Neural Associative Memory for Dual-Sequence Modeling

Dirk Weissenborn
Language Technology Lab, DFKI
Alt-Moabit 91¢c
Berlin, Germany
dirk.weissenborn@dfki.de

Abstract

Many important NLP problems can be
posed as dual-sequence or sequence-to-
sequence modeling tasks. Recent ad-
vances in building end-to-end neural ar-
chitectures have been highly successful in
solving such tasks. In this work we pro-
pose a new architecture for dual-sequence
modeling that is based on associative
memory. We derive AM-RNNSs, a recur-
rent associative memory (AM) which aug-
ments generic recurrent neural networks
(RNN). This architecture is extended to
the Dual AM-RNN which operates on
two AMs at once. Our models achieve
very competitive results on textual en-
tailment. A qualitative analysis demon-
strates that long range dependencies be-
tween source and target-sequence can be
bridged effectively using Dual AM-RNNS.
However, an initial experiment on auto-
encoding reveals that these benefits are
not exploited by the system when learn-
ing to solve sequence-to-sequence tasks
which indicates that additional supervision
or regularization is needed.

1 Introduction

Dual-sequence modeling and sequence-to-
sequence modeling are important paradigms
that are used in many applications involving
natural language, including machine translation
(Bahdanau et al., 2015; Sutskever et al., 2014),
recognizing textual entailment (Cheng et al.,
2016; Rocktdschel et al., 2016; Wang and Jiang,
2016), auto-encoding (Li et al., 2015), syntactical
parsing (Vinyals et al., 2015) or document-level
question answering (Hermann et al., 2015). We
might even argue that most, if not all, NLP

258

problems can (at least partially) be modeled
by this paradigm (Li and Hovy, 2015). These
models operate on two distinct sequences, the
source and the target sequence. Some tasks
require the generation of the target based on
the source (sequence-to-sequence modeling),
e.g., machine translation, whereas other tasks
involve making predictions about a given source
and target sequence (dual-sequence modeling),
e.g., recognizing textual entailment. Existing
state-of-the-art, end-to-end differentiable models
for both tasks exploit the same architectural ideas.

The ability of such models to carry information
over long distances is a key enabling factor for
their performance. Typically this can be achieved
by employing recurrent neural networks (RNN)
that convey information over time through an in-
ternal memory state. Most famous is the LSTM
(Hochreiter and Schmidhuber, 1997) that accu-
mulates information at every time step additively
into its memory state, which avoids the prob-
lem of vanishing gradients that hindered previous
RNN architectures from learning long range de-
pendencies. For example, Sutskever et al. (2014)
connected two LSTMs conditionally for machine
translation where the memory state after process-
ing the source was used as initialization for the
memory state of the target LSTM. This very sim-
ple architecture achieved competitive results com-
pared to existing, very elaborate and feature-rich
models. However, learning the inherent long range
dependencies between source and target requires
extensive training on large datasets. Bahdanau et
al. (2015) proposed an architecture that resolved
this issue by allowing the model to attend over
all positions in the source sentence when predict-
ing the target sentence, which enabled the model
to automatically learn alignments of words and
phrases of the source with the target sentence. The
important difference is that previous long range

Proceedings of the 1st Workshop on Representation Learning for NLP, pages 258-266,
Berlin, Germany, August 11th, 2016. (©2016 Association for Computational Linguistics

dependencies could be bridged directly via atten-
tion. However, this architecture requires a larger
number of operations that scales with the product
of the lengths of the source- and target sequence
and a memory that scales with the length of the
source sequence.

In this work we introduce a novel architecture
for dual-sequence modeling that is based on as-
sociative memories (AM). AMs are fixed sized
memory arrays used to read and write content via
an associated keys. Holographic Reduced Rep-
resentations (HRR) (Plate, 1995)) enable the ro-
bust and efficient retrieval of previously written
content from redundant memory arrays. Our ap-
proach is inspired by the works of Danihelka et
al. (2016) who recently demonstrated the bene-
fits of exchanging the memory cell of an LSTM
with an associative memory on various sequence
modeling tasks. In contrast to their architecture
which directly adapts the LSTM architecture we
propose an augmentation to generic RNNs (AM-
RNNs, §3.2). Similar in spirit to Neural Turing
Machines (Graves et al., 2014) we decouple the
AM from the RNN and restrict the interaction with
the AM to read and write operations which we
believe to be important. Based on this architec-
ture we derive the Dual AM-RNN (§4) that oper-
ates on two associative memories simultaneously
for dual-sequence modeling. We conduct exper-
iments on the task of recognizing textual entail-
ment (§5). Our results and qualitative analysis
demonstrate that AMs can be used to bridge long
range dependencies similar to the attention mech-
anism while preserving the computational bene-
fits of conveying information through a single,
fixed-size memory state. Finally, an initial in-
spection into sequence-to-sequence modeling with
Dual AM-RNNs shows that there are open prob-
lems that need to be resolved to make this ap-
proach applicable to these kinds of tasks.

A TensorFlow (Abadi et al., 2015) im-
plementation of (Dual)-AM RNNs can
be found at https://github.com/
dirkweissenborn/dual_am_rnn.

2 Related Work

Augmenting RNNs by the use of memory is not
novel. Graves et al. (2014) introduced Neural Tur-
ing Machines which augment RNNs with exter-
nal memory that can be written to and read from.
It contains a predefined number of slots to write

content to. This form of memory is addressable
via content or position shifts. Neural Turing Ma-
chines inspired subsequent work on using different
kinds of external memory, like queues or stacks
(Grefenstette et al., 2015). Operations on these
memories are calculated via a recurrent controller
which is decoupled from the memory whereas
AM-RNNs apply the RNN cell-function directly
upon the content of the associative memory.

Danihelka et al. (2016) introduced Associative
LSTMs which extends standard LSTMs directly
by reading and writing operations on an associa-
tive memory. This architecture is closely related
to ours. However, there are crucial differences that
are due to the fact that we decouple the associative
array from the original cell-function. Danihelka et
al. (2016) directly include operations on the AM
in the definition of their Associative LSTM. This
might cause problems, since some operations, e.g.,
forget, are directly applied to the entire memory
array although this can affect all elements stored
in the memory. We believe that only reading and
writing operations with respect to a calculated key
should be performed on the associative memory.
Further operations should therefore only be ap-
plied on the stored elements.

Neural attention is another important mecha-
nism that realizes a form of content addressable
memory. Most famously it has been applied to
machine translation (MT) where attention models
automatically learn soft word alignments between
source and translation (Bahdanau et al., 2015). At-
tention requires memory that stores states of its in-
dividual entries, separately, e.g., states for every
word in the source sentence of MT or textual en-
tailment (Rocktidschel et al., 2016), or entire sen-
tence states as in Sukhbaatar et al. (2015) which
is an end-to-end memory network (Weston et al.,
2015) for question answering. Attention weights
are computed based on a provided input and the
stored elements. The thereby weighted memory
states are summed and the result is retrieved to be
used as input to a down-stream neural network.
Architectures based on attention require a larger
amount of memory and a larger number of oper-
ations which scales with the usually dynamically
growing memory. In contrast to attention Dual
AM-RNN:Ss utilize fixed size memories and a con-
stant number of operations.

AM-RNNSs also have an interesting connection
to LSTM-Networks (Cheng et al., 2016) which re-

259

cently demonstrated impressive results on various
text modeling tasks. LSTM-Networks (LSTMN)
select a previous hidden state via attention on a
memory tape of past states (intra-attention) op-
posed to using the hidden state of the previous
time step. The same idea is implicitly present
in our architecture by retrieving a previous state
via a computed key from the associative memory
(Equation (6)). The main difference lies in the
used memory architecture. We use a fixed size
memory array in contrast to a dynamically grow-
ing memory tape which requires growing compu-
tational and memory resources. The drawback of
our approach, however, is the potential loss of ex-
plicit memories due to retrieval noise or overwrit-
ing.

3 Associative Memory RNN

3.1 Redundant Associative Memory

In the following, we use the terminology of Dani-
helka et al. (2016) to introduce Redundant Asso-
ciative Memories and Holographic Reduced Rep-
resentations (HRR) (Plate, 1995). HRRs provide a
mechanism to encode an item a with a key » that
can be written to a fixed size memory array 1m and
that can be retrieved from m via r.

In HRR, keys r and values x refer to complex
vectors that consist of a real and imaginary part:
T =T +1 Tin, L = Tpe + & - T, Where
1 is the imaginary unit. We represent these com-
plex vectors as concatenations of their respective
real and imaginary parts, e.g., = [Fre; Tim)-
The encoding- and retrieval-operation proposed
by Plate (1995) and utilized by Danihelka et
al. (2016) is the complex multiplication (Equa-
tion (1)) of a key r with its value @ (encoding), and
the complex conjugate of the key 7 = 7 — -7,
with the memory (retrieval), respectively. Note,
that this requires the modulus of the key to be
equal to one, i.e., \/Tre © Tre + Tipy © iy, = 1,
such that 7 = »—!. Consider a single memory ar-
ray m containing /N elements x; with respective
keys 7. (Equation (2)).

rec= |:rre®m7"e — Tim © Tim (1)
Tre © Tim + Tim © Tre
N
m=y r,®w @)
k=1

We retrieve an element x; by multiplying 7

260

with m (Equation (3)).

N
Tp=Tr@m=) Tr®ry® Ty
k'=1

N
=zt > TE@Tp @y
k'=1#k

= x, + noise 3)

To reduce noise Danihelka et al. (2016) intro-
duce permuted, redundant copies m s of m (Equa-
tion (4)). This results in uncorrelated retrieval
noises which effectively reduces the overall re-
trieval noise when computing their mean. Con-
sider N, permutations represented by permutation
matrices Ps;. The retrieval equation becomes the
following.

N
my =Y (Pury) ® ay “
k=1
1 Ne. N
B 33 () .
s=1k'=1
N L N
=zt > T ® FCz:Ps(ﬁ@wk,)
k'=1#k s=1

= x}, + noise

The resulting retrieval noise becomes smaller
because the mean of the permuted, complex key
products tends towards zero with increasing N,
if the key dimensions are uncorrelated (see Dani-
helka et al. (2016) for more information).

3.2 Augmenting RNNs with Associative
Memory

A recurrent neural network (RNN) can be defined
by a parametrized cell-function fg : RY x RM —
RM x R that is recurrently applied to an input
sequence X = (x1,...,x7). At each time step ¢
it emits an output h,; and a state sy, that is used as
additional input in the following time step (Equa-
tion (5)).

fo(xe, st—1) = (8¢, ht)
zeRY, secRM heRY (5)

In this work we augment RNNs, or more
specifically their cell-function fy, with associa-
tive memory to form Associative Memory RNNs
(AM-RNN) fp as follows. Let s; = [ci;] be

the concatenation of a memory state ¢; and, op-
tionally, some remainder n; that might addition-
ally be used in f, e.g., the output of an LSTM. For
brevity, we neglect n; in the following, and thus
s; = c;. At first, we compute a key given the pre-
vious output and the current input, which is in turn
used to read from the associative memory array m
to retrieve a memory state s for the specified key

(Equation (6)).
(0)

The bound-operation (Danihelka et al., 2016)
(Equation (7)) guarantees that the modulus of r; is
not greater than 1. This is an important necessity
as mentioned in § 3.1.

Tt

7 = bound (Wr |:ht1

St 1 =T ®My_q

r.od

bound(r’) = [r‘ @d] (7

d = max <1, r.OT.,+T, © r;m>

Next, we apply the original cell-function fy to
the retrieved memory state (Equation (8)) and the
concatenation of the current input and last output
which serves as input to the internal RNN. We
update the associative memory array with the up-
dated state using the conjugate key of the retrieval
key (Equation (9)).

St, ht = fe <|:h:tci1:|) Stl) (8)
my=my_1+ 7 ® (St — S4—1)
fo(xe,mi_1) = (my, hy))

The entire computation workflow is illustrated
in Figure 1a.

4 Associative Memory RNNs for Dual
Sequence Modeling

Important NLP tasks such as machine translation
(MT) or detecting textual entailment (TE) involve
two distinct sequences as input, a source- and a
target sequence. In MT a system predicts the tar-
get sequence based on the source whereas in TE
source and target are given and an entailment-class
should be predicted. Recently, both tasks were
successfully modelled using an attention mecha-
nism that can attend over positions in the source

261

sentence at any time step in the target sentence
(Bahdanau et al., 2015; Rocktischel et al., 2016;
Cheng et al., 2016). These models are able to learn
important task specific correlations between words
or phrases of the two sentences, like word/phrase
translation, or word-/phrase-level entailment or
contradiction. The success of these models is
mainly due to the fact that long range dependen-
cies can be bridged directly via attention, instead
of keeping information over long distances in a
memory state that can get overwritten.

The same can be achieved through associative
memory. Given the correct key a state that was
written at any time step in the source sentence can
be retrieved from an AM with minor noise that
can efficiently be reduced by redundancy. There-
fore, AMs can bridge long range dependencies and
can therefore be used as an alternative to attention.
The trade-off for using an AM is that memorized
states cannot be used for their retrieval. How-
ever, the retrieval operation is constant in time and
memory whereas the computational and memory
complexity of attention based architectures grow
linearly with the length of the source sequence.

We propose two different architectures for solv-
ing dual sequence problems. Both approaches
use at least one AM-RNN for processing the
source and another for the target sequence. The
first approach reads the source sequence X
(x1,...,x7,) and uses the final associative mem-
ory array m®(:= mf,) to initialize the memory
array m§ = m® of the AM-RNN that processes
the target sequence Y = (y, ..., yr,). Note that
this is basically the the conditional encoding archi-
tecture of Rocktischel et al. (2016).

The second approach uses the final AM array
of the source sequence m® in addition to an inde-
pendent target AM array m;. At each time step ¢
the Dual AM-RNN computes another key 7} that
is used to read from m* and feeds the retrieved
value as additional input to y, to the inner RNN of
the target AM-RNN. These changes are reflected
in the Equation (10) (compared to Equation (8))

(a) ustration of AM-RNN for input «; at time step

t.

Dual AM-RNN

(b) Illustration of a Dual AM-RNN that extends the
AM-RNN with the utilization of the final memory ar-
ray m7, of source sequence X.

Figure 1: Illustration of the computation workflow in AM-RNNs and Dual AM-RNNs. @ refers to
the complex multiplication with the (complex) conjugate of 7, and can be interpreted as the retrieval
operation. Similarly, ® can be interpreted as the encoding operation.

and illustrated in Figure 1b.

ry = bound <WT/ [h:lylt])
t—1
¢, =71, ®m”
Y
St, h% = fo hi},l y St—1 (10)
ol

S Experiments

5.1 Setup

Dataset We conducted experiments on the Stan-
ford Natural Language Inference (SNLI) Corpus
(Bowman et al., 2015) that consists of roughly
500k sentence pairs (premise-hypothesis). They
are annotated with textual entailment labels. The
task is to predict whether a premise entails, con-
tradicts or is neutral to a given hypothesis.

Training We perform mini-batch (B 50)
stochastic gradient descent using ADAM (Kingma
and Ba, 2015) with 8; = 0, B2 = 0.999 and
an initial learning rate of 10~3 for small models
(H =~ 100) and 10~* (H = 500) for our large
model. The learning rate was halved whenever ac-
curacy dropped over the period of one epoch. Per-
formance on the development set was checked ev-
ery 1000 mini-batches and the best model is used
for testing. We employ dropout with a probabil-
ity of 0.1 or 0.2 for the small and large models,

262

respectively. Following Cheng et al. (2016), word
embeddings are initialized with Glove (Penning-
ton et al., 2014) or randomly for unknown words.
Glove initialized embeddings are tuned only af-
ter an initial epoch through the training set.

Model In this experiment we compare the tradi-
tional GRU with the (Dual) AM-GRU using con-
ditional encoding (Rocktischel et al., 2016) us-
ing shared parameters between source and target
RNNs. Associative memory is implemented with
8 redundant memory copies. For the Dual AM-
GRU we define r, = 7, (see § 4), i.e., we use
the same key for interacting with the premise and
hypothesis associative memory array while pro-
cessing the hypothesis. The rationale behind this
is that we want to retrieve text passages from the
premise that are similar to text passages of the tar-
get sequence.

All of our models consist of 2 layers with a
GRU as top-layer which is intended to summarize
outputs of the bottom layer. The bottom layer cor-
responds to our different architectures. We con-
catenate the final output of the premise and hy-
pothesis together with their absolute difference to
form the final representation that is used as input
to a two-layer perceptron with rectifier-activations
for classification.

5.2 Results

The results are presented in Table 1. They long
range that the H=100-dimensional Dual AM-

Model H/|0_g| Accuracy
LSTM (Rocktéschel et al., 2016) 116/252k 80.9
LSTM shared (Rocktiischel et al., 2016) 159/252k 81.4
LSTM-Attention (Rocktéschel et al., 2016) 100/252k 83.5
GRU shared 126/321k 81.9
AM-GRU shared 108/329k 82.9
Dual AM-GRU shared 100/321k 84.4
Dual AM-GRU shared 500/5.6m 85.4
LSTM Network (Cheng et al., 2016) 450/3.4m 86.3

Table 1: Accuracies of different RNN-based architectures on SNLI dataset. We also report the respec-
tive hidden dimension H and number of parameters |@_g| for each architecture without taking word

embeddings E into account.

GRU and conditional AM-GRU outperform our
baseline GRU system significantly. Especially the
Dual AM-GRU does very well on this task achiev-
ing 84.4% accuracy, which shows that it is im-
portant to utilize the associative memory of the
premise separately for reading only. Most no-
tably is that it achieves even better results than a
comparable LSTM architecture with two-way at-
tention between all premise and hypothesis words
(LSTM-Attention). This indicates that our Dual
AM-GRU architecture is at least able to per-
form similar or even better than an attention-based
model in this setup.

We investigated this finding qualitatively from
sampled examples by plotting heatmaps of cosine
similarities between the content that has been writ-
ten to memory at every time step in the premise
and what has been retrieved from it while the
Dual AM-GRU processes the hypothesis. Random
examples are shown in Figure 2, where we can
see that the Dual AM-GRU is indeed able to re-
trieve the content from the premise memory that is
most related with the respective hypothesis words,
thus allowing to bridge important long-range de-
pendencies for solving this task similar to atten-
tion. We observe that content for related words
and phrases is retrieved from the premise memory
when processing the hypothesis, e.g., “play” and
“video game” or “artist” and “sculptor”.

Increasing the size of the hidden dimension
to 500 improves accuracy by another percentage
point. The recently proposed LSTM Network
achieves slightly better results. However, its num-
ber of operations scales with the square of the
summed source and target sequence, which is even

263

larger than traditional attention.

5.3 Sequence-to-Sequence Modeling

End-to-end differentiable sequence-to-sequence
models consist of an encoder that encodes the
source sequence and a decoder which produces
the target sequence based on the encoded source.
In a preliminary experiment we applied the Dual
AM-GRU without shared parameters to the task of
auto-encoding where source- and target sequence
are the same. Intuitively we would like the AM-
GRU to write phrase-level information with dif-
ferent keys to the associative memory. However,
we found that the encoder AM-GRU learned very
quickly to write everything with the same key to
memory, which makes it work very similar to a
standard RNN based encoder-decoder architecture
where the encoder state is simply used to initialize
the decoder state.

This finding is illustrated in Figure 3. The pre-
sented heatmap shows similarities between con-
tent that has been retrieved while predicting the
target sequence and what has been written by the
encoder to memory. We observe that the similari-
ties between retrieved content and written content
are horizontally slightly increasing, i.e., towards
the end of the encoded source sentence. This indi-
cates that the encoder overwrites the the associa-
tive memory while processing the source with the
same key.

5.4 Discussion

Our experiments on entailment show that the
idea of using associative memory to bridge long
term dependencies for dual-sequence modeling
can work very well. However, this architecture is

— (18]
T L o o) 5
s 222 =« S - £ 2
W X aon £EE ° o ® = © 2 O © o
several child .
young
0 i 2]
people ? getting b
sitting % pedicure .E
in = _ S
a z with 2
school mother
premise premise
wn
(3]
S
— o o
o) < Q
2 E = 2 8’) % v o
5 8§ 2 B £ § = B o 2
« 7 22 f .58 < 5 22 o 23
the a
%)
2] irl 0
man .g g g
is < is §
an § layi =
2 playing
artist premise
premise
|-
c]
o
S ows L o0
RN O E O n £ T)
£8 T gy 558 £ =
3 s
hoc“‘*>°’*~ 2235w l22S
t_ e people
kids 10 standing 2
are g outside =
indoors o of ‘g_
playing [l B 3 a 2
a % house
video .- = premise
B
game _ 00 02 04 06 08 10
premise

Figure 2: Heatmaps of cosine similarity between content that has been written to the associative memory
at each time step of the premise (x-axis) and what has been retrieved from it by the Dual AM-GRU while

processing the hypothesis (y-axis).

264

w
0
S -7 2
2 92 8Jx3
c ., 9 g L 0O © ®
=%+ o0& €& Q@
Many
of
these
companies T
are o
c
global =
market
leaders
Source
-
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Heatmap of cosine similarity between
content that has been written to the associative
memory at each time step by the encoder (x-axis)
and what has been retrieved from it by the Dual
AM-GRU while decoding (y-axis).

not naively transferable to the task of sequence-
to-sequence modeling. We believe that the main
difficulty lies in the computation of an appropri-
ate key at every time step in the target sequence to
retrieve related content. Furthermore, the encoder
should be enforced to not always use the same key.
For example, keys could be based on syntactical
and semantical cues, which might ultimately result
in capturing some form of Frame Semantics (Fill-
more and Baker, 2001). This could facilitate de-
coding significantly. We believe that this might be
achieved via regularization or by curriculum learn-
ing (Bengio et al., 2009).

6 Conclusion

We introduced the Dual AM-RNN, a recurrent
neural architecture that operates on associative
memories. The AM-RNN augments traditional
RNNs generically with associative memory. The
Dual AM-RNN extends AM-RNNs with a sec-
ond read-only memory. Its ability to capture
long range dependencies enables effective learn-
ing of dual-sequence modeling tasks such as rec-
ognizing textual entailment. Our models achieve
very competitive results and outperform a com-
parable attention-based model while preserving
constant computational and memory resources.

265

Applying the Dual AM-RNN to a sequence-to-
sequence modeling task revealed that the benefits
of bridging long range dependencies cannot yet be
achieved for this kind of problem. However, quan-
titative as well as qualitative results on textual en-
tailment are very promising and therefore we be-
lieve that the Dual AM-RNN can be an impor-
tant building block for NLP tasks involving two
sequences.

Acknowledgments

We thank Sebastian Krause, Tim Rocktidschel and
Leonhard Hennig for comments on an early draft
of this work. This research was supported by the
German Federal Ministry of Education and Re-
search (BMBF) through the projects ALL SIDES
(01ITW14002), BBDC (01IS14013E), and Soft-
ware Campus (01IS12050, sub-project GeNIE).

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems. Soft-
ware available from tensorflow.org.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In The International
Conference on Learning Representations (ICLR).

Yoshua Bengio, Jérdme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41-48. ACM.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal
Kalchbrenner, and Alex Graves. 2016. Asso-
ciative long short-term memory. arXiv preprint
arXiv:1602.03032.

Charles J Fillmore and Collin F Baker. 2001. Frame
semantics for text understanding. In Proceedings
of WordNet and Other Lexical Resources Workshop,
NAACL.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances
in Neural Information Processing Systems, pages
1819-1827.

Karl Moritz Hermann, Tomd$§ Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In The Inter-
national Conference on Learning Representations

(ICLR).

Jiwei Li and Eduard Hovy. 2015. The NLP engine:
A universal turing machine for nlp. arXiv preprint
arXiv:1503.00168.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. In 53nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532—
1543.

Tony A Plate. 1995. Holographic reduced represen-
tations. Neural networks, IEEE transactions on,
6(3):623-641.

Tim Rocktischel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
The International Conference on Learning Repre-
sentations (ICLR).

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in Neural Information Processing Systems, pages
2431-2439.

266

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2755-2763.

Shuohang Wang and Jing Jiang. 2016. Learning natu-
ral language inference with Istm. In Proceedings of
the 2016 Human Language Technology Conference
of the North American Chapter of the Association of
Computational Linguistics.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In The International Con-
ference on Learning Representations (ICLR).

