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Abstract

We present a novel approach to the un-
supervised learning of morphology. In
particular, we use a Multiple Cause Mix-
ture Model (MCMM), a type of autoen-
coder network consisting of two node
layers—hidden and surface—and a matrix
of weights connecting hidden nodes to sur-
face nodes. We show that an MCMM
shares crucial graphical properties with
autosegmental morphology. We argue on
the basis of this graphical similarity that
our approach is theoretically sound. Ex-
periment results on Hebrew data show
that this theoretical soundness bears out in
practice.

1 Introduction

It is well-known that Semitic languages pose prob-
lems for the unsupervised learning of morphol-
ogy (ULM). For example, Hebrew morphology
exhibits both agglutinative and fusional processes,
in addition to non-concatenative root-and-pattern
morphology. This diversity in types of morpho-
logical processes presents unique challenges not
only for unsupervised morphological learning, but
for morphological theory in general. Many previ-
ous ULM approaches either handle the concatena-
tive parts of the morpholgy (e.g., Goldsmith, 2001;
Creutz and Lagus, 2007; Moon et al., 2009; Poon
et al., 2009) or, less often, the non-concatenative
parts (e.g., Botha and Blunsom, 2013; Elghamry,
2005). We present an approach to clustering
morphologically related words that addresses both
concatenative and non-concatenative morphology
via the same learning mechanism, namely the
Multiple Cause Mixture Model (MCMM) (Saund,
1993, 1994). This type of learning has direct con-
nections to autosegmental theories of morphology
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(McCarthy, 1981), and at the same time raises
questions about the meaning of morphological
units (cf. Aronoff, 1994).

Consider the Hebrew verbs zwkr! (‘he remem-
bers’) and mzkir (‘he reminds’), which share the
root z.k.r. In neither form does this root appear
as a continuous string. Moreover, each form inter-
rupts the root in a different way. Many ULM al-
gorithms ignore non-concatenative processes, as-
suming word formation to be a linear process, or
handle the non-concatenative processes separately
from the concatenative ones (see survey in Ham-
marstrom and Borin, 2011). By separating the
units of morphological structure from the surface
string of phonemes (or characters), however, the
distinction between non-concatenative and con-
catenative morphological processes vanishes.

We apply the Multiple Cause Mixture Model
(MCMM) (Saund, 1993, 1994), a type of auto-
encoder that serves as a disjunctive clustering al-
gorithm, to the problem of morphological learn-
ing. An MCMM is composed of a layer of hid-
den nodes and a layer of surface nodes. Like other
generative models, it assumes that some subset of
hidden nodes is responsible for generating each in-
stance of observed data. Here, the surface nodes
are features that represent the “surface” properties
of words, and the hidden nodes represent units of
morphological structure.

An MCMM is well-suited to learn non-
concatenative morphology for the same reason
that the autosegmental formalism is well-suited
to representing it on paper (section 2): the layer
of morphological structure is separate from the
surface layer of features, and there are no de-
pendencies between nodes within the same layer.
This intra-layer independence allows each hidden
node to associate with any subset of features, con-

"We follow the transliteration scheme of the Hebrew Tree-
bank (Sima’an et al., 2001).
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tiguous or discontiguous. We present details of
the MCMM and its application to morphology in
section 3. Our ultimate goal is to find a ULM
framework that is theoretically plausible, with the
present work being somewhat exploratory.

1.1 Targets of learning

Driven by an MCMM (section 3), our sys-
tem clusters words according to similarities in
form, thereby finding form-based atomic building
blocks; these building blocks, however, are not
necessarily morphemes in the conventional sense.
A morpheme is traditionally defined as the cou-
pling of a form and a meaning, with the meaning
often being a set of one or more morphosyntactic
features. Our system, by contrast, discovers build-
ing blocks that reside on a level between phono-
logical form and morphosyntactic meaning, i.e.,
on the morphomic level (Aronoff, 1994).

Stump (2001) captures this distinction in his
classification of morphological theories, distin-
guishing incremental and realizational theories.
Incremental theories view morphosyntactic prop-
erties as intrinsic to morphological markers.
Accordingly, a word’s morphosyntactic content
grows monotonically with the number of mark-
ers it acquires. By contrast, in realizational the-
ories, certain sets of morphosyntactic properties
license certain morphological markers; thus, the
morphosyntactic properties cannot be inherently
present in the markers. Stump (2001) presents
considerable evidence for realizational morphol-
ogy, e.g., the fact that “a given property may be
expressed by more than one morphological mark-
ing in the same word” (p. 4).

Similarly, Aronoff (1994) observes that the
mapping between phonological and morphosyn-
tactic units is not always one-to-one. Often,
one morphosyntactic unit maps to more than one
phonological form, or vice versa. There are even
many-to-many mappings. Aronoff cites the En-
glish past participle: depending on the verb, the
past participle can by realized by the suffixes -ed
or -en, by ablaut, and so on. And yet for any given
verb lexeme, the same marker is used for the both
the perfect tense and the passive voice, despite the
lack of a relationship between these disparate syn-
tactic categories. Aronoff argues that the complex-
ity of these mappings between (morpho-)syntax
and phonology necessitates an intermediate level,
namely the morphomic level.
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MASC
mqwmi

FEM
mqwmi-t

SG
PL mgwmi-im mqwmi-wt
(a) mgwmi ‘local’

MASC FEM
SG gdwl gdwl-h
PL gdwl-im gdwl-wt

(b) gdwl ‘big’

Figure 1: The ¢ quasi-morpheme

Our system’s clusters correspond roughly to
Aronoff’s morphomes. Hence, the system
does not require building blocks to have par-
ticular meanings. Instead, it looks for pre-
morphosyntactic units, i.e., ones assembled from
phonemes, but not yet assigned a syntactic or se-
mantic meaning. In a larger pipeline, such build-
ing blocks could serve as an interface between
morphosyntax and phonology. For instance, while
our system can find Hebrew’s default masculine
suffix -im, it does not specify whether it is in fact
masculine in a given word or whether it is fem-
inine, as this suffix also occurs in idiosyncratic
feminine plurals.

Our system also encounters building blocks like
the ¢ in fig. 1, which might be called “quasi-
morphemes” since they recur in a wide range of
related forms, but fall just short of being entirely
systematic.> The ¢ in fig. 1 seems to be fre-
quently associated with the feminine morphosyn-
tactic category, as in the feminine nationality suf-
fix -it (sinit ‘Chinese (F)’), the suffix -wr for de-
riving abstract mass nouns (bhirwt ‘clarity (F)’),
as well as in feminine singular and plural present-
tense verb endings (e.g., kwtb-t ‘she writes’ and
kwtb-wt ‘they (F.PL) write’, respectively).

In fig. 1(a), note that this ¢ is present in both
the F.SG and F.PL forms. However, it cannot be
assigned a distinct meaning such as “feminine,”
since it cannot be separated from the w in the F.PL
suffix -wt.> Moreover, this ¢ is not always the F.SG
marker; the ending -/ in fig. 1(b) is also common.
Nevertheless, the frequency with which ¢ occurs in
feminine words does not seem to be accidental. It
seems instead to be some kind of building block,
and our system treats it as such.

2Though, see Faust (2013) for an analysis positing /-t/ as
Hebrew’s one (underlying) feminine-gender marker.

31f the w in -wr meant “plural,” we would expect the de-
fault M.PL suffix to be -wm instead of -im.



Because our system is not intended to identify
morphosyntactic categories, its evaluation poses a
challenge, as morphological analyzers tend to pair
form with meaning. Nevertheless, we tentatively
evaluate our system’s clusters against the mod-
ified output of a finite-state morphological ana-
lyzer. That is, we map this analyzer’s abstract mor-
phosyntactic categories onto categories that, while
still essentially morphosyntactic, correspond more
closely to distinctions in form (see section 4).

2 Morphology and MCMMs

In this section, we will examine autosegemental
(or multi-linear) morphology (McCarthy, 1981),
to isolate the property that allows it to handle non-
concatenative morphology. We will then show that
because an MCMM has this same property, it is
an appropriate computational model for learning
non-concatenative morphology.

First, we note some previous work connecting
autosegmental morphology to computation. For
example, Kiraz (1996) provides a framework for
autosegmental morphology within two-level mor-
phology, using hand-written grammars. By con-
trast, Fullwood and O’Donnell (2013) provide a
learning algorithm in the spirit of autosegmen-
tal morphology. They sample templates, roots,
and residues from Pitmor-Yor processes, where a
residue consists of a word’s non-root phonemes,
and a template specifies word length and the word-
internal positions of root phonemes. Botha and
Blunsom (2013) use mildly context-free grammars
with crossing branches to generate words with dis-
contiguous morphemes. The present work, in con-
trast, assumes nothing about structure beforehand.

Other works implement certain components of
autosegmental theory (e.g., Goldsmith and Xan-
thos, 2009) or relegate it to a certain phase in their
overall system (e.g., Rodrigues and Cavar, 2005).
The present work seeks to simulate autosegmental
morphology in a more general and holistic way.

2.1 Multilinear morphology

The central aspect of autosegmental theory (Mc-
Carthy, 1981) is its multi-linear architecture, i.e.,
its use of a segmental tier along with many au-
tosegmental tiers to account for morphological
structure. The segmental tier is a series of place-
holders for consonants and vowels, often called
the CV skeleton. The other tiers each represent a
particular morpheme. Fig. 2(a) shows four tiers.
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One is the CV skeleton. The other three, labeled
W1, 2, and ps, are morphemes.4

H1 2 H3

ma  gdl i

ANARS

CcC v CCVCZC

morpheme tiers

segmental tier

(a) Multi-linear approach

single tier mal|gd]|i|l

(b) Linear approach
Figure 2: Multiple tiers vs. a single tier

Notice that p2, the consonantal root, is discon-
tinuous; it is interrupted by w3. If a model has only
one tier, as in fig. 2(b), there would be no way of
representing the unity of uo, i.e., that g, d, and [
all belong to the same morpheme. With this multi-
tier aspect of autosegmental morphology in mind,
we can now state two criteria for a model of non-
concatenative morphology:

(1

a. Morphemes are represented as being
separate from the segmental tier.

b. Each morpheme tier (or node) is or-
thogonal to all other morpheme tiers.

Criterion (1b) implies that the morpheme tiers are
unordered. Without sequential dependencies be-
tween morpheme tiers, crossing edges such as
those in fig. 2(a) are made possible. We should
note that autosegmental morphology has other
properties to constrain morphological structure,
e.g., the well-formedness principle; at present, we
are not concerned with capturing all aspects of au-
tosegmental morphology, but instead in building a
generic system to which one can later add linguis-
tically motivated constraints.

2.2 A graph-theoretic interpretation

In graph-theoretic terms, the multi-linear formal-
ism of McCarthy (1981) is a type of multipartite
graph. This is a graph whose nodes can be parti-
tioned into N sets of mutually nonadjacent nodes,
i.e., N sets such that no two nodes within the same
set are connected by an edge. Fig. 3, for example,
shows a bipartite graph, i.e., a graph with two par-
titions, in this case the sets M and R. Within each

* Although McCarthy uses the term morpheme rather than
morphome, the same principles apply.



set, all nodes are independent; the only connec-
tions are between nodes of different sets.

Figure 3: Bipartite graph

As it turns out, a bipartite graph suffices to
capture the essential properties of McCarthy’s
autosegmental framework, for a bipartite graph
meets the two criteria stated in (1). We can refor-
mulate the morpheme tiers and the segmental tier
in fig. 2(a) as the sets M and R, respectively, in
fig. 3—disjoint by the definition of bipartite. This
satisfies the first criterion. For the second, each
node in M represents a morpheme (or morpheme
tier), and, by the definition of bipartite, the nodes
within M are independent and thus orthogonal.

An MCMM (section 3) is well-suited for the
learning of non-concatenative morphology be-
cause it is bipartite graph. It has two layers (equiv-
alently, sets) of nodes, a hidden layer and a surface
layer—corresponding, respectively, to M and R in
fig. 3. There are no intra-layer connections in an
MCMM, only connections between layers.

We will henceforth refer to an MCMM'’s two
partitions of nodes as vectors of nodes and will use
matrix and vector notation to describe the compo-
nents of an MCMM: uppercase boldface letters re-
fer to matrices, lowercase boldface letters refer to
vectors, and italicized lowercase letters refer to the
individual elements of vectors/matrices. For ex-
ample, m; i, is the kM element in the vector m,;,
which is the i row in the I x K matrix M. Thus,
we will henceforth write the M and R in fig. 3 as
m and r, respectively (or m; and r;, where ¢ is the
index of the i*" word).

3 The Multiple Cause Mixture Model

A Multiple Cause Mixture Model (MCMM)
(Saund, 1993, 1994) is a graphical model consist-
ing of a layer of surface nodes and a hidden layer
of causal nodes. The hidden nodes (or units) are
connected to surface nodes by weights. Each sur-
face node is either ON (active) or OFF (inactive)
depending on the hidden-node activities and the
weights connecting hidden nodes to surface nodes.
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3.1 Architecture

An MCMM can be viewed as a variation of the
classical autoencoder network (Dayan and Zemel,
1995), a type of neural network used for unsuper-
vised learning. In autoencoders, a hidden layer
is forced to learn a compression scheme, i.e., a
lower-dimensional encoding, for a dataset.

MCMMs are called Multiple Cause Mixture
Models because more than one hidden unit can
take part in the activation of a surface unit. This is
illustrated in figure 4, where the nodes m are the
hidden units, and r is the (reconstructed) surface
vector. Each arc ¢;j, represents the weight on the
connection between my, and r;. The activity of r;
is determined by a mixing function (section 3.2).

The MCMM learns by comparing the recon-
structed vector r; to its corresponding original dat-
apoint d;. The discrepancy between the two is
quantified by an objective function. If there is a
discrepancy, the values of the nodes in m; as well
as the weights C are adjusted in order to reduce the
discrepancy as much as possible. See section 3.3
for more on the learning process.

Suppose data points d,, and d,, have some fea-
tures in common. Then, as the MCMM tries to re-
construct them in r,, and r,, respectively, similar-
ities will emerge between their respective hidden-
layer vectors m,, and m,. In particular, the vec-
tors m,, and m,, should come to share at least one
active node, i.e., at least one £ € K such that
My = 1 and m,; = 1. This can serve as a
basis for clustering; i.e., m; j indicates whether d;
is a member of cluster k.

3.2 Mixing Function

The mapping between the layer of hidden nodes m
and the layer of surface nodes r is governed by a
mixing function, which is essentially a voting rule
(Saund, 1994); it maps from a set of input “votes”
to a single output decision. The output decision
is the activity (or inactivity) of a node 7;; in the
surface layer. Following Saund (1994), we use the
Noisy-Or function:

rig=1=](0—mircir)

k

(D

Note that the input to this function includes not
only the hidden nodes m, but also the weights c;
on the hidden nodes. That is, the activity of the
hidden node my, is weighted by the value cji. A
classical autoencoder also has a mixing function,



hidden units (m)
weights (C)

predicted units (r)

observed units (d)

though it is more commonly called an activation
function in autoencoders. The most common ac-
tivation function involves a simple weighted sum
of the hidden layer m’s activations. The entirely
linear weighted sum is then passed to the logistic
sigmoid function o, which squashes the sum to a
number between 0 and 1:

Tij =0 ( > mz',ij,k)
k

Notice that both (1) and (2), have the same three
primary components: the output (or surface node)
r; j» the hidden layer of nodes m, and a matrix of
weights C. Both are possible mixing functions.

2)

3.3 Learning

In both the classical autoencoder and the MCMM,
learning occurs as a result of the algorithm’s
search for an optimal valuation of key variables
(e.g., weights), i.e., a valuation that minimizes
the discrepancy between reconstructed and origi-
nal data points. The search is conducted via nu-
merical optimization; we use the nonlinear conju-
gate gradient method. Our objective function is a
simple error function, namely the normalized sum
of squares error:

1

E =
I xJ

3)

Z Z (rij —dij)”

where I x J is the total number of features in
the dataset. The MCMM’s task is to minimize
this function by adjusting the values in M and C,
where M is the / x K matrix that encodes each
data point’s cluster-activity vector, and C is the
J x K matrix that encodes the weights between
m; and r; for every ¢ € I (see fig. 5).
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Figure 4: Architecture of a Multiple Cause Mixture Model (MCMM).

The MCMM’s learning process is similar to Ex-
pectation Maximization (EM) in that at any given
time it is holding one set of variables fixed while
optimizing the other set. We thus have two func-
tions, OPTIMIZE-M and OPTIMIZE-C, which take
turns optimizing their respective matrices.

The function OPTIMIZE-M visits each of the |
cluster-activity vectors m; in M, optimizing each
one separately. For each m;, OPTIMIZE-M enters
an optimization loop over its K components, ad-
justing each m; ;, by a quantity proportional to the
negative gradient of £ at m; ;. This loop repeats
until £ ceases to decrease significantly, where-
upon OPTIMIZE-M proceeds to the next m;.

The function OPTIMIZE-C consists of a sin-
gle optimization loop over the entire matrix C.
Each c;; is adjusted by a quantity proportional
to the negative gradient of E at c;j. Unlike
OPTIMIZE-M, which comprises I separate opti-
mization loops, OPTIMIZE-C consists of just one,
When each of its J x K components has been ad-
justed, one round of updates to C is complete. F
is reassessed only between completed rounds of
updates. If the change in E remains significant,
another round begins.

Both OPTIMIZE-M and OPTIMIZE-C are en-
closed within an “alternation loop” that alternates
between the two functions, holding C fixed dur-
ing OPTIMIZE-M, and vice versa. This alternation
continues until £ cannot be decreased further. At
this point, an “outer loop” splits the cluster which
contributes the most to the error, adds one to the
cluster count K, and restarts the alternation loop.
The outer loop repeats until it reaches an overall
stopping criterion, e.g., &/ = 0.

The optimization task is subject to the constraint
that no value in M or C may exceed 1 or fall be-



low 0. In other words, it is a task of bound con-
strained optimization. Thus, whenever a value in
either M or C is about to fall below 0, it is set to
0. Likewise, whenever a value is about to exceed
1, itis set to 1 (Ni and Yuan, 1997).

3.4 A Simple MCMM Example

Fig. 5 shows an example of an MCMM for two
data points (i.e., I = 2). The hidden cluster activ-
ities M, the weights C, and the mixing function
r constitute a model that reproduces the observed
data points D. The nodes m; j represent cluster
activities; if m1 9 = 1, for instance, the second
cluster is active for d; (i.e., d; is a member of
cluster 2). Note that the J x K weight matrix C is
the same for all data points, and the k" row in C
can be seen as the k' cluster’s “average” vector:
the 5" component in c;, is 1 only if all data points
in cluster k have 1 at feature j.

di1 di,2 dy3 da,1 da,2 da,3

@ O 00 O O

(a) Observed Data

1,2 71,3

(b) Learning in

71,1

T1,2 71,3

(c) Convergence

where r; ; =1 — TIi_y (1 — mi kc; k)
[NOISY-OR function]

Figure 5: A simple MCMM example

We can see that while learning is in progress,
the cluster activities (m; ) and the cluster centers
(cj k) are in flux, as the error rate is being reduced,
but that they converge to values of 0 and 1. At
convergence, a reconstruction node (r; ;) is 1 if at
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least one m; yc; . = 1 (and O otherwise).

3.5 MCMMs for Morphology

To apply MCMMs to morphological learning, we
view the components as follows. For each word
i, the observed (d;) and reconstructed (r;) units
refer to binary surface features extracted from the
word (e.g., “the third character is s”°). The hidden
units (my) correspond to clusters of words which,
in the ideal case, contain the same morpheme (or
morphome). The weights (c; ;) then link specific
morphemes to specific features.

For an example, consider the English word ads.
Ideally, there would be two clusters derived from
the MCMM algorithm, one for the stem ad and
one clustering words with the plural ending -s.
Fig. 6 shows a properly learned MCMM, based
upon positional features: one feature for each let-
ter in each position. Note that ads does not have
partial membership of the ad and -s hidden units,
but is a full member of both.

4 Experiments

4.1 Gold Standard

Our dataset is the Hebrew word list (6888 unique
words) used by Daya et al. (2008) in their study
of automatic root identification. This list speci-
fies the root for the two-thirds of the words that
have roots. Only the roots are specified, how-
ever, and not other (non-root) properties. To obtain
other morphological properties, we use the MILA
Morphological Analysis tool (MILA-MA) (Itai and
Wintner, 2008). Because its morphological knowl-
edge is manually coded and its output determinis-
tic, MILA-MA provides a good approximation to
human annotation. The system is designed to an-
alyze morphemes, not morphomes, an issue we
partially account for in our category mappings and
take up further in section 4.4.

As an example of the way we use MILA-MA’S
output, consider the word bycim (‘in trees’), which
MILA-MA analyzes as a M%P1 noun bearing the
prefixal preposition b- (‘in’). Given this analy-
sis, we examine each MCMM-generated cluster
that contains bycim. In particular, we want to see
if bycim has been grouped with other words that
MILA-MA has labeled as M%P1 or as having b-.

Category mappings MILA-MA outputs 22 pos-
sible feature labels. Four of these (id,
undotted, transliterated, register)



m(k)

Cr)

a@l

d@1

s@1] a@2

Figure 6: An MCMM example for the word ads, with nine features (three letters, each at three positions),

and two clusters “causing” the word

are irrelevant and are discarded. Each of the 18 re-
maining features has at least two values, and some
have many more, resulting in a great many feature-
value pairs, i.e., categories.

Most part-of-speech (POS) categories are rather
abstract; they often cannot be linked to particu-
lar elements of form. For example, a noun can be
masculine or feminine, can be singular or plural,
and can bear one of a variety of derivational af-
fixes. But there is no single marker that unifies
all nouns. The situation with verbs is similar: ev-
ery Hebrew verb belongs to one of seven classes
(binyanim), each of which is characterized by a
distinctive vowel pattern.

We thus replace “super-categories” like NOUN
and VERB with finer-grained categories that point
to actual distinctions in form. In fact, the only POS
categories we keep are those for adverbs, adjec-
tives, and numerals (ordinal and cardinal). The
rest are replaced by composite (sub-)categories
(see below) or discarded entirely, as are negative
categories (e.g., construct:false) and un-
marked forms (e.g., M%Sg in nominals).

Sometimes two or more morphosyntactic cate-
gories share an element of form; e.g., the future-
tense prefix #- can indicate the 2nd person in the
MASC gender or, in the FEM gender, either the 2nd
or 3rd person:

temwr ‘you (M.SG) will keep’
temwr ‘she will keep’
temwrw ‘you (F.PL) will keep’

Verb inflections are thus mapped to composite cat-
egories, e.g., future% (2%M) | (2|3%F), where
the symbol | means ‘or’. We also map MILA-
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MA’s binyan and tense feature-value pairs to
stem_type, since the shape of a verb’s stem
follows from its binyan, and, in some binyanim,
past and future tenses have different stems. Both
the composite-inflectional and stem_type cate-
gories represent complex mappings between mor-
phosyntax and phonology.

However, since it is not yet entirely clear what
would constitute a fair evaluation of the MCMM’s
clusters (see section 5), we generally try to retain
the traditional morphosyntatctic labels in some
form, even if these traditional labels exist only
in combination with other labels. Most of our
mappings involve fusing “atomic” morphosyntac-
tic categories. For example, to capture Hebrew’s
fusional plural suffixes for nominals, we combine
the atomic categories FEM or MASC with PL; i.e.,
MASC + PL — M%P1 and FEM + PL — F%P1.

Whenever ambiguity is systematic and thus pre-
dictable, we choose the most general analysis. For
instance, participle analyses are always accom-
panied by adjective and noun analyses (cf. En-
glish -ing forms). Since a participle is always
both a noun and an adjective, we keep the par-
ticiple analysis and discard the other two. Finally,
we use rootless:Nominal to capture ortho-
graphic regularities in loan words. In sum, we
employ reasonably motivated and informative cat-
egories, but the choice of mappings is nontrivial
and worthy of investigation in its own right.

4.2 Thresholds and Features

The MCMM begins the learning process with a
single cluster, and whenever its error stops de-



creasing significantly, it adds a cluster. It is sup-
posed to continue to add clusters until it converges,
1.e., until the error is (close to) 0, but so far our
MCMM has never converged. As the number of
clusters increases, the MCMM becomes increas-
ingly encumbered by the sheer number of compu-
tations it must perform. We thus stop it when the
number of clusters K reaches a pre-set limit: for
this paper, the limit was K = 100. Such a cut-off
leaves most of the cluster activities in IM between
0 and 1. We set a threshold for cluster membership
at 0.5: if m; gc; ) > 0.5 for at least one index j in
J, then d; is a member of the k" cluster.

If m; ke < 0.5 for all j in J, we say that the
kM cluster is inactive in the 7" word. If a cluster is
inactive for every word, we say that it is currently
only a potential cluster rather than an actual one.

Each word is encoded as a vector of features.
This vector is the same length for all words.
For any given word, certain features will be ON
(with values = 1), and the rest—a much greater
portion—will be OFF (with values = 0). Each fea-
ture is a statement about a word’s form, e.g., “the
first letter is b or “i occurs before . In our fea-
tures, we attempt to capture some of the informa-
tion implicit in a word’s visual representation.

A positional feature indicates the presence of
a particular character at a certain position, e.g.,
m@[0], for ‘m at the first position” or 1@[-2]
for ‘I at the second-to-last position’. Each data
point d; contains positional features correspond-
ing to the first s and the final s positions in word ¢,
where s is a system parameter (section 4.4). With
22 letters in the Hebrew alphabet, this amounts to
22 x s x 2 positional features.

A precedence feature indicates, for two char-
acters a and b, whether a precedes b within a cer-
tain distance (or number of characters). This dis-
tance is the system parameter 5. We define § as the
difference between the indices of the characters a
and b. For example, if § = 1, then characters a and
b are adjacent. The number of precedence features
is the length of the alphabet squared (222 = 484).

4.3 Evaluation Metrics

We evaluate our clustering results according to
three metrics. Let U denote the set of M re-
turned clusters and V' the set of NV gold-standard
categories. The idea behind purity is to compute
the proportion of examples assigned to the correct
cluster, using the most frequent category within
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a given cluster as gold. Standard purity assumes
each example belongs to only one gold category.
For a dataset like ours consisting of multi-category
examples, this can yield purities greater than 1.
We thus modify the calculations slightly to com-
pute average cluster-wise purity, as in (4), where
we divide by M. While this equation yields pu-
rities within [0, 1], even when clusters overlap, it
retains the metric’s bias toward small clusters.

Uy, N V|

i “4)

1 max,
puravg(Uv V) = M Z ‘
meM

Given this bias, we incorporate other metrics:
BCubed precision and BCubed recall (Bagga
and Baldwin, 1998) compare the cluster mappings
of x with those of y, for every pair of data points
x and y. These metrics are well-suited to cases of
overlapping clusters (Artiles and Verdejo, 2009).
Suppose x and y share m clusters and n cate-
gories. BCubed precision measures the extent to
which m < n. Itis 1 as long there are not more
clusters than gold-standard categories. BCubed
Recall measures the extent to which m > n. See
Artiles and Verdejo (2009) for calculation details.

4.4 Results

With a cut-off point at K = 100 clusters, we ran
the MCMM at different valuations of s and 4. The
results are given in table 1, where “J = *” means
that ¢ is the entire length of the word in question,
and “n/a” means that the feature type in question
was left out; e.g., in the s column, “n/a” means
that no positional features were used. Depending
upon the threshold (section 4.2), a cluster may be
empty: K’ is the number of actual clusters (see
section 4.2). Cov(erage), on the other hand, is the
number of words that belong to least one cluster.
The valuations s = 1 and § = 1 or 2 seem to
produce the best overall results.’

Some of the clusters appear to be capturing key
properties of Hebrew morphology, as evidenced
by the MILA-MA categories. For example, in
one cluster, 677 out of 942 words turn to be of
the composite MILA-MA category M%$P1, a pu-
rity of 0.72.% In another cluster, this one contain-
ing 584 words, 483 are of the MILA-MA category

SWhile s = 1 indicates an preference for learning short
prefixes and suffixes, it is important to note that more than
one-letter affixes may be learned through the use of the prece-
dence features, which can occur anywhere in a word.

SRecall that M3P1 is merger of the originally separate
MILA-MA categories M and P1 .



preposition:1 (the prefixal preposition [-), a
purity of 0.83.

Thus, in many cases, the evaluation recognizes
the efficacy of the method and helps sort the dif-
ferent parameters. However, it has distinct lim-
itations. Our gold standard categories are modi-
fied categories from MILA-MA, which are not en-
tirely form-based. For example, in one 1016-word
cluster, the three most common gold-standard cat-
egories are F3P1 (441 words), F%$Sg (333 words),
and pos:adjective (282 words). Taking the
most frequent category as the correct label, the pu-
rity of this cluster is % = 0.434. However, a
simple examination of this cluster’s words reveals
it to be more coherent than this suggests. Of the
1016 words, 92% end in ¢; in 96%), ¢ is one of the
final two characters; and in 98%, one of the final
three. When ¢ is not word-final, it is generally fol-
lowed by a morpheme and thus is stem-final. In-
deed, this cluster seems to have captured almost
exactly the “quasi-morpheme” ¢ discussed in sec-
tion 1. Thus, an evaluation with more form-based
categories might measure this cluster’s purity to be
around 98%—a point for future work.

None of the experiments reported here produced
actual (section 4.2) clusters representing conso-
nantal roots. However, past experiments did pro-
duce some consonantal-root clusters. In these
clusters, the roots were often discontinuous, e.g.,
z.k.r in the words lizkwr, lhzkir, and zikrwn. It is
not yet clear to us why these past experiments pro-
duced actual root clusters and the present ones did
not, but, in any case, we expect to see more root
clusters as K (and especially K') increases.

s § | Purity BP BR | Cov. | K’
n/a 1 0.394 0456 0.223 | 3279 | 12
n/a 2 0.330 0385 0.218 | 4002 | 14
na 3 0.396 0423 0.261 | 4214 | 19
nfa ¥ 0379 0422 0319 | 4495 | 20

1 n/a | 0.576 0.599 0.458 | 3577 4

2 n/a | 0428 0488 0.396 | 5942 12

3 n/a | 0429 0508 0.370 | 6384 | 18

1 1 0.463 0.580 0.325 | 5760 | 16

1 2 0.443 0540 0.358 | 5401 14

1 3 0.458 0.500 0.369 | 5144 | 12

1 * 0.456 0518 0.383 | 5096 | 14

2 1 0371 0460 0.298 | 6316 | 26

2 2 0.401 0481 0.291 | 5728 | 20

2 3 0392 0465 0.366 | 5509 17

2 * 0.412 0474 0.347 | 5366 18

3 1 0399 0461 0334 | 6102 | 19

3 2 0.403 0474 0326 | 5756 | 19

3 3 0364 0438 0.345 | 5164 | 17

3 * 0.391 0.463 0.390 | 5496 | 17

Table 1: Results at K = 100
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5 Summary and Outlook

We have presented a model for the unsupervised
learning of morphology, the Multiple Cause Mix-
ture Model, which relies on hidden units to gener-
ate surface forms and maps to autosegmental mod-
els of morphology. Our experiments on Hebrew,
using different types of features, have demon-
strated the potential utility of this method for dis-
covering morphological patterns.

So far, we have been stopping the MCMM at
a set number (K) of clusters because computa-
tional complexity increases with K: the complex-
ity is proportional to I x J x K, with I x J al-
ready large. But if the model is to find consonan-
tal roots along with affixes, K is going to have to
be much larger. We can attack this problem by
taking advantage of the nature of bipartite graphs
(section 2): with intra-layer independence, every
r;; in the vector r;—and thus each element in
the entire matrix R—can be computed in paral-
lel. We are currently parallelizing key portions of
our code, rewriting costly loops as kernels to be
processed on the GPU.

In a different vein, we intend to adopt a better
method of evaluating the MCMM'’s clusters, one
more appropriate for the morphome-like nature of
the clusters. Such a method will require gold-
standard categories that are morphomic rather than
morphosyntactic, and we anticipate this to be a
nontrivial undertaking. From the theoretical side,
an exact inventory of (Hebrew) morphomes has
not been specified in any work we know of, and
annotation criteria thus need to be established.
From the practical side, MILA-MA provides nei-
ther segmentation nor derivational morphology for
anything other than verbs, and so much of the an-
notation will have to built from scratch.

Finally, our data for this work consisted of
Modern Hebrew words that originally appeared
in print. They are spelled according to the or-
thographic conventions of Modern Hebrew, i.e.,
without representing many vowels. As vowel ab-
sences may obscure patterns, we intend to try out
the MCMM on phonetically transcribed Hebrew.
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