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Abstract

The article describes LIMSI’s submis-
sion to the first WMT’16 shared biomed-
ical translation task, focusing on the
sole English-French translation direction.
Our main submission is the output of a
MOSES-based statistical machine transla-
tion (SMT) system, rescored with Struc-
tured OUtput Layer (SOUL) neural net-
work models. We also present an at-
tempt to circumvent syntactic complexity:
our proposal combines the outputs of PB-
SMT systems trained either to translate en-
tire source sentences or specific syntactic
constructs extracted from those sentences.
The approach is implemented using Con-
fusion Network (CN) decoding. The qual-
ity of the combined output is comparable
to the quality of our main system.

1 Introduction

The paper provides the details of LIMSI’s sub-
mission to the first shared biomedical translation
task at WMT’16. For our main submission we
built a phrase-based statistical machine transla-
tion (SMT) system using MOSES and attempted
to improve the quality of its output by rescoring its
n-best list with Structured OUtput Layer (SOUL)
neural network models.

Our secondary submission was designed to mit-
igate the negative effects of syntactic complexity
of sentences. This complexity creates a challenge
for the phrase-based SMT (PBSMT) paradigm
that only sees a sentence as a sequential struc-
ture. To overcome this problem, the output of PB-
SMT systems can be combined with the output of
”syntax-aware” MT systems (rule-based, syntax-
based, etc. (Freitag et al., 2014b; Avramidis et al.,
2015; Li et al., 2015)).

As the building of the latter type of systems
can be costly, we propose a light-weight alterna-
tive that combines the outputs of several PBSMT
systems trained for the translation of (a) entire sen-
tences, and (b) separate continuous and discontin-
uous syntactic constructions extracted from those
sentences. The combination is performed using
confusion network (CN) decoding. The quantita-
tive difference with the baseline is rather small, but
our comparative analysis of this system allows us
to better understand its potential and limitations.

2 Systems Overview

In all our experiments we used the MOSES im-
plementation of the phrase-based approach to
SMT (Koehn et al., 2007).

2.1 Additional Parallel Data

The translation of scientific abstracts in the
biomedical domain is a task that is characterized
by the availability of high-quality in-domain cor-
pora. In all our experiments, we used the English-
French Cochrane corpus of medical review ab-
stracts, which resembles the shared task data (Ive
et al., 2016).1 This corpus was split in two
parts: titles (COCHRANE-TITLES) and abstracts
(COCHRANE-ABS). The same split was per-
formed for the SCIELO corpus (SCIELO-TITLES

and SCIELO-ABS, respectively). We will further
refer to the union of all the provided task data and
of the COCHRANE data as the IN-DOMAIN-DATA.
Additionally, we used the data distributed for the
WMT’14 medical task,2 even though its related-
ness to the SCIELO test data is lesser.

1http://www.translatecochrane.fr/
corpus

2http://statmt.org/wmt14/medical-task
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2.2 Additional Monolingual Data

As additional monolingual data we used the full
French dataset provided by the organizers of the
WMT’15 translation task.3

2.3 Preprocessing and Word Alignment

Tokenization and detokenization for both
source (English) and target (French) texts were
performed by our in-house text processing
tools (Déchelotte et al., 2008). Additionally,
the MEDLINE-TITLES corpus provided with the
shared task was cleaned as follows: we excluded
source sentences with generic comments instead
of translations (e.g., ”In Process Citation”).
This reduced the count of the original corpus
sentences by 3%. Details on the WMT’14 and
WMT’15 data preprocessing schemes can be
found in (Pécheux et al., 2014; Marie et al., 2015).
The statistics regarding the preprocessed data are
in Table 1. Word alignments were computed using
fast align (Dyer et al., 2013).

2.4 Language Models

We built an in-domain 6-gram language
model (LM) (In-domain-LM1) combined
with a 4-gram LM developed in the context of
WMT’14 (In-domain-LM2); both are trained
using the corresponding monolingual parts of
the parallel data with modified Kneser-Ney
smoothing (Kneser and Ney, 1995; Chen and
Goodman, 1996), using the SRILM (Stolcke,
2002) and KENLM (Heafield, 2011) toolkits.
We also used an out-of-domain 4-gram LM
(Out-of-domain-LM), described in (Marie et
al., 2015).

2.5 SOUL

We also made use of Structured OUtput Layer
(SOUL) neural network Language and Translation
models (Le et al., 2011; Le et al., 2012a) as these
have been shown to systematically improve our
systems in recent evaluations (Le et al., 2012b; Al-
lauzen et al., 2013; Pécheux et al., 2014; Marie
et al., 2015). The SOUL architecture can estimate
LMs of higher n-gram order (e.g., n = 10 instead
of n = 4) for large output vocabulary; SOUL is
used to rescore n-best lists of the MOSES system.

3http://www.statmt.org/wmt15/
translation-task.html

2.6 Development and Test Sets
In the absence of official development data, we
chose our development (LIMSIDEV) and inter-
nal test (LIMSITEST) data randomly out of the
provided SCIELO-ABS and SCIELO-TITLES cor-
pora. Each set contains 14% of the total count of
SCIELO-TITLES sentences and 11% of the total
count of SCIELO-ABS sentences.

Given the quantity of misspelled words in the
data (e.g. ”externai” for ”external”, ”leveI” instead
of ”level”, etc.), we tried to select datasets with an
OOV rate not higher than the rate of the rest of
the SCIELO corpus, as compared to the vocabulary
of the IN-DOMAIN-DATA (SCIELO data excluded)
and WMT’14 medical data (e.g., for SCIELO-ABS

the OOV rate ≈ 2%).
LIMSIDEV and LIMSITEST were used to re-

spectively tune and test our main PBSMT systems.
LIMSITEST was further split into LIMSIDEV2 and
LIMSITEST2 for SOUL and system combination
optimizations. Statistics for these datasets are in
Table 1.

2.7 Evaluation Metrics
BLEU scores (Papineni et al., 2002) are computed
using the cased multi-bleu.perl script and
our own tokenizer for reference translations .

3 Baseline System

3.1 Details of System Building
For our baseline system, all the available IN-
DOMAIN-DATA were used to train the trans-
lation models consisting of the phrase ta-
ble (PT) and the lexicalized reordering mod-
els (msd-bidirectional-fe). We used the
WMT’14 medical task parallel data to train ad-
ditional models. More specifically, these models
were used as back-off models to search for n-
grams (up to n = 4) with no translation in the
main models. The three LMs described in Sec-
tion 2.4 were used. This system was tuned with
kb-mira (Cherry and Foster, 2012) using 300-
best lists.

3.2 Experiments and Results
The results of our baseline system are in Table 2.
For our experiments with neural network models
we took the 10-gram SOUL models trained for
the LIMSI participation to WMT’12 (Le et al.,
2012b). SOUL models define five additional fea-
tures: a monolingual target LM score and four
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Corpus # Lines # Tok., en # Tok., fr
SCIELO-ABS ≈ 8 K ≈ 200 K ≈ 280 K
SCIELO-TITLES ≈ 700 ≈ 10 K ≈ 14 K
MEDLINE-TITLES ≈ 600 K ≈ 7 M ≈ 8 M
COCHRANE-ABS ≈ 140 K ≈ 3 M ≈ 5 M
COCHRANE-TITLES ≈ 8 K ≈ 90 K ≈ 130 K

IN-DOMAIN-DATA ≈800 K ≈ 10 M ≈ 13 M

COPPA ≈ 454 K ≈ 10 M ≈ 12 M
EMEA ≈ 324 K ≈ 6 M ≈ 7 M
PATTR-ABS ≈ 635 K ≈ 20 M ≈ 24 M
PATTR-CLAIMS ≈ 889 K ≈ 32 M ≈ 36 M
PATTR-TITLES ≈ 386 K ≈ 3 M ≈ 4 M
UMLS ≈ 2 M ≈ 8 M ≈ 8 M
WIKIPEDIA ≈8 K ≈ 17 K ≈ 19 K

WMT’14 medical task ≈6 M ≈ 160 M ≈ 190 M

WMT’15 translation task ≈ 2.2 B

Set # Lines # Tok., en # Tok., fr
LIMSIDEV-TITLES 100 1360 1834
LIMSIDEV-ABS 900 24367 30560

LIMSIDEV 1000 25727 32394

LIMSIDEV2-TITLES 50 686 943
LIMSIDEV2-ABS 450 13116 16261

LIMSIDEV2 500 13802 17204

LIMSITEST2-TITLES 50 738 915
LIMSITEST2-ABS 450 12487 15276

LIMSITEST2 500 13225 16191

LIMSITEST 1000 27027 33395

Table 1: Corpora used for training (left); development and test (right)

translation model scores (Le et al., 2012a). The
baseline 300-best list was reranked according to
the combination of all baseline features and the
SOUL features. Reranking allowed us to obtain
an improvement of +1.17 BLEU over our base-
line system. The system tends to perform bet-
ter on the LIMSITEST2-TITLES part than on the
LIMSITEST2-ABS part. In the rest of this article,
we focus our efforts on improving the translation
quality of abstracts only.

4 Using Phrase-Based Statistical
Machine Translation to Circumvent
Syntactic Complexity

Scientific medical texts are characterized by a
large quantity of compound terms and complex
sentences. Their translation can be especially
challenging for PBSMT due to its intrinsic limita-
tions which include, among others, the generation
of translations by mere concatenation and the in-
ability to resolve long-distance relations between
sentence components. These limitations can be
overcome in PBSMT by combining with the out-
puts of ”syntax-aware” MT systems (rule-base
MT (RBMT), syntax-based MT (SBMT)) (Costa-
Jussà et al., 2012; Avramidis et al., 2015; Li
et al., 2015). The combination of system out-
puts is often performed with the help of Confu-
sion Network (CN) decoding as an effective means
to recombine translation alternatives at the word
level (Deng et al., 2015; Freitag et al., 2014a; Fre-
itag et al., 2014b; Zhu et al., 2013).

Less costly solutions seek to better explore the
potential of phrase-based architectures. For in-
stance, Hewavitharana et al. (2007) propose to im-

prove the PBSMT outputs by separately translat-
ing noun phrases (NPs) extracted from source sen-
tences.

Inspired by this study, we propose to combine
the baseline hypotheses with partial, local hy-
potheses by means of CN decoding. To obtain
those partial hypotheses, we trained separate PB-
SMT systems to translate on the one hand the NPs
(NP-SMT), often representing complex terms, and
on the other hand, simplified variants of the source
sentences where NPs are replaced by their syntac-
tic head (NP-Reduced-SMT) (see Figure 1).

4.1 Methodology

A CN is a weighted directed acyclic graph where
all the paths go through all the nodes (Mangu et
al., 2000). There may be one or more arcs between
two consecutive nodes. Arcs can here be consid-
ered as alternative translation choices for target
words (including the empty NULL word).

Building a confusion network implies several
decisions:

1. Choice of the main hypothesis (backbone)
to guide the word order: This choice is crucial
for the final translation quality (see e.g. (Hilde-
brand and Vogel, 2008)). In our case, we chose
the 1-best baseline hypothesis as the backbone.

2. Choice of the word alignment strategy
between the hypotheses: Alternative hypotheses
are usually aligned to the backbone without tak-
ing their alignments with source tokens into ac-
count (Rosti et al., 2012; Rosti et al., 2008; Ma-
tusov et al., 2006). Following Du et al. (2009),
we instead aligned hypotheses according to the
source-target alignments produced by the decoder.

Figure 2 illustrates the hypothesis alignment
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system LIMSITEST2 LIMSITEST2-TITLES LIMSITEST2-ABS

MOSES 30.38 49.42 29.20
MOSES + SOUL 31.55 50.44 30.27

Table 2: Results (BLEU) for MOSES and MOSES + SOUL on the in-house test set

une révision bibliographique sur la luxation traumatique du genou

a review was made .a bibliographic review on the traumatic luxation of the knee

une révision bibliographique sur la luxation traumatique du genou

Src

une bibliographique a été réalisée .

une révision a été réalisée .Ref Trg

Aligned Trg

NP

une révision bibliographique sur la luxation traumatique du genou 

Src

Trg

a bibliographic review on the traumatic luxation of the knee was made .

Determiner NP Head

NP Corpus NP−reduced Corpus

a été réalisée .

Word Alignments

Figure 1: Extraction of NP and NP-reduced instances

un patient atteint d’ un mycétome du membre supérieur a été présenté .

a patient with mycetoma of the upper extremity is presented .
0       1           2               3              4      5       6              7             8          9           10

NULL NULL

@0      @1         @2                         @3         @4−5               @7                 @6

un patient atteint  de   mycétomes  de  l’   extrémité supérieure est présentée .

un patient  avec          mycétome    du        membre   supérieur

un patient                                                                                     est  présenté  .

@0      @1      @1−2   @1−2           @3           @4  @5        @7                 @6           @8        @9         @10               

@0      @1                                                                                                                      @8       @9          @10

NP−reduced Hyp.

Trg−Src Ali @i

NP Hyp.

Trg−Src Ali @i

Trg−Src Ali @i

Baseline Hyp.

Src.
Position i

Ref.

Figure 2: Source-based hypothesis alignment. @i denotes to the source index of a given target word.

procedure. We used source-target phrasal align-
ments produced by the decoder to assign un-
aligned words to several positions (see e.g. ”de”
highlighted in yellow on Figure 2). It may also
happen that a target phrase in a partial hypothe-
sis is longer than the corresponding baseline trans-
lation; in this case the backbone is extended as
needed with NULL arcs.

3. Arc scores. Each arc labelled u receives a
score equal to the posterior unigram probability
P (u|ε) of the system generating u at this position.
P (u|ε) is computed as in (de Gispert et al., 2013):

P (u|ε) =

∑
E∈εu exp(αH(E,F ))∑
E′∈ε exp(αH(E′, F ))

,

where ε is the space of translation hypotheses of a
PBSMT system (a 10K-best list was chosen), and
H(E,F ) is the score assigned by the model to the
sentence pair (E,F ).

The posterior probabilities for the word (arcs)
in NP-SMT and NP-Reduced-SMT hypotheses
were rescaled to give more weigth to local transla-
tion variants.

4. Choice of the combined hypotheses.
The CN-DECODING diversity was increased by
combining 30-best hypotheses from each system
(baseline, NP-Reduced-SMT and NP-SMT).

Each path is the CN is finally scored as follows:

S(E|F ) = αSpost(E) + βSLM (E) + γNw(E),

where Spost is the path posterior probability, SLM
is the interpolated LM score (In-domain-LM1
and Out-of-domain-LM), and Nw is the path
length (excluding NULL arcs).

All CN-DECODING experiments, including the
feature weight optimization (BLEU maximiza-
tion), were performed using the SRILM (Stolcke,
2002) toolkit.

4.2 Details of System Building
We used the SCIELO-ABS and COCHRANE-ABS

corpora, as well as LIMSIDEV and LIMSITEST

to create the NP-SMT and NP-Reduced-SMT
training, development and test data. The
NP-SMT source data contained the NPs ex-
tracted from the source side of all bitexts. The
NP-Reduced-SMT target data contained the
original source sentences with the NPs replaced
by their heads (also preserving the associated ar-
ticle or possessive determiner) (Klein and Man-
ning, 2003; Toutanova et al., 2003). The NP-SMT
and NP-Reduced-SMT target data were created
using the translations of the corresponding syn-
tactic structures obtained from the fast align
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source-target word alignments, where the non-
aligned words were not considered. The
NP-SMT training corpus was enriched with the ti-
tles and glossary corpora data (SCIELO-TITLES,
COCHRANE-TITLES, MEDLINE-TITLES, PATTR-
TITLES, UMLS, WIKIPEDIA).

These systems were built and tuned in a
way similar to the baseline (see Figure 3).
For each system, we prioritized NP-SMT or
NP-Reduced-SMT model correspondingly, the
other models being used as back-off models.
LMs were built as explained in Section 2.4. We
also used again the Out-of-domain-LM.

To evaluate these specialized systems, we com-
pared the BLEU scores of the NP-SMT and
NP-Reduced-SMT translations with artificial
hypotheses derived from baseline hypotheses.

The results in Table 3 show small quality gains
with our NP-SMT variant (+0.22 BLEU). Con-
versely, a slight decrease in quality (-0.35 BLEU)
is observed for the NP-Reduced-SMT system.
This is somewhat paradoxical, as we expected the
simplified sentences to be easier to translate than
the original sentences. This might be explained by
the poor quality and frequent ungrammaticality of
the NP-Reduced-SMT target side development
and test sentences, the computation of which crit-
ically relies on word alignments.

system BLEU

NP-SMT 27.47
NP-SMT + SOUL 28.46

base MOSES (NPs) 27.25
base MOSES + SOUL (NPs) 28.33

NP-Reduced-SMT 22.81
NP-Reduced-SMT + SOUL 23.53

base MOSES (NP-reduced) 23.16
base MOSES + SOUL (NP-reduced) 24.04

Table 3: NP-SMT and NP-Reduced-SMT per-
formance for LIMSITEST2-ABS.

4.3 Experiments and Results

The resulting CN-DECODING 300-best lists were
compared to the 300-best lists of the baseline sys-
tem. On average, 11% of unique 1-grams from
each CN-DECODING hypothesis search space are
new (see Table 4), a significant proportion of nov-
elty relative to our baseline system.

We also compared our approach to the MOSES

xml-mode that enables to propose to the decoder
alternative partial translations with their proba-

n-gram %

1-gram 11
2-gram 28
3-gram 39
4-gram 48

Table 4: Average % of new unique n-gram per
CN-DECODING hypothesis (using 300-best lists)
LIMSITEST2-ABS).

bility. Using 30-best lists of NP-SMT transla-
tions reranked by SOUL, we marked the source
sentences with possible NP translations which
competed with PT choices (inclusive option).
Each NP translation variant was assigned a proba-
bility proportional to the

∏
0<n≤lnp

P (un|ε) of the
1-grams un composing it. CN-DECODING decod-
ing was performed according to the configuration
described in Section 4.1, with the 30-best NP-SMT
list reranked by SOUL.

Results in Table 5 confirm that CN-DECODING

is superior here to MOSES xml-mode (+2.06
BLEU for LIMSITEST2-ABS).

test set MOSES base MOSES + xml CN-DECODING

LIMSIDEV2-ABS 32.38 29.59 32.84
LIMSITEST2-ABS 29.20 26.79 28.85

Table 5: Results (BLEU) for different strategies
of NP injection.

For the remaining CN-DECODING experiments,
the 30-best lists of each system are reranked by
SOUL prior to system combination.

We noticed that the NP-SMT and
NP-Reduced-SMT hypotheses tend to be
shorter than the corresponding local translations
in the baseline output. We tried to reduce the
negative impact on quality and avoided aligning
baseline words to NULL in the CN-DECODING

alignment procedure. We assigned the rest
of the NULL arcs a very low probability of
p(NULL) = 0.001 (compared to the previously
assigned average score of all the other arcs
between two consecutive nodes).

In this condition, the quality of CN-DECODING

output reranked by SOUL shows an insignificant
gain over the baseline MOSES + SOUL (+0.18
BLEU for LIMSITEST2-ABS, see Tables 6, 2). It
seems that the CN-DECODING procedure allowed
our system to locally choose ”good” translation
variants, in spite of the quality decrease that we
observed for NP-Reduced-SMT hypotheses (see
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Main Model Back−off Models

Baseline

NP−SMT

Language Models (FR)

In−Domain Data

NP−Reduced−SMT Corpus

NP−SMT Corpus

NP−SMT Corpus

WMT’15 Translation Task Data

WMT’14 Medical Task Data

(without titles and glossaries)

WMT’14 Medical Task Data

NP−Reduced−SMT Corpus

(without titles and glossaries)

WMT’14 Medical Task Data

In−Domain Data

WMT’14 Medical Task Data

WMT’14 Medical Task Data

NP−Reduced−SMT Corpus

NP−SMT Corpus

WMT’14 Medical Task Data

NP−SMT Corpus

NP−Reduced−SMT Corpus

NP−Reduced−SMT

(without titles and glossaries)

(without titles and glossaries)

Figure 3: Data used in systems building

Table 3).

test set LIMSITEST2-ABS

CN-DECODING 30.01
CN-DECODING + SOUL 30.45

Table 6: Results (BLEU) for CN-DECODING ex-
periments.

4.4 Observations and Further Improvements

Manual inspection of the CN-DECODING output
showed that the majority of the changes with re-
spect to the baseline hypotheses concern introduc-
tion of synonyms, and only a few cases include the
right choice of an article or of a grammatical form.

Our observations of the quality of the NP-SMT
and NP-Reduced-SMT hypotheses suggest that
the target development sets automatically created
from source-target word alignments for those sys-
tems do not provide the right guidance for tun-
ing, and also yield biased BLEU scores for these
systems. More effort should be invested notably
to compute better simplified versions of the orig-
inal target sentences. Additionally, a more fine-
grained procedure is required to estimate the qual-
ity of partial hypotheses before introducing them
to CN-DECODING.

5 Conclusions

This paper described LIMSI’s submission to the
shared WMT’16 biomedical translation task. We
reported the results for the English-French transla-
tion direction. Our submitted system used MOSES

and neural network SOUL models in a post-
processing step.

In our experiments, we developed an ap-
proach aimed at mitigating the syntactic complex-
ity which is a characteristic of a medical scien-
tific publications. Our solution exploits the poten-
tial of phrase-based Statistical Machine Transla-

tion. We combined the output of the PBSMT sys-
tem, trained to translate entire source sentences,
with the outputs of specialized PBSMT systems,
trained to translate syntactically defined subparts
of the source sentence: complex noun phrases on
the one hand, simplified sentences on the other
hand. The combination was performed using con-
fusion network decoding and showed small im-
provements over a strong baseline when the out-
put of CN decoding is reranked using SOUL. In
our future work, we plan to improve the extrac-
tion procedure for the reduced systems, as well as
to separately improve their performance. For the
NP-SMT system, this could be achieve by digging
additional resources such as comparable corpora.
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