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Abstract

In this paper, we investigate the impact of
context for the paraphrase ranking task,
comparing and quantifying results for
multi-word expressions and single words.
We focus on systematic integration of
existing paraphrase resources to produce
paraphrase candidates and later ask hu-
man annotators to judge paraphrasability
in context.

We first conduct a paraphrase-scoring an-
notation task with and without context for
targets that are i) single- and multi-word
expressions ii) verbs and nouns. We quan-
tify how differently annotators score para-
phrases when context information is pro-
vided. Furthermore, we report on experi-
ments with automatic paraphrase ranking.
If we regard the problem as a binary clas-
sification task, we obtain an Fl-score of
81.56% and 79.87% for multi-word ex-
pressions and single words resp. using
kNN classifier. Approaching the problem
as a learning-to-rank task, we attain MAP
scores up to 87.14% and 91.58% for multi-
word expressions and single words resp.
using LambdaMART, thus yielding high-
quality contextualized paraphrased selec-
tion. Further, we provide the first dataset
with paraphrase judgments for multi-word
targets in context.

1 Introduction

In this work, we examine the influence of con-
text for paraphrasing of multi-word expressions
(MWE?5). Paraphrases are alternative ways of writ-
ing texts while conveying the same information
(Zhao et al., 2007; Burrows et al., 2013). There are
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several applications where an automatic text para-
phrasing is desired such as text shortening (Bur-
rows et al., 2013), text simplification, machine
translation (Kauchak and Barzilay, 2006), or tex-
tual entailment.

Over the last decade, a large number of para-
phrase resources have been released including
PPDB (Pavlick et al., 2015), which is the largest in
size. However, PPDB provides only paraphrases
without context. This hampers the usage of such
a resource in applications. In this paper, we tackle
the research question on how we can automatically
rank paraphrase candidates from abundantly avail-
able paraphrase resources. Most existing work on
paraphrases focuses on lexical-, phrase-, sentence-
and document level (Burrows et al., 2013). We pri-
marily focus on contextualization of paraphrases
based on existing paraphrase resources.

Furthermore, we target multi-worded para-
phrases, since single-word replacements are cov-
ered well in lexical substitution datasets, such as
(McCarthy and Navigli, 2007; Biemann, 2012).
While these datasets contain multi-word substitu-
tion candidates, the substitution targets are strictly
single words. Multi-word expressions are preva-
lent in text, constituting roughly as many entries
as single words in a speaker’s lexicon (Sag et al.,
2002), and are important for a number of NLP ap-
plications. For example, the work by Finlayson
and Kulkarni (2011) shows that detection of multi-
word expressions improves the F-score of a word
sense disambiguation task by 5 percent. In this
paper, we experiment with both MWE and single
words and investigate the difficulty of the para-
phrasing task for single words vs. MWEs, using
the same contextual features.

Our work, centered in assessing the effect of
context for paraphrase ranking of humans and its
automatic prediction, includes the following steps:
1) systematic combination of existing paraphrase
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resources to produce paraphrase candidates for
single- and multi-word expressions, 2) collection
of dataset for paraphrase ranking/selection anno-
tation task using crowdsourcing, and 3) investigat-
ing different machine learning approaches for an
automatic paraphrase ranking.

2 Related Work

2.1 Paraphrase Resources and Machine
Learning Approaches

Paraphrasing consists of mainly two tasks, para-
phrase generation and paraphrase identification.
Paraphrase generation is the task of obtaining
candidate paraphrases for a given target. Para-
phrase identification estimates whether a given
paraphrase candidate can replace a paraphrase tar-
get without changing the meaning in context.

PPDB (Pavlick et al., 2015) is one of the largest
collections of paraphrase resources collected from
bilingual parallel corpora. PPDB2 has recently
been released with revised ranking scores. It is
based on human judgments for 26,455 paraphrase
pairs sampled from PPDB1. They apply ridge re-
gression to rank paraphrases, using the features
from PPDB1 and include word embeddings.

The work of (Kozareva and Montoyo, 2006)
uses a dataset of paraphrases that were gener-
ated using monolingual machine translation. In
the dataset, sentence pairs are annotated as be-
ing paraphrases or not. For the binary classifica-
tion, they use three machine learning algorithms
(SVM, kNN and MaxEnt). As features they use
word overlap features, n-grams ratios between tar-
gets and candidates, skip-grams longest common
subsequences, POS tags and proper names.

Connor and Roth (2007) develop a global clas-
sifier that takes a word v and its context, along
with a candidate word u, and determines whether
u can replace v in the given context while main-
taining the original meaning. Their work focuses
on verb paraphrasing. Notions of context include:
being either subject or object of the verb, named
entities that appear as subject or object, all de-
pendency links connected to the target, all noun
phrases in sentences containing the target, or all of
the above.

The work of Brockett and Dolan (2005) uses
annotated datasets and Support Vector Machines
(SVMs) to induce larger monolingual paraphrase
corpora from a comparable corpus of news clus-
ters found on the World Wide Web. Features in-

clude morphological variants, WordNet synonyms
and hypernyms, log-likelihood-based based word
pairings dynamically obtained from baseline sen-
tence alignments, and string features such as
word-based edit distance

Bouamor et al. (2011) introduce a targeted para-
phrasing system, addressing the task of rewriting
of subpart of a sentence to make the sentences eas-
ier for automatic translation. They report on ex-
periments of rewriting sentences from Wikipedia
edit history by contributors using existing para-
phrase resources and web queries. An SVM clas-
sifier has been used for evaluation and an accuracy
of 70% has been achieved.

Using a dependency-based context-sensitive
vector-space approach, Thater et al. (2009) com-
pute vector-space representations of predicate
meaning in context for the task of paraphrase rank-
ing. An evaluation on the subset of SemEval 2007
lexical substitution task produces a better result
than the state-of-the-art systems at the time.

Zhao et al. (2007) address the problem of
context-specific lexical paraphrasing using differ-
ent approaches. First, similar sentences are ex-
tracted from the web and candidates are generated
based on syntactic similarities. Candidate para-
phrases are further filter using POS tagging. Sec-
ond, candidate paraphrases are validated using dif-
ferent similarity measures such as co-occurrence
similarity and syntactic similarity.

Our work is similar to previous approaches on
all-words lexical substitution (Szarvas et al., 2013;
Kremer et al., 2014; Hintz and Biemann, 2016)
in the sense that we construct delexicalized classi-
fiers for ranking paraphrases: targets, paraphrase
candidates and context are represented without
lexical information, which allows us to learn a sin-
gle classifier/ranker for all potential paraphrasing
candidates. However, these approaches are lim-
ited to single-word targets (Szarvas et al., 2013)
resp. single-word substitutions (Kremer et al.,
2014) only. In this paper, we extend these notions
to MWE targets and substitutions, highlight the
differences to single-word approaches, and report
both on classification and ranking experiments.

2.2 Multi-word Expression Resources

While there are some works on the extraction of
multi-word expressions and on investigation of
their impact on different NLP applications, as far
as we know, there is no single work dedicated



on paraphrasing multi-word expressions. Vari-
ous approaches exist for the extraction of MWEs:
Tsvetkov and Wintner (2010) present an approach
to extract MWEs from parallel corpora. They
align the parallel corpus and focus on misalign-
ment, which typically indicates expressions in the
source language that are translated to the target
in a non-compositional way. Frantzi et al. (2000)
present a method to extract multi-word terms from
English corpora, which combines linguistic and
statistical information. The Multi-word Expres-
sion Toolkit (MWEtoolkit) extracts MWE candi-
dates based on flat n-grams or specific morphosyn-
tactic patterns (of surface forms, lemmas, POS
tags) (Ramisch et al., 2010) and apply different
fillters ranging form simple count thresholds to
a more complex cases such as Association Mea-
sures (AMs). The tool further supports indexing
and searching of MWEs, validation, and annota-
tion facilities.

Schneider et al. (2014) developed a sequence-
tagging-based supervised approach to MWE iden-
tification. A rich set of features has been used
in a linguistically-driven evaluation of the identi-
fication of heterogeneous MWEs. The work by
Vincze et al. (2011) constructs a multi-word ex-
pression corpus annotated with different types of
MWEs such as compound, idiom, verb-particle
constructions, light verb constructions, and oth-
ers. In our work, we have used a combination of
many MWEs resources from different sources for
both MWE target detection and candidate genera-
tion (see Subsection 3.2).

3 Methods

In this section we describe our approach, which
covers: the collection of training data, detection of
multi-word paraphrases including annotating sub-
stitutes and learning a classifier in order to rank
substitute candidates for a target paraphrase.

3.1 Impact of Context on Paraphrasing

In order to validate our intuitively plausible hy-
pothesis that context has an impact on paraphras-
ing, we conduct experiments using the PPDB2
paraphrase database. PPDB?2 is released with bet-
ter paraphrase ranking than PPDB1 (Pavlick et
al., 2015) but does not incorporate context in-
formation. Hence, we carry out different para-
phrase ranking and selection annotation tasks us-
ing the Amazon Mechanical Turk crowdsourcing

All (p) MWE (p) Single (p)
No context | 0.35 0.25 0.36
Context 0.31 0.23 0.32

Table 1: Spearman correlation of human judgment
with PPDB2 default rankings. The column MWE
shows the result of only MWEs and the column
Single shows the result of only single words.

platform.

In the first annotation task, a total of 171 sen-
tences are selected from the British Academic
Written English (BAWE) corpus' (Alsop and
Nesi, 2009), with five paraphrase targets. The
targets are selected in such a way that a) include
MWE:s as targets when it is possible (see Subec-
tion 3.2 how we select targets), b) the candidates
could bear more than one contextual meaning and,
¢) workers can select up to three paraphrases and
have to supply their own paraphrase if none of the
candidates match. To satisfy condition b), we have
used the JoBimText DT database API (Ruppert et
al., 2015) to obtain single word candidates with
multiple senses according to automatic sense in-
duction.

We conduct this annotation setup twice, both
with and without showing the original context (3—
8 sentences). For both setups, a task is assigned to
5 workers. We incorporate control questions with
invalid candidate paraphrases in order to reject un-
reliable workers. In addition to the control ques-
tions, JavaScript functions are embedded to ensure
that workers select or supply at least one para-
phrase. The results are aggregated by summing
the number of workers that agreed on candidates,
for scores between 0 and 5. Table 1 shows the
Spearman correlation results. We can see that both
single and MWE targets are context-dependent,
as correlations are consistently lower when taking
context into account. Further, we note that cor-
relations are positive, but low, indicating that the
PPDB?2 ranking should not be used as-is for para-
phrasing.

3.2 Paraphrase Dataset Collection using
Crowdsourcing

In this subsection, we present the processes car-
ried out to collect datasets for the paraphrase rank-
ing task. This includes selection of documents,

"https://www2.warwick.ac.uk/fac/soc/
al/research/collections/bawe/



identification of target paraphrases, and generation
of candidate paraphrases from existing resources.
We use 2.8k essay sentences from the ANC? and
BAWE corpora for the annotation task.

Target detection and candidate generation: In
order to explore the impact of contexts for para-
phrasing, the first step is to determine possible tar-
gets for paraphrasing, as shown in Figure 1. As a
matter of fact, every word or MWE in a sentence
can be a target for paraphrasing. When prototyp-
ing the annotation setup, we found that five para-
phrase targets are a reasonable amount to be com-
pleted in a single Human Intelligence Task (HIT),
a single and self-contained unit of task to be com-
pleted and submitted by an annotator to receive a
reward in a return’.

| sit down to what | know of this sad affair

Select candidate Paraphrase
work out
work
solve
lick

figure out

Figure 1: Paraphrase targets (a) and paraphrase
candidates (b).

We select targets that have at least five candi-
dates in our combined paraphrase resources. The
paraphrase resources (S) for candidates genera-
tions are composed of collections from PPDB
(Pavlick et al., 2015), WordNet and JoBimText
distributional thesaurus (DT — only for single
words).

For MWE paraphrase targets, we have used dif-
ferent MWE resources. A total of 79,349 MWE
are collected from WordNet, STREUSLE (Schnei-
der and Smith, 2015; Schneider et al., 2014)4,
Wiki50 (Vincze et al., 2011) and the MWE project
(McCarthy et al., 2003; Baldwin and Villavicen-
cio, 2002)°. We consider MWEs from this re-
sources to be a paraphrase target when it is pos-
sible to generate paraphrase candidates from our
paraphrase resources (S).

Candidates paraphrases for a target (both sin-
gle and MWE) are generated as follows. For each
paraphrase target, we retrieve candidates from the

http://www.anc.org/
*https://www.mturk.com/mturk/help?
helpPage=overview
‘nttp://www.cs.cmu.edu/~ark/LexSem/
‘http://mwe.stanford.edu

resources (S). When more than five candidates are
collected: 1) for single words, we select the top
candidates that bear different meanings in context
using the automatic sense induction API by Rup-
pert et al. (2015), 2) for MWEs we select candi-
dates that are collected from multiple resources in
S. We present five candidates for the workers to
select the suitable candidates in context. We also
allow workers to provide their own alternative can-
didates when they found that none of the provided
candidates are suitable in the current context. Fig-
ure 2 shows the Amazon Mechanical Turk user in-
terface for the paraphrase candidate selection task.
We discuss the different statistics and quality of
annotations obtained in Section 5.2.

3.3 Machine Learning Approaches for
Paraphrasing

In this work we investigate two types of machine-
learning setups for paraphrase selection and rank-
ing problems. In the first setup, we tackle the prob-
lem as a binary classification task, namely whether
one candidate can be chosen to replace a target in
context. All candidates annotated as possible para-
phrases are considered a positive examples. We
follow a 5-fold cross validation approach to train
and evaluate our model.

In the second setup, we use a learning-to-rank
algorithm to re-rank paraphrase candidates. There
are different machine learning methods for the
learning-to-ranking approach, such as pointwise,
pairwise and listwise rankings. In the point-
wise ranking, a model is trained to map can-
didate phrases to relevance scores, for example
using a simple regression technique. Ranking
is then performed by simply sorting predicted
scores (Li et al., 2007). In the pairwise approach,
the problem is regarded as a binary classification
task where pairs are individually compared each
other (Freund et al., 2003). Listwise ranking ap-
proaches learn a function by taking individual can-
didates as instances and optimizing a loss func-
tion defined on the predicted instances (Xia et al.,
2008). We experiment with different learning-to-
rank algorithms from the RankLib® Java package
of the Lemur project’. In this paper, we present
the results obtained using LambdaMART. Lamb-
daMART (Burges, 2010) uses gradient boosting

*https://people.cs.umass.edu/~vdang/
ranklib.html

"http://sourceforge.net/projects/
lemur/



Select alternatives for the highlighted terms/phrases.

(minimum 1 and maximum 3 alternatives possible!!!)

The alternatives have to be natural in the context. You can choose as many as three for each term. Different forms (singular or plural nouns, present or past form of verbs) are
accepted. If none apply, provide an alternative in the "Other"” textbox.

Talking about Ford , Haslam states that , ** he will write from his memory , from his search for his past , from his attempt to come to understand the gaps between his past and
present self . " Richard A. Hood , ™" Constant Reduction : Modernism and the Narrative Structure in The Good Soldier . " Journal of Modern Literature , 14 ( 1988 ) p462 Sara
Haslam , Fragmenting Modernism : Ford Madox Ford , the Novel and the Great War ( Manchester : Manchester University Press , 2002 ) p9 | sit down to puzzle eutjwhat | know of
this sad affair , | knew nothing whatever . ?.. Indeed , Ford was writing ata time of unrest , during war and in a world of internal conflict . For itis not unusual in human beings ... to
set down what they have witnessed for the benefit of unknown heirs ... or just to get the sight out of their heads . Ford Madox Ford , The Good Soldier , ( Oxford : Oxford University
Press , 2002 ) p9 Could Dowell be a reflective character of Ford ? In this sense , the story is Ford 's as opposed to Dowell 's , even though Dowell is the narrator .

come to understand sit down puzzle out at a time set down
to understand seat work out during period drop
can understand come work in period debark
to appreciate yeah solve in situation discharge
will understand ok lick during situation unload
understand sit figure out during time land
Other: Other: Other: Other: Other:

Figure 2: User-interface for paraphrase selection.

to directly optimize learning-to-rank specific cost
functions such as Normalized Discounted Cumu-
lative Gain (NDCG) and Mean Average Precision
(MAP).

3.4 Features

We have modeled three types of features: a
resource-based feature where feature values are
taken from a lexical resource (F'0), four features
based on global context where we use word em-
beddings to characterize targets and candidates ir-
respectively of context (F'1,2,3,4) and four fea-
tures based on local context that take the relation
of target and candidate with the context into ac-
count (F'5,6,7,8).

PPDB2 score: We use the the PPDB2 score
(F0) of each candidate as baseline feature. This
score reflects a context-insensitive ranking as pro-
vided by the lexical resources.

First we describe features considering global
context information:

Target and Candidate phrases: Note that we
do not use word identity as a feature, and use
the word embedding instead for the sake of ro-
bustness. We use the word2vec python imple-
mentation of Gensim (Rehﬁfck and Sojka, 2010)%
to generate embeddings from BNC?, Wikipedia,
BAWE and ANC. We train embeddings with 200
dimensions using skip-gram training and a win-
dow size of 5. We approximate MWE embeddings
$https://radimrehurek.com/gensim/

models/word2vec.html
’http://www.natcorp.ox.ac.uk/

by averaging the embeddings of their parts. We
use the word embeddings of the target (F'1) and
the candidate (F'2) phrases.

Candidate-Target similarities: The dot product
of the target and candidate embeddings (F'3), as
described in (Melamud et al., 2015).
Target-Sentence similarity: The dot product be-
tween a candidate and the sentence, i.e. the aver-
age embeddings of all words in the sentence (F'4).

The following features use local context infor-
mation:

Target-Close context similarity: The dot prod-
uct between the candidate and the left and right
3-gram (F'5) and 5-gram embedding (F'6) resp..
Ngram features: A normalized frequency for a
2-5-gram context with the target and candidate
phrases (I'7) based on Google Web 1T 5-Grams'?.
Language model score: A normalized language
model score using a sentence as context with the
target and candidate phrases (F'8). An n-gram lan-
guage model (Pauls and Klein, 2011) is built using
the BNC and Wikipedia corpora.

Also, we experimented with features that even-
tually did not improve results, such as the embed-
dings of the target’s n = 5 most similar words,
length and length ratios between target and can-
didate, most similar words and number of shared
senses among target and candidate phrases based
JoBimText DT (Ruppert et al., 2015), and N-gram
POS sequences and dependency labels of the tar-

Ynttps://catalog.ldc.upenn.edu/
LDC2009T25



kNN LambdaMART
Features | P R F pe@l  NOO MAP
All 69.27 90.41 78.41 | 90.53 89.03 91.35
FO+1+42+5 | 76.14 84.40 80.04 | 89.38 89.24 91.31
F1+2 75.28 85.05 79.85 | 88.13 88.98 90.88
F1+3 7528 85.05 79.85 | 88.13 88.98 90.88
F1+5 7442 86.69 80.07 | 88.11 88.76 90.82
FO+1+2+7 | 74.89 85.65 79.89 | 89.42 89.34 91.29
F3+7 7028 79.82 74.61 | 82.31 84.08 86.34
F5+7 64.56 86.25 73.64 | 80.24 82.61 85.60
FO+3 68.87 81.39 74.43 | 87.04 86.37 88.78
FO+7 69.86 79.02 74.05 | 84.14 84.69 87.20
Fo6+7 65.20 79.49 7134 | 80.03 84.98 85.54
FO+6 67.43 78.04 72.08 | 8498 85.26 87.64
FO 7249 79.84 75.18 | 84.12 84.51 87.15

(a) Performance on all datasets

kNN LambdaMART
Features | P R F pe@l  NOO MAP
All 76.74 8299 79.71 | 89.72 88.82 91.58
FO+1+42+5 | 75.36  84.54 79.67 | 90.38 89.10 91.41
F1+2 75.74 83.66 79.49 | 88.28 88.82 90.98
F1+3 75.74 83.66 79.49 | 88.28 88.82 90.98
F1+5 7495 85.52 79.87 | 87.50 88.51 90.76
FO+1+2+7 | 69.59 88.63 77.95 | 90.00 89.31 91.49
F3+7 70.25 78.71 74.09 | 81.92 83.78 86.03
F5+7 64.05 8520 7290 | 79.96 8224 85.09
FO+3 68.89 80.52 74.05 | 86.41 86.46 88.64
FO+7 69.93 7838 73.77 | 84.14 84.77 87.11
Fo+7 64.67 78.80 70.71 | 7897 82.06 84.98
FO+6 66.98 77.28 71.44 | 8521 85.04 87.55
FO 74.08 72.18 71.47 | 84.81 84.60 87.29

(b) Performance on single words datasets

kNN LambdaMART
Features | P R F pe@l MO MAP
All 69.81 95.70 80.60 | 84.69 77.54 86.21
FO+1+245 | 73.66 91.25 81.56 | 81.76 76.40 8543
F1+2 7325 91.11 81.13 | 82.74 76.00 86.69
F1+3 7325 91.11 81.13 | 82.74 76.00 86.69
F1+5 72.58 92.05 81.05 | 84.69 77.14 87.14
FO+1+2+7 | 72.85 91.14 80.89 | 83.71 7595 84.97
F3+7 71.56 85.18 77.57 | 78.83 72.71 80.40
F5+7 68.03 89.72 77.18 | 72.31 67.27 80.66
FO+3 70.05 85.64 7691 | 81.43 7132 81.62
FO+7 70.28 84.56 76.56 | 71.34 67.76 77.35
Fo6+7 69.46 85.38 76.45 | 7948 67.82 79.66
FO+6 7149 8235 76.39 | 80.78 69.16 82.37
FO 73.35 70.54 69.06 | 69.71 67.12 77.95

(c) Performance on MWEs datasets

Table 2: Binary classification vs. learning-to-rank
results on baseline and 8 top-performing feature
combinations.

get.

4 Experimental Results

Now we discuss the different experimental results
using the K-Nearest Neighbors (kKNN)!! from the
scikit-learn'? machine leaning framework (binary
classification setup) and the LambdaMART learn-
ing to rank algorithm from the RankLib (learning
to rank setup). We have used 5-fold cross valida-
tion on 17k data points (2k MWEs and 15k single)
from the crowdsourcing annotation task for both
approaches. The cross-validation is conducted in
a way that there is no target overlap in in each split,
so that our model is forced to learn a delexicalized
function that can apply to all targets where substi-
tution candidates are available, cf. (Szarvas et al.,
2013).

As evaluation metrics, precision, recall, and F-
score are used for the first setup. For the sec-
ond setup we use P@1, Mean Average Precision
(MAP), and Normalized Discounted Cumulative
Gain (NDCG). P@1 measures the percentage of
correct paraphrases at rank 1, thus gives the per-
centage of how often the best-ranked paraphrase
is judged as correct. MAP provides a single-figure
measure of quality across recall levels. NDCG is
a ranking score that compares the optimal ranking
to the system ranking, taking into account situa-
tions where many resp. very few candidates are
relevant (Wang et al., 2013). In the following sub-
sections, we will discuss the performance of the
two machine learning setups.

4.1 Binary Classification

For paraphrase selection, we regard the problem
as a binary classification task. If a given candidate
is selected by at least one annotator, it is consid-
ered as possible substitute and taken as positive
example. Otherwise it will be considered as a neg-
ative training example. For this experiment, kNN
from the scikit-learn machine learning framework
is used. Table 2 shows the evaluation result for the
best subsets of feature combinations. The classifi-
cation experiments obtain maximal F1s of 81.56%
for MWESs and 79.77% for single words vs. a non-
contextual baseline of 69.06% and 71.47% resp.

"Parameters: Number of neighbors (n_neighbors) = 20,
weight function (weights) = distance
Phttp://scikit-learn.org/



4.2 Learning to Rank

Now we learn to rank paraphrase candidates, us-
ing the number of annotators agreeing on each
candidate to assign relevance scores in the in-
terval of [0-5].. The average evaluation re-
sult on the 5-fold splits is shown in Table
2. The baseline ranking given by F'0 is con-
sistently lower than our context-aware classi-
fiers. The best scores are attained with all fea-
tures enabled (P@1=89.72, NDCG@5=88.82 and
MAP=91.58 for single words vs. P@1=84.69,
NDCG@5=77.54 and MAP=86.21 for MWE:).
A more detailed analysis between the ranking
of single-worded targets and multi-worded para-
phrases will be discussed in Section 5.3.

5 Analysis of the Result

In this section, we interpret the results obtained
during the crowdsourcing annotation task and ma-
chine learning experimentation.

5.1 Correlation with PPDB2 Ranking

As it can be seen from Table 1, without contexts, a
Spearman correlation of 0.36 and 0.25 is obtained
by the workers against the PPDB2 default rank-
ings for single and MWE annotations resp. How-
ever, when the contexts are provided to the work-
ers, the ranking for the same items is lower with
a Spearman correlation of 0.32 and 0.23 for sin-
gle and MWE annotations resp. This indicates that
the contexts provided has an impact on the rank-
ing of paraphrases. Moreover, we observe that
the correlation with PPDB2 ranking is consider-
ably lower than the one reported by Pavlick et al.
(2015) which is 0.71. Data analysis revealed a
lot of inconsistent scores within the PPDB2. For
example, the word pairs (come in, sound) and
(look at, okay) have a high correlation score (3.2,
3.18 resp.). However, they do not seem to be re-
lated and are not considered as substitutable by our
method. The perceived inconsistency is worse in
the case of MWE scores hence the correlation is
lower than for single words.

5.2 Annotation Agreement

According to Table 3, annotators agree more of-
ten on single words than on MWESs. This might be
attributed to the fact that single word candidates
are generated with different meanings using the
automatic sense induction approach, provided by
the JoBimText framework (Ruppert et al., 2015).

#0 #1 #2 #3 #4#5

All 36.09 3457 11.68 838 5.82 3.46
Single | 36.54 34.47 1148 824 5.79 3.48
MWE | 3239 3543 1335 947 6.06 3.30

Agreement
81.56
81.76
76.97

Table 3: Score distributions and observed anno-
tation agreement (in %). The columns #1 to #5
shows the percentage of scores the annotator give
to each classes (0-5). The last column provides
the observed agreements among 5 annotators.

Hence, when context is provided, it is much eas-
ier to discern the correct candidate paraphrase. On
the other hand, in MWEs, their parts disambiguate
each other to some extent, so there are less can-
didates with context mismatches. We can witness
that from the individual class percentages (MWE
candidates are on average scored higher than sin-
gle word candidates, especially in the range of [2-
4]) and from the overall observed agreements.

5.3 Machine Learning

According to the results shown in Table 2, we
achieve higher scores for the binary classification
for MWE than for single words. We found
that this is due to the fact that we have more
positive examples (67.6%) than the single words.
Intuitively, it is much easier to have one of the
five candidates to be a correct paraphrase as most
of the MWE are not ambiguous in meaning (see
recall (R) column in Table 2).

Example 1: this is the reason too that the reader
disregards the duke ’s point of view , and supports
and sympathises with the duchess , acknowledging
her innocence.

Example 2: this list of verbs describes day-to-day
occupations of the young girl , suggesting that she
does n’t distinguish the graveyard from other lo-
cations of her day .

Example 3: this is apparent in the case of the
priest who tries to vanquish the devil , who is in-
fact mistaken for mouse slayer , the cat ...

Error analysis of the classification result shows
that some of the errors are due to annotation mis-
takes. In Example 1, the annotators do not select
the candidate stand while the classifier predicts
it correctly. We also found that the classifier
wrongly picks antonyms from candidates. The
classifier selected younger man and heaven for
Example 2 and 3 resp. while the annotators do not



Target Candidate #Annotators Ranker score
write about  write on 2 8.14

write about  write into 0 5.63

write about  discuss 1 2.81

write about  write in 1 1.20

write about  talk to 1 -1.82

Table 4: LambdaMART ranking scores

select them. Out of 91 MWE examples predicted
by the classifier as positive, we found out that
24 of the examples have near synonym meaning
while annotators fail to select them and also, 7
examples are antonyms.

The results for learning the ranking show a dif-
ferent trend. Once again, we can see that it is dif-
ficult to rank better when the candidates provided
(in the case of MWEs) are less ambiguous. This
could also be a consequence of the lower agree-
ment on MWE candidate judgments. Analysis of
the learn-to-rank result also revealed that the lower
result is due to the fact that more often, the anno-
tators do not agree on a single candidate, as it can
be seen from Table 4.

Looking at the overall results, it becomes clear
that our learning framework can substantially
improve contextual paraphrase ranking over the
PPDB2-resource-based baseline. The resource-
based F'0O-feature, however, is still important for
attaining the highest scores. While the global
context features based on word embeddings (cf.
F14 24 3or F'1 4 3) already show a very good
performance, they are consistently improved by
adding one or all feature that models local context
(F'5, F6, F'7, F'8). From this we conclude that all
feature types (resource, global context, local con-
text) are important.

6 Conclusion and Future Directions

In this paper we have quantified the impact of
context on the paraphrase ranking scoring task.
The direct annotation experiments show that para-
phrasing is in fact a context-specific task: while
the paraphrase ranking scores provided by PPDB2
were confirmed by a weak correlation with out-
of-context judgments, the correlation between
resource-provided rankings and judgments in con-
text were consistently lower.

We conducted a classification experiment in a
delexicalized setting, i.e. training and testing on
disjoint sets of paraphrase targets. For a binary
classification setting as well as for ranking, we im-

proved substantially over the non-contextualized
baseline as provided by PPDB2. An F-score of
81.56% and 79.87% is attained for MWEs and
Single words using kNN classifier from scikit-
learn. A MAP score of 87.14% and 91.58%
is obtained for MWEs and single words using
the LambdaMART learn-to-rank algorithm from
RankLib.

We recommend to use a learning-to-rank frame-
work for utilizing features that characterize the
paraphrase candidate not only with respect to
the target, but also with respect to the context.
The most successful features in these experiments
are constructed from word embeddings, and the
best performance is attained in combination of
resource-based, global context and local context
features.

Both experiments confirm the generally ac-
cepted intuition that paraphrasing, just like lexi-
cal substitution of single words, depends on con-
text: while MWEs are less ambiguous than sin-
gle words, it still does not hold that they can be
replaced without taking the context into account.
Here, we have quantified the amount of context
dependence on a new set of contextualized para-
phrase judgments, which is — to our knowledge —
the first dataset with multi-word targets'>.

While our dataset seems of sufficient size
to learn a high-quality context-aware paraphrase
ranker, we would like to employ usage data from
a semantic writing aid for further improving the
quality, as well as for collecting domain- and user-
specific paraphrase generation candidates.
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