously), which resulted
in a total of 1,104 such abbreviations (e. g.
“altröm” for “altrömisch”). (2) A further list
of 29 multi-dot abbreviations that represent
single tokens was created – 8 from the train-
ing data and the tokenization guidelines, 21
from the Wiktionary list of abbreviations men-
tioned above (e. g. “Dipl.-Ing.” for “Diplomin-
genieur”). (3) A single letter followed by a
full stop was always treated as an abbreviation,
so single letters at the end of a sentence (“Ich
kaufe ein E.”) will be analysed erroneously.
However, since such occurrences are rather
rare, the decision to treat them as abbrevia-
tions will definitely lead to higher recognition
rates.
• Dates had to be split up according to the to-

kenization guidelines so that day, month and
year are treated as separate tokens. The mat-
ter is complicated by the fact that separators
have to be in the same token as day or month
(“05/15/2016” is tokenized as “05/ 15/ 2016”
but “2016-05-15” is tokenized as “2016 -05
-15”), so mutliple regular expressions were
needed to account for all typical cases.

8https://de.wiktionary.org/
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• Other combinations with numbers closely
follow the tokenization guidelines, so indica-
tions of time (e. g. “12:30”), ordinal numbers
and fractions are treated as one token as long
as there is no space intervening.
To be able to split numbers from their unit
of measurement (e. g. “80kg”), a list of such
units was compiled manually which is cer-
tainly far from complete and would need to
be expanded particularly if CMC data from
science domains is to be processed.
Cardinal numbers were matched with both
a dot or a comma as decimal mark since in
CMC, the English format can often be found
in German texts, despite the comma being
the standard. Our number identifier further
allows for signed and unsigned numbers and
an optional exponent.
• Our treatment of punctuation is fairly stan-

dard. We allow for arbitrary combinations
of question and exclamation marks, detect ar-
rows, various styles of parentheses, quotation
marks (including Unicode quotation marks
and LATEX-style quoation marks using back-
ticks and apostrophes), ellipses (both as com-
binations of dots and as Unicode entities) and
of course standard full stops.

4 Results and error analysis

4.1 Evaluation metrics
The performance of the systems participating in
the shared task was evaluated using precision, re-
call and F1-score (Jurish and Würzner, 2013, 72–
73). These measures are based on the actual token
boundaries (Bactual), i. e. the token boundaries in the
gold standard, and the token boundaries identified
by the system (Bidentified). Correctly detected token
boundaries that are both in the system output and
in the gold standard are true positives, erroneously
introduced token boundaries that are not in the gold
standard are false positives and token boundaries
in the gold standard that the system fails to detect
are false negatives:

tp = |Bactual∩Bidentified|
fp = |Bidentified \Bactual|
fn = |Bactual \Bidentified|

Precision measures how many of the token
boundaries that the system has detected are true
token boundaries, recall measures how many of

the true token boundaries have been found and the
F1-score is the harmonic mean of precision and
recall:9

precision =
|Bactual∩Bidentified|
|Bidentified| =

tp
tp+ fp

recall =
|Bactual∩Bidentified|

|Bactual| =
tp

tp+ fn

F1 =
2 ·precision · recall
precision+ recall

The ranking of the participating systems was
based on macro-averaged F1-scores, i. e. the arith-
metic mean of the F1-scores for the two datasets.

4.2 Ad-hoc baseline
As mentioned in Section 1, tokenization is not usu-
ally regarded as a terribly hard problem and depend-
ing on the task at hand, ad-hoc solutions centered
around simple regular expressions often yield suffi-
ciently good results. Therefore, we will use such a
primitive ad-hoc tokenizer as a baseline. This sim-
ple tokenizer is a sed one-liner that ignores lines
that look like they consist of an XML tag (because
such lines are not part of the evaluation) and intro-
duces token boundaries at whitespace and a couple
of common punctuation symbols:

sed -re "/^<[^>]+>$/! {
s/([.!?,;:+*()\"’-])/ \1 /g;
s/\s+/\n/g }"

4.3 Results
Results for the baseline tokenizer, our submitted
system and a revised version of our system fixing
some of the most frequent types of errors (cf. next
section) are summarized in Table 1.

For the CMC dataset with samples from different
CMC genres, the submitted systems have F1-scores
ranging from 97.83 to 99.54, clearly outperforming
the baseline tokenizer’s F1-score of 94.91. Our
system outperformed all others with an F1-score
of 99.54 and a lead of 0.58 to the second-ranked
system.

For the web corpus dataset with samples from
text genres on the web, the F1-scores of the sub-
mitted systems range from 99.39 to 99.77, still
outperforming the baseline’s 98.55 but by a much
smaller margin. Our system ranks third with an
F1-score of 99.60 and a difference of 0.17 to the
best-performing system.

9Note that the precision, recall and F1-scores reported in
this paper are all multiplied by 100 for better readability.
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CMC Web corpora macro average
P R F P R F F

baseline 91.84 98.20 94.91 98.27 98.84 98.55 96.73
submission 99.52 99.56 99.54 99.57 99.64 99.60 99.57
revised 99.62 99.56 99.59 99.83 99.92 99.87 99.73

Table 1: Results

The averaged F1-scores of the participating sys-
tems range from 98.61 to 99.57, with our submis-
sion leading the field by a 0.21 margin.

With some of the major remaining error sources
fixed, the revised version of our system would also
rank first on the web corpus dataset with an F1-
score of 99.87.

4.4 Error analysis

The submitted version of our system had 25 false
positives and 23 false negatives in the CMC dataset
and 33 false positives and 27 false negatives in
the web corpus dataset. In the remainder of this
section we will have a closer look at these errors,
categorize them and fix the obvious ones. Results
for the revised version of our system have been
given in Section 4.3.

• 6 false positives and 3 false negatives are due
to tokenization errors in the gold standard data.
These errors have been pointed out to the task
organizers and will be corrected in the next
release of the data.
• 21 false negatives are due to our system

not being aware of the en dash (–) that is
used for example as Streckenstrich in “Her-
ford–Lage–Detmold–Altenbeken–Paderborn”.
• Our system was also not aware of file names

containing slashes (/), which results in 8 false
positives.
• Email address obfuscation using, for example,

“[at]” and “[dot]” instead of the at (@) and dot
(.) characters accounts for 8 false positives.
• 7 false positives are due to emoticons not in

our lexicon (“:!:”, “:p” and “:;-))”).
• The list of tokens containing an ampersand

(&) was accidentally used case sensitively, re-
sulting in 2 false positives.
• In some cases, a hyphen (-) is used as a Bis-

Strich to indicate a range instead of the ty-
pographically correct en dash (–). This ac-
counts for 12 false negatives and is difficult to
fix since hyphens are normally used in com-

pounds (Bindestrichkomposita) that should
not be split up.
• 9 false positives are due to abbreviations that

could also be words, e. g. “automat.” or
“zum.”
• The ambiguity between a cardinal number at

the end of a sentence and an ordinal number
accounts for 3 false positives and 1 false nega-
tive.
• 5 false negatives and 7 false positives are due

to tokens written without spaces between them
and follow-up errors.
• Citations, e. g. “Storrer2007”, are responsible

for 2 false negatives and are difficult to distin-
guish from proper names like “Blume2000”.
• Sometimes, two consecutive years are given

as “1829/30” or “2009/2010”. This accounts
for 6 false negatives and is potentially prob-
lematic because of the ambiguity with frac-
tions (that are single tokens) and term speci-
fications like “WS05/06” that are tokenized
as “WS 05/06”, i. e. the two consecutive years
are a single token.
• The remaining 8 false positives are due to

other rare and unsystematic problems.

5 Conclusion

Tokenization is clearly one of the easier NLP prob-
lems, as should be obvious from the fairly good
results that can be achieved even with the most
primitive methods. Improving upon that baseline
takes considerably more effort, however.

In this paper we presented SoMaJo, a rule-based
tokenizer that won the EmpiriST 2015 shared task
on automatic linguistic annotation of computer-
mediated communication / social media. Since
it is a rule-based system it is easy to maintain and
adapt. Thanks to this flexibility it was easy to cre-
ate a revised version of the system that incorporates
insights from the error analysis and achieves even
better results.
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