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Abstract

Bidirectional Recurrent Neural Networks
(BiRNNs) have shown outstanding results
on sequence-to-sequence learning tasks.
This architecture becomes specially inter-
esting for multimodal machine translation
task, since BiRNNs can deal with images
and text. On most translation systems
the same word embedding is fed to both
BiRNN units. In this paper, we present
several experiments to enhance a base-
line sequence-to-sequence system (Elliott
et al., 2015), for example, by using dou-
ble embeddings. These embeddings are
trained on the forward and backward di-
rection of the input sequence. Our sys-
tem is trained, validated and tested on the
Multi30K dataset (Elliott et al., 2016) in
the context of the WMT 2016 Multimodal
Translation Task. The obtained results
show that the double-embedding approach
performs significantly better than the tra-
ditional single-embedding one.

1 Introduction

Sequence-to-sequence learning is a new common
approach to translation problems (Sutskever et al.,
2014). The basic idea consists in mapping the in-
put sentence into a vector of fixed dimensional-
ity with a Recurrent Neural Network (RNN) and,
then, do the reverse step to map the vector to the
target sequence. From this new perspective, multi-
modal translation (Elliott et al., 2015) has become
a feasible task. In particular, we are referring to
the WMT 2016 multimodal task that consists in
translating English sentences into German, given
the English sentence itself and the image that it de-
scribes. This paper describes our participation in
this task using a translation scheme based on Bidi-

rectional RNNs (BiRNNs) which allows to com-
bine both information from image and text.

In this paper, we take as baseline system the
one from (Elliott et al., 2015) and focus on ex-
perimenting with the word embedding system and
encoding techniques.

The rest of the paper is organised as follows.
Section 2 briefly describes related work on im-
age captioning and machine translation. Section
3 gives details about the architecture of the mul-
timodal translation system. Section 4 reports de-
tails on the experimental framework including the
parameters of our model and the results obtained.
Finally, Section 5 concludes and comments on fur-
ther work.

2 Related work

Image captioning has gained interest in the com-
munity and deep learning has been applied in this
area. The two most common caption-related prob-
lems are caption generation (Vinyals et al., 2014)
and caption translation (Elliott et al., 2015).

Similarly, machine translation approaches
based on neural networks (Sutskever et al., 2014;
Cho et al., 2014) are competing with standard
phrase-based systems (Koehn et al., 2003). Neural
machine translation uses an encoder-decoder
structure (Cho et al., 2014). The implementation
of an attention-based mechanism (Bahdanau et
al., 2015) has allowed to achieve state-of-the-art
results. The community is actively investigating in
this approach and there have been enhancements
related to addressing unknown words (Luong
et al., 2015), integrating language modeling
(Gülçehre et al., 2015), using character infor-
mation in addition to words (Costa-jussà and
Fonollosa, 2016) or even combining different
languages (Firat et al., 2016), among others.
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Figure 1: NMT architectures: (A) using unidirectional RNNs, (B) using BiRNNs, (C) adding double
embedding.

3 System description

This section describes the main architectures that
have been tested to build the final system.

3.1 Baseline approach
The baseline system is a RNN model over word
sequences (Elliott et al., 2015), which can use vi-
sual and linguistic modalities. The core model is a
RNN over word sequences, trained to predict the
next word in the sequence, given the sequence so
far. The input sequence is codified in 1-of-K vec-
tor, which is embedded into a high-dimensional
vector. Then, a unidirectional RNN is used. Fi-
nally, in the output layer, the softmax function is
used to predict the next word. This model is ex-
tended to a multimodal language model, where se-
quence generation in addition to be conditioned on
the previously seen words, are conditioned on im-
age features. The translation model simply adds
features from the source language model, follow-
ing work from (Sutskever et al., 2014; Cho et al.,
2014) and calling the source language model the
encoder and the target language model the de-
coder.

3.2 Sequence-to-sequence approach and
enhancements

Inspired by the architecture presented in
(Sutskever et al., 2014), we train a system
based on the many-to-many encoder-decoder
architecture. It accepts a sequence x1, .., xN as

input and returns a sequence y1, .., yN , where N
is the maximum sequence length allowed.

The architectures that we have tested start in
a unidirectional encoder-decoder, then we use
a bidirectional encoder-decoder, a bidirectional
encoder-decoder with double embeddings, and a
final architecture that accepts a combination of in-
put text and image. See Figure 1 (A), (B) and (C)
and Figure 3.2 (D) for an schematic representation
of these architectures.

Architecture (A) The model receives as input
the codifications 1-of-K of the source sequence
x1...xn, then the word embedding is computed,
obtaining a new representation E(x1)...E(xn).
This new sequence is processed by a RNN L, ob-
taining the vectors L1...Ln. These vectors are pro-
cessed by another RNN D, obtaining the sequence
D1...Dn, which is processed by a conventional
neural network obtaining the target vectors which
are normalised using softmax.

Architecture (B) The main difference is that we
are using BiRNNs, processing the input sentence
forward and backward. The BiRNN is imple-
mented with LSTMs (Long Short Term Memo-
ries) for better long-term dependencies handling
(Hochreiter and Schmidhuber, 1997; Chung et al.,
2014). The BiRNN are represented by unit L, but
in this case, one in each direction, generating two
vectors Lfi and Lbi, corresponding to each input
xi.
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Architecture (C) In addition to using BiRNNs,
each input codification is processed by two
different feed-forward neural networks Ef and
Eb, generating two vectors Ef (x1)...Ef (xn) and
Eb(x1)...Eb(xn) of size H, where H is a constant.
At each timestep the pair of vectors are fed to the
BiRNN Lf and Lb.

Architecture (D) Finally, the last architecture
proposes to introduce an image. See Figure 3.2.
This is the main advantage of using a machine
translation system based on neural networks: we
can use multimodal inputs. In this case, image and
text. The model in this case has two inputs: the
input text sequence x1...xn and the image vector,
which is the result of intermediate layers of a pre-
trained convolutional neural network (Simonyan
and Zisserman, 2014).

Figure 2: Diagram of NMT architecture (D) using
image and text.

4 Experiments and results

4.1 Data

The system is developed, trained and tested with
the Multi30K dataset provided by the WMT orga-
nization. On our experiments, all characters are
converted to lower case. The chosen vocabulary
consists on all the training source words and all the
training target words that appear more than once.
This choice is made to minimise the number of un-
known tokens at the source sentences and to avoid
an excessive model size and training time.

4.2 Model training
Each source sentence is encoded onto a N × V
matrix M , where each row represents a 1-of-K en-
coding of a word over a source vocabulary with V
words. An unknown word is replaced by an spe-
cial <U> token and a <E> token is appended at the
end of the sequence. If the sequence length (in-
cluding <E>) is less than N the remaining rows
will be zeros. If the sequence is too long, then it
is truncated in order to suit the input size restric-
tions. During the training phase, target sentences
also have a <B> token before the first word. For
a given example, the generated prediction is con-
sidered to be all the words generated between the
<B> and <E> tokens. Unknown tokens are re-
placed by the second highest probability word.

Parameter Description Value
N Maximum sequence length 45
V Source vocabulary words 10364
T Target vocabulary words 8012
H Embedding size 512

DROP Dropout rate 0.25
L2 L2 regularizer 10−8

Table 1: Model parameters value

Dropout rate of 0.25 is applied to all non-
recurrent units and a L2 regularization is applied
to all weights and units.

Training is performed on batches of size 10000
and on mini-batches of size 128. The target metric
is the categorical cross entropy and the used op-
timiser is Adam (Kingma and Ba, 2014). Results
are validated at each epoch on the dataset valida-
tion split using the BLEU metric (Papineni et al.,
2002), along with model perplexity.

BLEU scores during validation are also used
as an early stop criteria in case the maximum
score so-far is not surpassed on the following 10
epochs. In order to evaluate our system perfor-
mance obtained results are compared against a
single-embedding system trained under the same
conditions and parameters. Their BLEU score
monitorization can be observed in Figure 3 and the
chosen parameter set is summarised in Table 1.

4.3 Results
Table 2 shows the BLEU and METEOR (Lavie
and Denkowski, 2009) results for the main ar-
chitectures described in section 3 for the official
test set of the WMT 2016 Multimodal Translation
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Figure 3: Evolution of BLEU scores (y-axis) on
the validation split for the double-embedding sys-
tem (top blue line) and the single-embedding one
(bottom green line).

Task 1. Baseline results are kindly provided by
the organisers, referred in the evaluation official
results as 1 GroundedTranslation C.

We see that using BiRNNs improve vs RNNs,
and double-embeddings improves over single-
embeddings. Finally, adding the image informa-
tion does not improve results. Therefore, the
best architecture (C) is the one that participated
in WMT 2016 Multimodal Translation Task. Offi-
cial results ranked our system in the 14th position
out of 16. We priorised participating with a pure
multimodal extensible architecture. However, we
know it would have improved our ranking just per-
forming a simple technique as rescoring our sys-
tem with a standard Moses (Koehn et al., 2007).

System BLEU METEOR
Baseline 9.41 24.71

Architecture (A) 19.16 34.23
Architecture (B) 20.89 35.97
Architecture (C) 22.74 37.68
Architecture (D) 17.74 32.39

Table 2: BLEU and METEOR Results. Of-
ficial baseline 1 GroundedTranslation C kindly
provided by the organisers.

The best architecture (C) (compared to using
one embedding) is capable of solving problems
like unknown words or chosing the appropriate
word. Table 3 shows an example that shows the
word fixation problem.

However, our generated translations have often

many repeated words or end prematurely, mainly
due to the differences in lengths and alignments
between source and target sentences and the lack
of feedback from previous timesteps. In any case,
our system is still capable to generate readable
translations and to replace unknown words with
similar ones.

Source
a man sleeping in a
green room on a couch

Generated
ein mann schlaft in
einem grünen grünen auf einem sofa

Reference
ein mann schlaft in
einem grünen raum auf einem sofa

Table 3: An example that shows the word fixation
problem

Also, our system performance drastically de-
creases on long sentences, or on sentences where
the length of the source and target sentences differ
too much.

5 Conclusions

Our system is not competitive compared to stan-
dard phrase-based system (Koehn et al., 2003) or
the auto-encoder neural machine translation sys-
tem (Bahdanau et al., 2015) as shown by our
ranking in the official evaluation (14 position out
of 16). However, the architecture of our system
makes it feasible to introduce image information.
Maybe in a larger corpus we would get competi-
tive results.

All software is freely available in github1.
The main contribution of this paper is that we

show that double embeddings (trained on forward
and backward input sequence) provides a signifi-
cant improvement over single embeddings.

As further work, we are considering experi-
menting towards replacing the word based encoder
for a character-based embedding (Costa-jussà and
Fonollosa, 2016), or to introduce attention-based
decoders (Bahdanau et al., 2014). Due to the sys-
tem’s modularity, it is also possible to reuse in-
termediate outputs to train additional models. For
example, it is possible to extract the BiRNN inter-
mediate outputs and fed them to another decoder
model, thus reducing training time.

1https://github.com/srgrr/Neural-Translation
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