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Abstract

The quality of word representations is fre-
quently assessed using correlation with
human judgements of word similarity.
Here, we question whether such intrinsic
evaluation can predict the merits of the
representations for downstream tasks. We
study the correlation between results on
ten word similarity benchmarks and tagger
performance on three standard sequence
labeling tasks using a variety of word vec-
tors induced from an unannotated corpus
of 3.8 billion words, and demonstrate that
most intrinsic evaluations are poor predic-
tors of downstream performance. We ar-
gue that this issue can be traced in part
to a failure to distinguish specific similar-
ity from relatedness in intrinsic evaluation
datasets. We make our evaluation tools
openly available to facilitate further study.

1 Introduction

The use of vector representations of words is now
pervasive in natural language processing, and the
importance of their evaluation is increasingly rec-
ognized (Collobert and Weston, 2008; Turian et
al., 2010; Mikolov et al., 2013a; Faruqui and Dyer,
2014; Chen et al., 2013; Schnabel et al., 2015).
Such evaluations can be broadly divided into in-
trinsic and extrinsic. The most common form of
intrinsic evaluation uses word pairs annotated by
humans to determine their degree of similarity (for
varying definitions of similarity). These are then
used to directly assess word representations based
on how they rank the word pairs. In contrast, in ex-
trinsic evaluation, word representations are used as
input to a downstream task such as part-of-speech
(POS) tagging or named entity recognition (NER).
Here, good models are simply those that provide

good performance in the downstream task accord-
ing to task-specific metrics. Intrinsic evaluations
are typically faster and easier to perform and they
are often used to estimate the quality of represen-
tations before using them in downstream applica-
tions. The underlying assumption is that intrinsic
evaluations can, to some degree, predict extrinsic
performance.

In this study, we demonstrate that this assump-
tion fails to hold for many standard datasets. We
generate a set of word representations with vary-
ing context window sizes and compare their per-
formance in intrinsic and extrinsic evaluations,
showing that these evaluations yield mutually in-
consistent results. Among all the benchmarks ex-
plored in our study, only SimLex-999 (Hill et al.,
2015) is a good predictor of downstream perfor-
mance. This may be related to the fact that it
stands out among other benchmark datasets in dis-
tinguishing highly similar concepts (male, man)
from highly related but dissimilar ones (computer,
keyboard).

2 Materials and Methods

2.1 Word Vectors

We generate word representations using the
word2vec implementation of the skip-gram model
(Mikolov et al., 2013a), which can be efficiently
applied to very large corpora and has been shown
to produce highly competitive word representa-
tions in many recent evaluations, such as sentence
completion, analogy tasks and sentiment analy-
sis. (Mikolov et al., 2013a; Mikolov et al., 2013b;
Fernández et al., 2014). We induce embeddings
with varying values of the context window size pa-
rameter ranging between 1 and 30, holding other
hyper-parameters to their defaults.1

1The default parameters are size=100, sample=0.001,
negative=5, min-count=5, and alpha=0.025.
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Name #Tokens Reference
Wikipedia 2,032,091,934 Wikipedia (2016)

WMT14 731,451,760 Bojar et al. (2014)
1B-word-LM 768,648,884 Chelba et al. (2014)

Table 1: Unannotated corpora (sizes before tok-
enization)

Name #Pairs Reference
Wordsim-353 353 Finkelstein et al. (2001)

WS-Rel 252 Agirre et al. (2009)
WS-Sim 203 Agirre et al. (2009)
YP-130 130 Yang and Powers (2006)
MC-30 30 Miller and Charles (1991)

MEN 3000 Bruni et al. (2012)
MTurk-287 287 Radinsky et al. (2011)
MTurk-771 771 Halawi et al. (2012)
Rare Word 2034 Luong et al. (2013)

SimLex-999 999 Hill et al. (2015)

Table 2: Intrinsic evaluation datasets

2.2 Corpora and Pre-processing

To create word vectors, we gather a large corpus
of unannotated English text, drawing on publicly
available resources identified in word2vec distri-
bution materials. Table 1 lists the text sources and
their sizes. We extract raw text from the Wikipedia
dump using the Wikipedia Extractor2; the other
sources are textual. We pre-process all text with
the Sentence Splitter and the Treebank Word Tok-
enizer provided by the NLTK python library (Bird,
2006). In total, there are 3.8 billion tokens (19 mil-
lion distinct types) in the processed text.

2.3 Intrinsic evaluation

We perform intrinsic evaluations on the ten bench-
mark datasets presented in Table 2. We follow the
standard experimental protocol for word similarity
tasks: for each given word pair, we compute the
cosine similarity of the word vectors in our rep-
resentation, and then rank the word pairs by these
values. We finally compare the ranking of the pairs
created in this way with the gold standard human
ranking using Spearman’s ρ (rank correlation co-
efficient).

2.4 Downstream Methods

We base our extrinsic evaluation on the seminal
work of Collobert et al. (2011) on the use of neu-
ral methods for NLP. In brief, we reimplemented
the simple window approach feedforward neural
network architecture proposed by Collobert et al.,
which takes as input words in a window of size

2http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor

Name #Tokens (Train/Test)
PTB 337,195 / 129,892

CoNLL 2000 211,727 / 47,377
CoNLL 2003 203,621 / 46,435

Table 3: Extrinsic evaluation datasets

five, followed by the word embedding, a single
hidden layer of 300 units and a hard tanh activa-
tion leading to an output Softmax layer. Besides
the index of each word in the embedding, the only
other input is a categorical representation of the
capitalization pattern of each word.3

We train each model on the training set for
10 epochs using word-level log-likelihood, mini-
batches of size 50, and the Adam optimization
method with the default parameters suggested by
Kingma and Ba (2015). Critically, to emphasize
the differences between the different representa-
tions, we do not fine-tune word vectors by back-
propagation, diverging from Collobert et al. and
leading to somewhat reduced performance. We
use greedy decoding to predict labels for test data.

2.5 Extrinsic evaluation

To evaluate the word representations in down-
stream tasks, we use them in three standard se-
quence labeling tasks selected by Collobert et
al. (2011): POS tagging of Wall Street Jour-
nal sections of Penn Treebank (PTB) (Marcus et
al., 1993), chunking of CoNLL’00 shared task
data (Tjong Kim Sang and Buchholz, 2000),
and NER of CoNLL’03 shared task data (Tjong
Kim Sang and De Meulder, 2003). We use the
standard train/test splits and evaluation criteria for
each dataset, evaluating PTB POS tagging using
token-level accuracy and CoNLL’00/03 chunking
and NER using chunk/entity-level F -scores as im-
plemented in the conlleval evaluation script.
Table 3 shows basic statistics for each dataset.

3 Results

Tables 4 and 5 present the results of the intrinsic
and extrinsic evaluations, respectively. While the
different baselines and the small size of some of
the datasets make the intrinsic results challenging
to interpret, a clear pattern emerges when holding
the result for word vectors of window size 1 as the
zero point for each dataset and examining average
differences: the intrinsic evaluations show higher

3For brevity, we refer to Collobert et al. (2011) for further
details on this method.

2



Window size
Dataset 1 2 4 5 8 16 20 25 30

WordSim-353 0.6211 0.6524 0.6658 0.6732 0.6839 0.6991 0.6994 0.7002 0.6981
MC-30 0.7019 0.7326 0.7903 0.7629 0.7889 0.8114 0.8323 0.8003 0.8141

MEN-TR-3K 0.6708 0.6860 0.7010 0.7040 0.7129 0.7222 0.7240 0.7252 0.7242
MTurk-287 0.6069 0.6447 0.6403 0.6536 0.6603 0.6580 0.6625 0.6513 0.6519
MTurk-771 0.5890 0.6012 0.6060 0.6055 0.6047 0.6007 0.5962 0.5931 0.5933
Rare Word 0.3784 0.3893 0.3976 0.4009 0.3919 0.3923 0.3938 0.3949 0.3953

YP130 0.3984 0.4089 0.4147 0.3938 0.4025 0.4382 0.4716 0.4754 0.4819
SimLex-999 0.3439 0.3300 0.3177 0.3144 0.3005 0.2909 0.2873 0.2811 0.2705

Table 4: Intrinsic evaluation results (ρ)

Window size
Dataset 1 2 4 5 8 16 20 25 30

CoNLL 2000 0.9143 0.9070 0.9058 0.9052 0.8982 0.8821 0.8761 0.8694 0.8604
CoNLL 2003 0.8522 0.8473 0.8474 0.8475 0.8474 0.8410 0.8432 0.8399 0.8374

PTB POS 0.9691 0.9680 0.9672 0.9674 0.9654 0.9614 0.9592 0.9560 0.9531

Table 5: Extrinsic evaluation results (F-score for CoNLL datasets, accuracy for PTB)
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Figure 1: Average difference to performance for
window size 1 for intrinsic and extrinsic metrics.

overall results with increasing window size, while
extrinsic performance drops (Figure 1).

Looking at the individual datasets, the prefer-
ence for the smallest window size is consistent
across all the three tagging tasks (Table 5) but only
one out of the eight intrinsic evaluation datasets,
Simlex-999, selects this window size, with the ma-
jority clearly favoring larger window sizes (Ta-
ble 4). To further quantify this discrepancy, we
ranked the word vectors from highest- to lowest-
scoring according to each intrinsic and extrinsic
measure and evaluated the correlation of each pair
of these rankings using ρ. The results are strik-
ing (Table 6): six out of the eight intrinsic mea-
sures have negative correlations with all the three
extrinsic measures, indicating that when select-
ing among the word vectors for these downstream
tasks, it is better to make a choice at random than
to base it on the ranking provided by any of the six
intrinsic evaluations.

CoNLL CoNLL PTB
2000 2003 POS

WordSim-353 -0.90 -0.75 -0.88
MC-30 -0.87 -0.77 -0.90

MEN-TR-3K -0.98 -0.83 -0.97
MTurk-287 -0.57 -0.29 -0.50
MTurk-771 0.28 0.37 0.27
Rare Word -0.57 -0.29 -0.50

YP130 -0.82 -0.93 -0.50
SimLex-999 1.00 0.85 0.98

Table 6: Correlation between intrinsic and extrin-
sic measures (ρ)

4 Discussion

Only two of the intrinsic evaluation datasets
showed positive correlation with the extrinsic eval-
uations: MTurk-287 (ρ 0.27 to 0.37) and SimLex-
999 (ρ 0.85 to 1.0). One of the differences
between the other datasets and the high-scoring
Simlex-999 is that it explicitly differentiates sim-
ilarity from relatedness and association. For ex-
ample, in the MEN dataset, the nearly synony-
mous pair (stair, staircase) and the highly asso-
ciated but non-synonymous pair (rain, storm) are
both given high ratings. However, as Hill et al.
(2015) argue, an evaluation that measures seman-
tic similarity should ideally distinguish these re-
lations and credit a model for differentiating cor-
rectly that (male, man) are highly synonymous,
while (film, cinema) are highly associated but dis-
similar.

This distinction is known to be relevant to the
effect of the window size parameter. A larger win-
dow not only reduces sparsity by introducing more
contexts for each word, but is also known to affect
the tradeoff between capturing domain similarity
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Window Size
Dataset 1 2 4 5 8 16 20 25 30
WS-Rel 0.5430 0.5851 0.6021 0.6112 0.6309 0.6510 0.6551 0.6568 0.6514
WS-Sim 0.7465 0.7700 0.7772 0.7807 0.7809 0.7885 0.7851 0.7789 0.7776

Table 7: Intrinsic evaluation results for WS-Rel and WS-Sim (ρ)

vs. functional similarity: Turney (2012) notes that
with larger context windows, representations tend
to capture the topic or domain or a word, while
smaller windows tend to emphasize the learning
of word function. This is because the role/function
of a word is categorized by its proximate syntactic
context, while a large window captures words that
are less informative for this categorization (Tur-
ney, 2012). For example, in the sentence Aus-
tralian scientist discovers star with telescope, the
context of the word discovers in a window of size
1 includes scientist and star, while a larger context
window will include more words related by topic
such as telescope (Levy and Goldberg, 2014). The
association of large window sizes with greater top-
icality is discussed also by Hill et al. (2015) and
Levy et al. (2015).

This phenomenon provides a possible explana-
tion for the preference for representations created
using larger windows exhibited by many of the in-
trinsic evaluation datasets: as these datasets assign
high scores also to word pairs that are highly as-
sociated but dissimilar, representations that have
similar vectors for all associated words (even if
not similar) will score highly when evaluated on
the datasets. If there is no need for the represen-
tation to make the distinction between similarity
and relatedness, a large window has only bene-
fits. On the other hand, the best performance in
the extrinsic sequence labeling tasks comes from
window size 1. This may be explained by the
small window facilitating the learning of word
function, which is more important for the POS tag-
ging, chunking, and NER tasks than topic. Simi-
larly, given the emphasis of SimLex-999 on cap-
turing genuine similarity (synonyms), representa-
tions that assign similar vectors to words that are
related but not similar will score poorly. Thus, we
observe a decreasing trend with increasing win-
dow size for SimLex-999.

To further assess whether this distinction can
explain the results for an intrinsic evaluation
dataset for representations using small vs. large
context windows, we studied the relatedness (WS-
Rel) and similarity (WS-Sim) subsets (Agirre et

al., 2009) of the popular WordSim-353 reference
dataset (included in the primary evaluation). Ta-
ble 7 shows the performance of representations
with increasing context window size on these sub-
sets. In general, both show higher ρ with an in-
creasing context window size. However, the per-
formance in the relatedness subset increases from
0.54 to 0.65 whereas that in similarity only in-
creases from 0.74 to 0.77. Thus, although the sim-
ilarity subset did not select a small window size,
the lesser preference for a large window compared
to the relatedness subset lends some support to the
proposed explanation.

5 Conclusion

One of the primary goals of intrinsic evaluation is
to provide insight into the quality of a representa-
tion before it is used in downstream applications.
However, we found that the majority of word simi-
larity datasets fail to predict which representations
will be successful in sequence labelling tasks, with
only one intrinsic measure, SimLex-999, showing
high correlation with extrinsic measures. In con-
current work, we have also observed a similar ef-
fect for biomedical domain tasks and word vec-
tors (Chiu et al., 2016). We further considered
the differentiation between relatedness (associa-
tion) and similarity (synonymy) as an explanatory
factor, noting that the majority of intrinsic evalua-
tion datasets do not systematically make this dis-
tinction.

Our results underline once more the impor-
tance of including also extrinsic evaluation when
assessing NLP methods and resources. To en-
courage extrinsic evaluation of vector space rep-
resentations, we make all of our newly intro-
duced methods available to the community under
open licenses from https://github.com/
cambridgeltl/RepEval-2016.
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