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Abstract

We present DTED, a submission to the
WMT 2016 Metrics Task using struc-
tural information generated by depen-
dency parsing and evaluated using tree edit
distances. In this paper we apply this sys-
tem to translations produced during WMT
2015, and compare our scores with human
rankings from that year. We find moder-
ate correlations, despite the human judge-
ments being based on all aspects of the
sentences while our metric is based only
on word order.

1 Introduction

In the ever-growing field of translation metrics, a
number of systems exist which attempt to provide
an overall rating for a sentence. Most of these
use one or more reference translations produced
by a human as a gold standard. One of the earliest
examples of such a metric may be BLEU (Pap-
ineni et al., 2002), using an adapted version of the
well-known principle of Precision. More recently,
NIST (Doddington, 2002) and Meteor (Lavie and
Agarwal, 2007) have used n-gram analysis to pro-
vide similar heuristics, and many other techniques
have been proposed (Dahlmeier et al., 2011; Ga-
mon et al., 2005).

These metrics are useful when making high-
level comparisons between several machine trans-
lation systems, but they offer very limited insight
into the linguistic workings of the machine trans-
lation process. They can be used in automatic
processes such as training systems through hill-
climbing iterations, or as broad descriptions of a
system’s overall quality. It is however difficult to
use this kind of score to gain more precise insights
into a system’s features; for example, different
tasks may have different priorities for which er-
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rors are least desirable. Deeper analysis might also
be able to pinpoint specific areas of improvement
within a system. With these and other goals in
mind, granular metrics have been created to eval-
uate individual aspects of the translated output in
isolation (Zeman et al., 2011; Popovié, 2011).

When developing such granular metrics, the
question of which linguistic aspects of translations
to focus on is far from trivial. While there has been
much related discussion in the professional and
educational spheres of the factors which can af-
fect understanding of a given translation, the aca-
demic sphere has been less prolific. Nonetheless,
a widely-used taxonomy on the distinct problem
types which can be observed has been produced
by Vilar et al. (2006), while Birch et al. (2008) in-
vestigated those which most affect overall under-
standing of a translation.

One of the prime factors identified by Birch
et al. (2008) was word order, and metrics have
been produced since then which focus on this fac-
tor (Talbot et al., 2011; Birch et al., 2010). These
metrics apply various techniques, but most are
based on the concept of comparing individual sub-
strings of a source and reference sentence. While
these techniques allow lightweight algorithms to
produce rough scores, they ignore how the struc-
ture of a sentence can dramatically affect the im-
pact of a mistake in ordering. For example, the
mistake in the hypothesis of sentence 1 of Table
1 is much less significant than that of sentence 2,
despite the latter being closer in a ‘flat’ judgement.

In an attempt to mitigate these problems, though
without the explicit goal of focusing on word or-
der, some work has been done using structural
evaluation of sentences through dependency pars-
ing (Gaifman, 1965). These systems either focus
on applying BLEU-style n-gram matching to a tree
context (Liu and Gildea, 2005; Owczarzak et al.,
2007) or focus on specific relationships between
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Reference Hypothesis
1 | I spoke to him there. | I spoke there to him.
2 | She let it be and left. | She let it and be left.

Table 1: Example word order errors

and groupings of nodes in the trees and compare
those features between hypothesis and reference
trees to produce holistic judgements (Habash and
Elkholy, 2008; Yu et al., 2014).

The approach of our system, named DTED
(Dependency-based Tree Edit Distance), differs
from existing word order literature by including
dependency structures, but adds to the body of
dependency-based work by focusing on node or-
der rather than attempting to give an overall score.
We work on complete dependency trees, rather
than specific subsections, to produce an edit dis-
tance between the hypothesis and reference trees.

A tree edit distance is a count of the actions re-
quired to convert one ordered tree into another. In
the manner of Levenshtein distances (Levenshtein,
1965) and Word Error Rate (Niefen et al., 2000),
these actions are limited to Renaming, Deleting an
existing node, or Inserting a new one. A num-
ber of variants on this model have been proposed,
many attempting to improve the efficiency of the
algorithm when applied in large-scale or high-
throughput areas (Bille, 2005). The algorithm we
have implemented is an extension of that proposed
by Demaine et al. (2009), which is worst-case op-
timal, running in O(n?) time where 7 is the num-
ber of words in the shorter sentence.

Its output is thus a count of required modifica-
tions, which is in turn converted to a normalised
score between 0 and 1. This is coupled with a
weighting, indicating when aggregating scores to
a system level what proportion of nodes were indi-
cated as aligned by a preprocessing step. Our as-
sumption is that the position of an aligned word is
more reliable than an unaligned one, so when cal-
culating corpus-wide scores we should dispropor-
tionately consider the information of those with
many aligned words.

Our algorithm thus requires nothing more than
the source and reference pairs, plus tools to calcu-
late alignments and dependency trees for the cho-
sen target language. We have used English, but
the methodology would be easily applicable to any
other target language for which these two compo-
nents exist.

2 Related Work

2.1 Holistic metrics

Word Error Rate (NieBen et al.,, 2000) uses
an approach closely linked to Levenshtein dis-
tances (Levenshtein, 1965), producing a straight-
forward count of the number of insertions, dele-
tions and substitutions needed to convert the hy-
pothesis into a given reference. The Position-
Independent Error Rate (Tillmann et al., 1997)
performs similar calculations without considering
word ordering. More recently, Translation Error
Rate (Snover et al., 2006) allows ‘phrase shifting’
of word groups together, while CDer (Leusch et
al., 2006) places higher priority and level of detail
on block movement calculations.

BLEU (Papineni et al., 2002) on the other hand
has achieved success by directly comparing n-
grams between the two sentences: it calculates a
geometric mean of n-gram precisions and applies
a penalty for short sentences.

A more recent and substantial metric, Me-
teor (Lavie and Agarwal, 2007), first applies the
parameterised harmonic mean of the Precision and
Recall (Rijsbergen, 1979), which measures the
correctness of the individual word choices in the
hypothesis sentence. It includes a second step,
taking into account the ordering of those words.
It does this by ‘chunking’ the sentences, finding
the smallest number of groups of aligned words
such that each contains words which are both ad-
jacent and identical in both hypothesis and refer-
ence sentences. The ratio of the chunk count to
the total number of aligned words represents the
‘goodness’ of the ordering, and is then multiplied
with the original harmonic mean to produce a final
score.

2.2 Unstructured word order systems

The standalone nature of the second phase of Me-
teor’s pipeline means that we can use it in isolation
and consider it an existing metric for word order.
We have thus modified Meteor trivially to ignore
the initial harmonic mean and produce only a frag-
mentation score; results for both this and the off-
the-shelf system are reported in section 4.

Talbot et al. (2011) use a similar technique to
Meteor-Frag, basing its results on the number of
chunks of contiguous words aligned by a human
annotator. Birch et al. (2010) provide a different
approach to the problem, representing word order
as mathematical permutations and counting indi-
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vidual disagreements in order, and transformations
required to convert one sentence into another, in a
number of ways. They ignore all features of a text
other than word order of aligned nodes, to produce
a mathematically pure model, but sacrifice some
of the less vital — but still useful — information
represented by unaligned nodes and inter-word se-
mantic relationships.

Contrary to the above metrics’ focus on word
order in isolation, two tools have been designed
to provide a simple approximation of several error
categories at once. Both Addicter (Zeman et al.,
2011) and Hjerson (Popovi¢, 2011) use compar-
isons of aligned words to provide a quick analysis
of missing, unexpected and moved nodes.

2.3 Dependency-structured systems

While the above metrics all apply to n-grams or
other unstructured representations of data, a num-
ber of proposals exist of metrics which use de-
pendency parsing to represent sentence structure.
Liu and Gildea (2005) improved on the base con-
cept behind BLEU to calculate headword chain
precision for unlabelled dependency trees, while
Owczarzak et al. (2007) extend this to use labelled
dependencies.

Habash and Elkholy (2008) use a different ap-
proach to dependency trees, merging n-gram pre-
cision subscores calculated similarly to BLEU
with ‘span-extended structural bigram precision
subscores’, using two methods to compare similar-
ities between surface (flat) distances for different
pairs of adjacent nodes. Yu et al. (2014) use a dif-
ferent approach again, considering only the refer-
ence trees’ structural elements and observing, for
a variety of structural segments which they con-
sider most relevant, whether the hypothesis sen-
tences contain the same words as those segments
in the same order.

3 Metric design
3.1 Phase 1: parsing

In order to best represent the structure of the sen-
tences we follow past examples and parse them
into dependency trees. Dependency parsing has
become recognised as providing a good balance
between deep semantic analysis and simplicity
of parsing procedure. First devised by Gaifman
(1965), it uses a simplified semantic role analysis
to link words by their dependency relations, pro-
viding a bare-bones structural description of the
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sentences, which can then be compared.

We used the dependency parsing framework
provided by Python’s NLTK toolkit (Bird, 2006).
This in turn wraps around the Java-implemented
Malt parser (Nivre, 2003).

3.2 Phase 2: tree edit

In order to produce a measure of the correctness
of word order given the structural representations
produced by dependency parsing, we now need to
compare the structures. To do this, we use a tree
edit distance algorithm, as originally put forward
by Zhang and Shasha (1989). The principle be-
hind a tree edit distance is to count the number
of delete, insert and/or match (substitution) oper-
ations needed to turn one tree into another. In the
version we use (Demaine et al., 2009), the ‘insert’
operation, whereby a node is created in one tree X
to correspond to a node in tree Y, is simply repre-
sented by a ‘delete’ of the corresponding node in
tree Y.

The most straightforward way of executing a
tree edit distance is simply to give equal weight-
ing to all operations on all nodes. This gives us
a simple measure of the structural similarity of
the two trees: two identical trees will have the
minimum cost, namely one 'match’ operation per
node, while any sub-optimally placed nodes will
need to be deleted and inserted elsewhere, cost-
ing 2 actions each. While other variants of DTED
are available, this version - labelled ‘Pure’ in sec-
tion 4 - has been used for both WMT2015 and
WMT2016.

3.3 Phase 3: normalisation

The tree edit distance produced by the previous
stage represents actions required to convert one
tree into the other. We apply a simple formula to
convert this count to a normalised score between
0 and 1: a more intuitive and comparable value
when dealing with larger numbers of sentences.
This is done slightly differently depending on the
variant of DTED being used, but the score calcu-
lated by the Pure version for a given sentence pair
s, with hypothesis of length ny and reference of
length ng, is very simple. Having determined that
dist actions need to be performed across the trees,
we say that:

dist
scores = 1 — 719 (D
ng nr



cellist
Career . career| as .
the of herl cellist
malkki a
Hypothesis Reference
Figure 1: Sample parsed dependency trees.

Matching colours show alignment between nodes.

[N

AN

Reference Hypothesis
Deleted | ms cellist
cellist
a
Matched | began started
the malkki
of career
malkki her
career as

Table 2: Edit operations calculated by DTED for
sentences shown in Figure 1.

3.4 Variants

While we have implemented a number of variants
of DTED, for WMT 2015 and WMT 2016 we use
only the ‘Pure’ version which processes only the
structure of the sentences while ignoring other in-
formation such as word alignments. DTED has
been run on two types of input. First, we have run
each version on normal dependency trees, leverag-
ing the full structural information available. For
comparison, we have also run each on flattened
trees from which the structural information has
been removed. This is done in a preprocessing
step by artificially forcing each node to be the only
child of its predecessor. This version is intended to
nullify the structural advantage given by the rest of
the system, to provide a baseline for comparison.

With the ‘pure’ version of DTED, the modifica-
tions shown in Table 2 are calculated.

3.5 Result aggregation

Combining individual sentence scores to an over-
all system-level result is done in two ways. The
straightforward way is to simply take an arithmetic
mean of all sentence scores, indicated in table 4 as
unweighted or not W. This gives a total score for
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corpus ¢ containing /N sentences as:

> s scoreg )

unweighted, = N

Additionally, to investigate the importance of
the aligned words in our sentence, we produce
a version which assigns each sentence a weight
equal to the proportion of nodes aligned in the sen-
tence. With n, aligned nodes and n,,, unaligned
nodes, the weight for sentence s for the Weighted
version of DTED (W in table 4) is calculated as:

Ng,
Ng + Nna

weights = 3)

For an individual sentence the score and weight
can be viewed separately, while overall values for
a corpus are calculated as:

> (scores x weights)

ighted, =
wergntede > s weight

4

3.6 Example

Figure 1 shows dependency trees for the following
sentences which occur in the WMT 2015 corpus.
All pairs of words shared by both sentences are
aligned, as are ‘started’ and ‘began’.
Hyp: The cellist of Malkki began career.
Ref: Ms Malkki started her career as a cellist.

This comes to a total of 4 Delete operations and
6 Match operations, resulting in a total matching
dist of 10. With the hypothesis tree containing
ny = 7 nodes and the reference containing np =
9, we can normalise this (as per equation 1) to:

10
scores = 1 719 0.375

Finally, we may optionally consider a weighting

for the sentence as per equation 3.

= 0.625

weights = 1046

This weighting indicates that we consider our
low rating of the sentence partially trustworthy
relative to others in the corpus.

4 Results & Discussion

4.1 Setup & Evaluation

DTED has been run on sentences provided for the
2015 (Bojar et al., 2015) and 2016 Workshops
on Statistical Machine Translation. The results



Table 3: System-level correlations of holistic metrics with normalised human rankings

Metric | cs-en | de-en | fi-en | fr-en | ru-en all
BLEU | 0.989 | 0.836 | 0.920 | 0.970 | 0.643 | 0.622
WER | 0913 | 0.813 | 0.794 | 0.972 | 0.700 | 0.524
TER | 0.929 | 0.822 | 0.846 | 0.975 | 0.712 | 0.563
PER | 0.980 | 0.764 | 0.858 | 0.967 | 0.753 | 0.670
CDER | 0955 | 0.813 | 0.944 | 0.981 | 0.762 | 0.561
Meteor | 0.984 | 0.934 | 0.961 | 0.968 | 0.877 | 0.647

Metric | Version | W | F | cs-en | de-en | fi-en | fr-en | ru-en all

Meteor Frag | - | - | 0.905 | 0.853 | 0.941 | 0.927 | 0.781 | 0.615
DTED Pure | X | X | 0974 | 0.877 | 0.841 | 0.993 | 0.824 | 0.522
DTED Pure | X | v/ | 0.964 | 0.542 | 0.867 | 0.729 | 0.431 | 0.461
DTED Pure | v | X | 0975 | 0.872 | 0.814 | 0.992 | 0.822 | 0.522
DTED Pure | v | v/ | 0.963 | 0.507 | 0.886 | 0.476 | 0.337 | 0.445

Table 4: System-level correlations of word order metrics with normalised human rankings

for 2015 data are provided in this paper, while
for 2016 the reader is referred to the Findings of
the 2016 Workshop on Machine Translation. For
the latter, DTED uses unflattened trees, without
weighting by aligned nodes. Sentences from all
available into-English corpora were used, but only
segments for which corresponding human judge-
ments were available. The number of individual
systems for each language pair, and the count of
sentences within each, are given in table 5.

Human judgements during the Workshop were
given as rankings between up to 5 systems, with
ties allowed. We have normalised these ranks into
scores out of 1: for example, a rank of 3 between
five systems is converted to 0.5, reflecting that an
equal number of systems were preferred to it as
were considered less good, while a system ranked
best would achieve a perfect score of 1.

It should be noted that while DTED is intended
to evaluate word order in isolation, rankings at
WMT were based on all features of the sentences.
As no data of sufficient quantity and quality was
available for human judgements specifically of
word order, we have used the holistic data. As
such, we do not expect cutting-edge correlational
values for this data; instead, such comparisons are
provided for two separate reasons.

First, as word order is clearly involved in some
non-trivial way in human judgements, we can as-
sume that holistic ranks contain an implicit word
order component. A limited level of similarity
between human judgements and DTED is thus to
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be expected, as they are at least partially measur-
ing the same phenomenon. In addition, while the
DTED algorithm is intended to measure word or-
der alone, the structure and alignment of the trees
we use may themselves depend on other factors.
For example, a badly chosen word may occupy
a different role in its sentence than the reference
choice would, resulting in an unpredictable change
in the actions needed to correct it.

Second, if we assume DTED’s results to be suc-
cessfully representative of a sentence’s word or-
der quality and human judgements to contain a
word order component, the level of correlation can
begin to quantify the significance of word order
within the overall judgement. In the ideal theoret-
ical case where DTED perfectly simulated human
intuition on word order, such correlational coef-
ficients would give direct insight into the signif-
icance of that intuition to overall quality judge-
ments.

4.2 Ratings

We have performed analysis on two types of met-
ric: holistic and word order specific. Table 3 com-
pares human judgements to those produced by a
number of well-known and widely used baseline
metrics, while table 4 shows the same values for
metrics designed specifically for word order. In
both tables, the highest score for each corpus is
highlighted.

Meteor’s fragmentation-only subsystem (see
section 2.2) is included in the latter table, while



cs-en | de-en | fi-en | fr-en | ru-en all
Num. systems 7 13 14 6 13 53
Total sentences | 909 692 510 | 815 782 | 3708

Table 5: Sizes of corpora used for all empirical calculations, all produced during WMT 2015

the version of Meteor in the former is a stan-
dard off-the-shelf installation. For DTED, the W
column indicates whether sentences were consid-
ered equally when aggregating, or were Weighted
based on aligned word content as per section 3.5.
Results run on Flattened trees (section 3.4) are in-
dicated by the column F.

All scores except those for DTED and Meteor
were calculated using implementations of the met-
rics provided with the well-known open-source
system Moses (Koehn et al., 2007). In all cases,
the numbers shown are Pearson correlation coef-
ficients between the output of the given metric at
the system level and the normalised human judge-
ments provided at WMT 2015.

4.3 Discussion

The main trend we can see from tables 3 and 4 is
that for the versions of DTED with the highest cor-
relation values to human judgement, those values
are similar to, if marginally lower than, the scores
of the baseline metrics. To represent this trend,
the unflattened version of DTED (irrespective of
weighting) has an overall correlation almost ex-
actly the same as the baseline metric WER which
performed the most poorly.

While the correlations of DTED versions are
thus fairly encouraging when compared to those of
other metrics, they are also interesting when com-
pared to each other. An almost universal trend is
that when applied on flattened trees DTED was
significantly less effective in predicting human
judgements. This strongly indicates that we have
succeeded in leveraging the structural information
in the non-flattened dependency trees and used the
information to good purpose in a similar way to a
human.

It should be noted that weighting the sentences
according to the proportion of aligned nodes pro-
vided a boost to correlations, albeit an extremely
small one.

5 Conclusions & Future Work

DTED represents the first work we know of which
uses tree edit distances to incorporate structure
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into the evaluation of machine translation word or-
der. Our results suggest that this approach, while
not as holistically accurate as metrics designed
for that purpose, nonetheless provides scores with
non-trivial similarities to human ratings. This sug-
gests that our metric does indeed measure a sig-
nificant component of humans’ intuition on sen-
tence quality for English. While not a conclusion
that can be drawn from the empirical results as
such, we feel confident that our metric does pri-
marily evaluate word order as opposed to other
factors such as word choice. Taking these two as-
sumptions together, we can say that a significant
component of humans’ sentence-quality intuition
is based on the order of words.

Though the statement that word order accounts
for a large part of humans’ quality judgements is
highly interesting, it would be worthwhile to in-
vestigate the relationship more directly. An ob-
vious way to produce results more tailored to
it would be to obtain human judgements based
solely and explicitly on word order. Such judge-
ments would also allow us to more appropriately
evaluate the more alignment-focused versions of
DTED: while in the experiments we have per-
formed on WMT judgements these have done less
well, this may simply be because these variants are
intended to more precisely focus on word order.
An increase in such precision will necessarily re-
sult in less broad scores and thus lower correlation
with the broad-scope judgements available.

While tree edit distance leverages much of the
information contained in structural representations
of sentences, it fails to account for the distances
through which nodes must be moved. We thus
intend to consider models more akin to gradual
movement than disparate operations, such as those
related to the concept of inversion numbers (Con-
lon et al., 1999). A further avenue of investigation
would be whether the structural and order-specific
functionality of a tree edit distance could be ap-
proximated or reproduced by a more lightweight
algorithm.
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