
Proceedings of the 14th Annual SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 23–26,
Berlin, Germany, August 11, 2016. c©2016 Association for Computational Linguistics

Morphological reinflection with convolutional neural networks

Robert Östling
Department of Modern Languages, University of Helsinki

PL 24 (Unionsgatan 40, A316)
00014 Helsingfors universitet, Finland
robert.ostling@helsinki.fi

Abstract
We present a system for morphological
reinflection based on an encoder-decoder
neural network model with extra convo-
lutional layers. In spite of its simplicity,
the method performs reasonably well on
all the languages of the SIGMORPHON
2016 shared task, particularly for the most
challenging problem of limited-resources
reinflection (track 2, task 3). We also find
that using only convolution achieves sur-
prisingly good results in this task, surpass-
ing the accuracy of our encoder-decoder
model for several languages.

1 Introduction

Morphological reinflection is the task of predict-
ing one form from a morphological paradigm
given another form, e.g. predicting the English
present participle ringing given the past tense
rang. The SIGMORPHON shared task consid-
ers three variants of this problem, with decreas-
ing amounts of information available beyond the
source form and the morphological features of the
target form:

1. The source form is always the citation form.
2. The source form’s morphological features are

not fixed, but given.
3. Only the source form itself is given.

The first and simplest case is the most well-
researched, and is essentially equivalent to the task
of predicting morphological paradigms.

This paper presents our system for morphologi-
cal reinflection, which was submitted for the SIG-
MORPHON 2016 shared task. To complement the
description given here, the source code of our im-
plementation is available as free software.1

1https://github.com/robertostling/
sigmorphon2016-system

2 Background

In general, morphological reinflection can be
solved by applying any technique for morpho-
logical analysis followed by morphological gen-
eration. These tasks have traditionally been per-
formed using manually specified rules, a slow and
expensive process. Recently, there has been an in-
creased interest in methods for learning morpho-
logical transformations automatically from data,
which is also the setting of the SIGMORPHON
2016 shared task.

This work is based on that of Faruqui et al.
(2016), who use a sequence-to-sequence model
similar to that commonly used in machine trans-
lation (Sutskever et al., 2014). Their method
is very simple: for each language and morpho-
logical feature set, they train a separate model
with a character-level bidirectional LSTM encoder
(where only the final hidden states are used), and
an LSTM decoder whose inputs are the encoded
input as well as the input character sequence.

3 Model

We propose modifying the model of Faruqui et al.
(2016) by:

1. using a single decoder, rather than one for
each combination of morphological features
(which could lead to data sparsity for lan-
guages with complex morphology and large
paradigms),

2. using both the raw letter sequence of the
source string and its convolution as inputs,

3. using deeper LSTM units for the decoder.

Although this model was originally designed for
inflection generation given a lemma, it can triv-
ially be used for reinflection by using inflected
forms rather than lemmas as input. Thus, we use
exactly the same model for the first and third task,

23



Figure 1: Structure of our convolutional encoder-
decoder model (note that convolutional layers are
not present in all configurations).

Embedded input string

1D convolution(s)

LSTM enc. layer(s)

LSTM decoder

tanh + softmax layer

Output string

Morph. feature vector

and for the second task where morphological fea-
tures are given for the source form, we include
those features along with the target form features
(which are given in all three tasks).

In our experiments, we use 4 convolutional lay-
ers and 2 stacked LSTMs (Hochreiter and Schmid-
huber, 1997). We use 256 LSTM units (for both
the encoder and decoder), 64-dimensional char-
acter embeddings and 64 convolutional filters of
width 3 for each layer. The LSTM outputs were
projected through a fully connected hidden layer
with 64 units, and finally through a fully con-
nected layer with softmax activations over the al-
phabet of the language in question. Morphological
features are encoded as binary vectors, which are
concatenated with the character embeddings (and,
when used, convolved character embeddings) to
form the input of the decoder. We then used the
Adam algorithm (Kingma and Ba, 2014) for opti-
mization, where the training objective is the cross-
entropy of the target strings. For decoding, we use
beam search with a beam size of 4. The model
architecture is summarized in figure 1.

To further explore the effect of using convo-
lutional layers in isolation, we also performed
follow-up experiments after the shared task sub-
mission. In these experiments we used an even
simpler architecture without any encoder, instead
we used a 1-dimensional residual network archi-
tecture (He et al., 2016, figure 1b) with constant

Figure 2: Structure of our purely convolutional
model (note that GRU layers are not present in all
configurations).

Embedded input string and
morphological feature vector

1D ResNet layer(s)

tanh + softmax layer

Output string

GRU decoder layer(s)

size across layers, followed by either one or zero
Gated Recurrent Unit layers (Cho et al., 2014).
The output vector of each residual layer (which
contains two convolutional layers with Batch Nor-
malization (Ioffe and Szegedy, 2015) and rectified
linear units after each) is combined with the vec-
tor of the previous layer by addition, which means
that the output is the sum of the input and the out-
put of each layer. This direct additive coupling
between layers at different depth allows very deep
networks to be trained efficiently. In this work we
use up to 12 residual layers, corresponding to a to-
tal of 24 convolutional layers.

In these experiments (unlike the encoder-
decoder model), dropout (Srivastava et al., 2014)
was used for regularization, with a dropout factor
of 50%. The morphological features of the tar-
get form are concatenated to the 128-dimensional
character embeddings at the top convolutional
layer, so the total number of filters for each layer
is 128 + n in order to keep the architecture simple
and uniform, where n is the number of different
morphological features in the given language. De-
coding is done by choosing the single most proba-
ble symbol at each letter position, according to the
final softmax layer. This model is summarized in
figure 2.

4 Evaluation

All results reported in this section refer to accu-
racy, computed using the official SIGMORPHON
2016 development data and scoring script. Table 1
on the following page shows the result on the offi-
cial test set, and a full comparison to other systems

24



Table 1: Results of our convolutional encoder-
decoder system on the official SIGMORPHON
shared task test set.

Language Accuracy (percent)
Task 1 Task 2 Task 3

Arabic 89.52 69.53 70.43
Finnish 95.14 88.42 87.55
Georgian 97.02 92.84 91.85
German 94.40 91.73 89.14
Hungarian 98.38 96.25 96.46
Maltese 86.16 73.17 75.54
Navajo 82.10 77.37 83.21
Russian 89.94 86.60 84.59
Spanish 98.35 95.35 94.85
Turkish 97.93 91.69 91.25

is available on the shared task website2 (our sys-
tem is labeled ‘HEL’).

We participate only in track 2, which only al-
lows training data from the same task that is eval-
uated. Training data from other (lower-numbered)
tasks, as track 1 allows, could trivially be ap-
pended to the training data of our model, but this
was not done since we focused on exploring the
core problem of learning reinflection. The same
constraints are followed in all experiments de-
scribed here.

Note that due to time constraints, we were
not able to explore the full set of parameters be-
fore submitting the test set results. Of the mod-
els that had finished training by the deadline, we
chose the one which had the highest accuracy on
the development set. The results reported here
are from later experiments which were carried
out to systematically test the effects of our pro-
posed changes. Table 2 shows that using con-
volutional layers improves accuracy in almost all
cases, whereas adding an extra LSTM layer does
not bring any systematic improvement.

Results when using only convolutional layers
or convolutional layers followed by a GRU recur-
rent layer can be found in table 3 on the following
page. To our surprise, we found that convolution
alone is sufficient to achieve results comparable to
or better than several of the other systems in the
shared task, and for some languages it beats our
own submitted results. There is no clear benefit
across languages of adding a final GRU decoder

2http://ryancotterell.github.io/
sigmorphon2016/

Table 2: Results of our convolutional encoder-
decoder system on the official SIGMORPHON
shared task development set for task 3 (re-
inflection). The first column contains results of
models with both convolutions (4 layers) and deep
LSTMs (2 layers), the second uses a single LSTM
layer, and the third one uses no convolutional lay-
ers.

Language Accuracy (percent)
both -deep -conv

Arabic 66.9 70.8 75.8
Finnish 85.5 88.4 80.9
Georgian 92.3 91.9 87.1
German 89.6 87.2 88.7
Hungarian 97.1 94.0 95.6
Maltese 76.1 74.0 74.9
Navajo 89.6 87.2 85.1
Russian 83.2 84.1 82.2
Spanish 93.6 94.3 91.1
Turkish 89.7 88.8 80.4

layer, but increasing the depth of the network and
in particular the width of the convolution seem to
benefit accuracy.

5 Conclusions

We find that the model of Faruqui et al. (2016) can
be extended to the task of reinflection and deliv-
ers very good levels of accuracy across languages,
and that adding convolutional layers consistently
improves accuracy.

Further experiments show, to our surprise, that
a simple and purely convolutional architecture
designed for image classification in many cases
achieves an even higher accuracy. Although
convolutional architectures have become standard
(along with recurrent neural networks) in many
text encoding tasks, this is one of rather few ex-
amples of where they have been successfully used
for text generation.

Acknowledgments

This work was carried out using the computing re-
sources of CSC.3

3https://www.csc.fi/

25



Table 3: Results of our purely convolution system (not submitted) on the official SIGMORPHON shared
task development set for task 3 (reinflection). System configurations are given on the form “convolutional
layers–filter size”.

Language Accuracy (percent)
With GRU decoder Without GRU decoder

24–7 16–7 8–7 24–5 24–3 24–7 16–7 8–7 24–5 24–3
Arabic 74.2 69.6 63.7 71.8 47.7 71.9 68.1 67.4 65.0 55.5
Finnish 89.6 90.9 84.9 85.5 90.4 91.3 89.2 91.0 88.8 86.9
Georgian 91.2 91.4 91.3 91.5 90.1 89.9 89.7 90.3 91.0 89.6
German 89.0 89.8 89.1 89.6 88.8 88.9 89.9 89.6 89.8 88.9
Hungarian 93.5 96.0 89.8 93.8 92.0 92.2 90.0 88.0 90.9 90.0
Maltese 63.0 63.2 60.4 50.1 63.2 66.0 61.1 54.1 61.2 64.6
Navajo 78.8 81.9 72.4 78.8 50.0 84.3 80.5 49.6 68.5 31.4
Russian 84.8 85.0 86.1 85.4 83.2 85.4 86.0 85.0 86.1 82.2
Spanish 95.5 92.6 94.5 95.3 92.7 94.7 94.8 94.9 94.1 95.2
Turkish 91.4 91.4 92.1 90.8 89.7 92.8 91.1 90.7 90.7 90.4

References
Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar, October. Association for Com-
putational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In Proc. of NAACL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. CoRR, abs/1603.05027.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780, November.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In David Blei and
Francis Bach, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-
15), pages 448–456. JMLR Workshop and Confer-
ence Proceedings.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le.
2014. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes,
N.D. Lawrence, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

26


