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Abstract

Motif analysis counts the number of small
building blocks (the motifs) in a network and
relates these statistical numbers to the inher-
ent semantics of the network. In the realm of
natural language processing, the networks are
induced by texts. We demonstrate that motif
analysis may help assess the quality of a docu-
ment. More specifically, we consider the Ger-
man Wikipedia and use the label “featured”
as the (binary) quality criterion. The length
(number of words) of an article is a compara-
tively good predictor for this label. We show
that a well-designed combination of this cri-
terion and motif statistics yields a significant
improvement. We also found that a deeper
look into the most relevant motifs may im-
prove our understanding of quality.

1 Introduction

Recent work has shown that motif analysis is quite
promising for natural language processing (Biemann
et al., 2012; Mesgar and Strube, 2015). Roughly
speaking, the occurrences of small subgraphs like
those in Figure 1 are counted, and relations between
this motif signature and the semantics of the net-
work are analyzed. We adapt this technique to the
assessment of document quality. Our computational
study is based on the German Wikipedia. The label
“featured” indicates high quality. A certain combi-
nation with the length of an article, which is a very
good predictor for an article’s quality in this specific
sense (Blumenstock, 2008), yields a significant im-
provement over the length alone.

This paper is organized as follows. First we
briefly sketch our contribution in Section 1.1. Then,
in Section 2, we discuss the state of the art and ex-
plain the concept of motif analysis. We illustrate the
composition of our corpus in Section 3 and details of
our approach in Section 4. Quantitative and qualita-
tive results are presented in Section 5 and 6, respec-
tively. Finally, we summarize our work and outline
next steps in Section 7.

1.1 Our Contribution

The research questions In this paper, we address
three general questions:

1. Quantitative: does motif analysis as a stand-
alone tool help us assess the quality of text doc-
uments statistically?

2. Quantitative: does it help us in conjunction
with other quality measures?

3. Qualitative: does it help us understand the na-
ture of quality any better?

The German Wikipedia is our basis. The
Wikipedia allows the community to assign the label
“featured” to an article via an extensive communi-
cation and revision process, based on a collection
of stylistic and content-based quality criteria. We
use the distinction featured / non-featured as a (bi-
nary) quality criterion. Our corpus comprises all
featured articles and a purely random selection of
non-featured articles such that 7% of all articles in
our corpus are featured.

In summary, we address the three general research
questions in the following specific form: does motif
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Figure 1: the directed motifs on three nodes. A double arrow indicates the presence of two mutually opposite arcs.

analysis help us – alone or in conjunction with an-
other criterion – to distinguish between featured and
non-featured articles, and if so, does it yield a deeper
understanding of the nature of featured articles?

The bare length of an article is a surprisingly good
predictor for whether or not an article is featured.
So, for the second research question, we will com-
bine the article length with our motif analysis.

Methodological contribution The revision his-
tory of a Wikipedia article allows us to analyze the
development of the induced network and its motif
signature over time. So, for each article we analyzed
a series of “snapshots” and the temporal tendency of
the motif signature.

2 Related Work and Background

2.1 Related Work

Network analysis of text documents There is a
large scientific body of methods and applications of
network analysis (Aggarwal and Wang, 2010; Ag-
garwal, 2011). Graph mining – the art of detecting
and analyzing patterns and structures in graphs – is
the specific focus of the surveys (Cook and Holder,
2006; Fortunato, 2010).

It seems reasonable to classify network analysis
techniques by the level of granularity they address.
Elementary statistical measures such as the node de-
gree distribution operate on the level of single nodes
and edges. In the opposite extreme case, on the
global level, the structure of a network is captured
in a single (scalar) numerical value. Examples for
global measures are the average shortest path length,
the diameter, as well as simple characteristics such
as node and edge count. See the above-mentioned
surveys for a systematic discussion.

Motif analysis Motifs such as those in Figure 1
capture local structure and are thus, in a sense, on
an intermediate level between measures on single
nodes and edges on one hand and global measures
on the other hand.

Motif analysis has first been investigated in com-
putational biology (Shen-Orr et al., 2002) and
has since been applied to a variety of network
types in biology and biochemistry (Schreiber and
Schwöbbermeyer, 2010). The underlying insight is
that biological and biochemical dynamics are sta-
tistically related to the occurrence of small func-
tional blocks, which have specific structures. This
insight is well captured by motif signatures, and in
fact, many computational studies reveal significant
relations. Due to this success, it did not take long
time until this technique has been applied to net-
works from other domains. For example, (Milo et
al., 2002; Milo et al., 2004) compare networks from
biology, electrical engineering, natural language and
computer science and find that the motif signatures
from different domains are so different that they
may serve as a “fingerprint” of the respective do-
main. Krumov et al. (2011) use motif analysis on co-
authorship networks to find relations between par-
ticular motifs and citation frequency. They reveal
one particular motif that implies high average cita-
tion frequency, and provide explanations based on
social processes that are covered by the network.

Tran et al. (2015) explored differences in directed
and undirected networks of various disciplines, in-
cluding ecology, biology and social science. They
conclude that motifs in undirected networks are very
similar. However, motif analysis of directed net-
works was able to distinguish networks from differ-
ent fields. Furthermore, larger motifs captured more
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information about individual differences than small
motifs.

Quite recently, motif analysis has been applied to
text processing. In (Biemann et al., 2012), human-
written texts and artificial texts with quite similar
characteristics were compared by means of the motif
signatures of certain induced networks. For several
natural languages, the motif signatures were so dif-
ferent that they alone were sufficient to distinguish
the human-written from the artificial texts.

Mesgar and Strube (2015) applied motif analy-
sis to Wall Street Journal news articles. These texts
were represented as a combined entity and discourse
relation graph. They identified several motifs that
are highly correlated with manual readability rat-
ings.

Quality of documents Defining and measuring
the quality of a document in a formalized way is
an intrinsically difficult task. Various mathemat-
ical measures have been proposed for individual
aspects of quality, like correct grammar (Tetreault
and Chodorow, 2008) or spelling (Brill and Moore,
2000). Another part of quality, information order-
ing, has been evaluated with rank correlation met-
rics (Lapata, 2006). Louis and Nenkova (2013) in-
vestigated text quality at a much broader level that
incorporates features of emotions and surprise.

A network based approach on quality assess-
ment of school essays was presented by (Antiqueira
et al., 2007). This research used global statisti-
cal network features of text-induced graphs, includ-
ing mean clustering coefficient and average shortest
path length. The authors presented correlations be-
tween these metrics and manually annotated quality
scores.

2.2 Background: Networks and Motifs

Graphs vs. networks All graphs in this paper are
directed. Basically, we use the terms graph and net-
work synonymously. However, we will speak of net-
works only if the nodes and edges have a meaning in
the application context.

More specifically, in our work, the nodes of a
network are the sentences of a document, and two
nodes are connected by an edge if, and only if, the
two represented sentences have at least one noun in
common and are separated by at most two other sen-

tences. The direction of the edge reflects the relative
order of the sentences in the document, from the ear-
lier to the later sentence. Such a definition of di-
rected edges, which combines content with locality,
has turned out to be quite promising.

Motif analysis A motif is simply a small con-
nected graph – typically, but not exclusively, with
three or four nodes. Figure 1 shows all directed mo-
tifs on three nodes.1

For a motif analysis of a set of networks, a set of
pairwise non-isomorphic motifs is to be firmly se-
lected a priori. To analyze a network N , the number
of occurrences of each motif in N is counted. In
that, an occurrence of a motif M in N is a set X
of nodes of N such that the subgraph of N induced
by X is isomorphic to M .2 Since no two motifs are
isomorphic, each set of nodes of N can be the oc-
currence of at most one motif. And in fact, even if
a motif bears some symmetries such as (1), (2), (6),
(8), (9), (10), and (13) in Figure 1, the underlying
node set is counted as one occurrence only.

The motif signature of a network N with respect
to a selection of motifs comprises the number of oc-
currences of every selected motif in N , scaled to a
sum of 1.

Generally speaking, motif analysis relates the
structure of a network to the investigated semantic
properties of the network, which are induced by the
application context. There is a quantitative and a
qualitative side to this. The quantitative analysis
identifies statistical relations between the motif sig-
nature and the semantic properties. On the other
hand, the qualitative analysis is based on the idea
that the motifs – if well selected – may be interpreted
as building blocks of the network, and that an unex-
pectedly high or low frequency of some motifs may
yield a deeper understanding of these semantic prop-
erties.

1Unfortunately, the terminology is not consistent through-
out the scientific literature: in many articles, only the selected
subgraphs with unexpectedly high frequency in a network are
called motifs of the networks’, and the subgraphs with unex-
pectedly low frequency are then called anti-motifs.

2Let G1 = (V1, E1) and G2 = (V2, E2) be two directed
graphs such that |V1| ≤ |V2|, and let V ′

2 ⊆ V2 such that |V ′
2 | =

|V1|. Then G1 is the subgraph of G2 induced by V ′
2 if there

is a bijection ϕ : V1 → V ′
2 such that for all x, y ∈ V1, it is

(x, y) ∈ E1 if and only if (ϕ(x), ϕ(y)) ∈ E2.
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3 Data

Our corpus is a subset of the German Wikipedia.
We utilize the quality label “featured” as an indi-
cator for high quality articles. Therefore, we in-
clude all 2, 338 featured articles of a complete snap-
shot of the German Wikipedia from June 2015. The
proportion of featured articles in this snapshot is
0.13%. Adding all non-featured articles would re-
sult in a dataset of very large proportions and with an
extremely skewed distribution of the relevant “fea-
tured” label. This is a huge problem for most ma-
chine learning techniques. We deal with this prob-
lem by under-sampling the overrepresented class
(Drummond et al., 2003). For this reason, we re-
stricted the set of all non-featured articles to a purely
random – and thus representative – sample of 33, 295
articles, which increases the share of featured arti-
cles in our corpus to 7.02%.

For each article in our corpus, we selected 10 dis-
tinct article versions from the article’s revision his-
tory. A new version of an article is created every
time submitted revisions or additions to this article
are approved by the community. For every featured
article, we split all of its article versions into a set of
versions with the featured label and a set of version
without the featured label. On average, this divides
the versions of a featured article into about 57% non-
featured versions and 43% featured versions. For ev-
ery featured article, we select five random versions
from each part.

We split the versions of non-featured articles sim-
ilarly into “early” and “late” parts of the revision
history with the same proportions as the featured ar-
ticles’ featured and non-featured parts. This way,
we pick five random versions from the earliest 57%
versions of a non-featured article, and five random
versions from the latest 43% versions.

For every article version, we create a network ac-
cording to our graph representation, search the net-
work for motifs and compute the corresponding mo-
tif signatures, as explained below.

4 Our Approach

Graph representation We use a sentence level
graph representation based on shared nouns.

For every selected version of a selected Wikipedia
article, we construct a network G = (V,E) with

1 2

4 3

heaven
father

kingdom

Our father in heaven. Your kingdom come.

On earth as in heaven. For the kingdom of our father.

Figure 2: Exemplary graph representation with four consecu-

tive sentences.

a set of nodes V and a set of directed edges E as
follows:

The nodes of this network are the sentences of the
article version. Two nodes are connected by an edge
if and only if these two conditions are fulfilled:

1. There exists at least one noun token that ap-
pears in both corresponding sentences.

2. The two sentences are separated by at most two
other sentences in the document.

Edges are directed and point from the sentence
earlier in the text to the latter one. Figure 2 shows
an example of this representation.

Motif analysis To each network created from a
Wikipedia article version, we apply a motif analy-
sis. In our case, we search for subgraphs of three or
four connected nodes. Furthermore, we only search
for motifs of three or four directly consecutive sen-
tences. With this constraint, we can only discover
discourse connections of sentences that follow right
after each other. Because of their close proximity,
we can be pretty sure that these sentences have a
strong discourse connection and are likely to share
a common topic to some extent.

The resulting motifs are quite rare. If we relaxed
this constraint and searched for all connected sub-
graphs of three or four nodes, the number of occur-
rences of motifs increases significantly. However,
we found that the motif analysis yields worse results.

The way our networks are constructed limits the
number of possible subgraphs considerably. The di-
rections of the edges have to follow the order of
appearance of the corresponding sentences, which
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Figure 3: All possible directed motifs on three nodes, and four selected motifs on four nodes.

rules out every form of loops. All four possible con-
nected subgraphs on three nodes and four subgraphs
(out of 42) on four nodes are shown in Figure3.

The node order together with the adjacency con-
dition allows for very efficient searching for these
motifs with a sliding window. The occurrences of
all three-node motifs and all four-node motifs are
scaled to a sum of 1, respectively. The results build
the motif signatures, as defined in Section 2.2.

Machine learning setup We use the values of the
motif signatures as 46 numeric features for our ma-
chine learning experiments. In addition, we include
the word count of the article version as an additional
baseline feature according to (Blumenstock, 2008),
for comparison and combination. The experiments
were performed with J48, a Java implementation of
the C4.5 tree learning algorithm, included in Weka
(Witten et al., 1999; Quinlan, 2014). The tree struc-
tures allow us to interpret the model and analyze
the most determining features. We use default pa-
rameters with the exception of “minNumObj”, the
minimum number of instances per leaf. The default
value of this parameter is 2. We set it to 100 to re-
duce overfitting effect, and will present results for
both configurations. The evaluation is performed
with 10-fold cross validation over 10 experiment it-
erations.

5 Quantitative Results

Baseline Our corpus contains 7% featured article
versions. Therefore, consistently predicting the ma-
jority class “non-featured” produces a lower bound
baseline accuracy of 0.93. The baseline we want to

compare with is created by a J48 experiment with
the word count feature only, which achieves 0.95 ac-
curacy.

Stand-alone We evaluate the predictive power of
our motifs with experiments that use only 3-node
motifs, only 4-node motifs or both. The results
for these experiments with default number of 2 in-
stances per leaf are presented in Table 1. Exper-
iments with all 3-node motifs without word count
could not reach the baseline, but using all 4-node
motifs without word count performed much better
at 0.9745 accuracy. This includes significant overfit-
ting effects, as the corresponding tree model is very
large and consists of over 3, 000 nodes and leafs.

Used Features Accuracy Tree size
Majority class baseline 0.93
3N + 4N 0.9748 3605
4N 0.9745 3598
W (baseline) 0.95 6
3N 0.9488 1417

Table 1: J48 results for motifs alone, parameter minNumObj

= 2, W = word count, 3N = all 3-node motifs, 4N = all 4-node

motifs

Table 2 shows the results with 100 minimum in-
stances per leaf (up from 2), which reduces the
model size and the overfitting effects. Lower bound
and baseline accuracy are the same as in the first
setup, at 0.93 and 0.95, respectively. In this setup,
using only 3-node motifs yields an accuracy of
0.943. 4-node motifs alone or in conjunction with 3-
node motifs do not outperform the word count base-
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Used Features Accuracy Tree size
Majority class baseline 0.93
3N + 4N 0.9508 217
4N 0.9504 188
W (baseline) 0.95 3
3N 0.943 140

Table 2: J48 results for motifs alone, parameter minNumObj =

100, W = word count, 3N = all 3-node motifs, 4N = all 4-node

motifs

line considerably, either. We conclude that our motif
analysis as a stand-alone tool did not lead to notable
statistical improvements.

Combination In our experiments, we also com-
bined the baseline feature word count with motif fea-
tures. The results for these combinations are shown
in Table 3 with default number of 2 instances per leaf
and Table 4 with 100 instances per leaf. At default
setup, a combination of word count with 3-node and
4-node motifs shows excellent performance at 0.978
accuracy. Again, very large decision tree models
were created, which indicates overfitting. Limiting
the tree size reduces the decision tree to very moder-
ate size and still results in 0.96 accuracy. Motifs to-
gether with word count close the gap from the base-
line’s 5% miscategorized examples to 4%.

Used Features Accuracy Tree size
Majority class baseline 0.93
W + 3N + 4N 0.9780 3179
W + 4N 0.9779 3254
W + 3N 0.9567 847
W (baseline) 0.95 6

Table 3: J48 results for combination, parameter minNumObj =

2, W = word count, 3N = all 3-node motifs, 4N = all 4-node

motifs

We confirmed this improvement and its statistical
significance on reduced subsets of our data, and also
in a balanced setting. We created the reduced sub-
sets by a purely random selection of 10% featured
and non-featured article versions. Compared to the
full dataset, these subsets have reduced size, but the
same ratio of featured vs. non-featured instances.
To create balanced subsets, we combined all fea-
tured article versions and an equal amount of ran-

Used Features Accuracy Tree size
Majority class baseline 0.93
W + 3N + 4N 0.96 179
W + 4N 0.9577 200
W + 3N 0.9542 59
W (baseline) 0.95 3

Table 4: J48 results for combination, parameter minNumObj =

100, W = word count, 3N = all 3-node motifs, 4N = all 4-node

motifs

domly selected, non-featured article versions. We
constructed 20 subsets for both settings to measure
variance and calculate statistical significance. See
Table 5 for the results of the reduced subsets, and
Table 6 for the results of the balanced scenario.

Used Features Mean acc. Standard dev.
W + 3N + 4N 95.116 0.073
W + 4N 95.093 0.071
W + 3N 95.079 0.085
W (baseline) 94.741 0.096

Table 5: Mean accuracy and standard deviation for 20 reduced

datasets, J48 parameter minNumObj = 100, W = word count,

3N = all 3-node motifs, 4N = all 4-node motifs

Used Features Mean acc. Standard dev.
W + 3N + 4N 94.963 0.111
W + 4N 94.941 0.124
W + 3N 94.852 0.107
W (baseline) 94.44 0.109

Table 6: Mean accuracy and standard deviation for 20 balanced

datasets, J48 parameter minNumObj = 100, W = word count,

3N = all 3-node motifs, 4N = all 4-node motifs

Due to the reduced amount of data, the mean ac-
curacy was lower compared to previous experiments
with same features and parameters, but the order re-
mained constant. The accuracy is very stable with
respect to data composition, with standard devia-
tions between only 0.073 and 0.124. The mean
accuracy of every combination setup surpassed the
baseline by at least three standard deviations. Com-
putation of p-values confirmed that all results are
statistically highly significant at p < 0.001.
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Motif Accuracy
(4) 95.1713845
(8) 95.1328903
(3) 95.0983271
(1) 95.080967
(7) 94.9560177
(2) 94.9386417

Table 7: Accuracy of J48 experiments with single motifs in

combination with word count

Most dominant motifs The motifs with high-
est impact on quality are obtained with two different
methods.

To determine the most effective motifs in our ma-
chine learning setup, we performed additional ex-
periments with single motifs in combination with
word count. Table 7 displays the results with high-
est accuracy, which indicates a connection between
these motifs and quality. The motif labels corre-
spond to Figure 3.

As a second approach, we directly evaluated the
correlation of the motif signatures to the quality la-
bel of the corresponding text. Since our variable for
quality is dichotomous, we use the point biserial cor-
relation coefficient. The value distribution of our
motif signature entries imposes potential problems
for this computation. An example of this distribu-
tion is shown in Figure 4. We see large proportions
of the extreme values 0 and 1 in our motif signature
distributions. A value of 1 in the signature can only
happen if the respective motif was the only motif to
be found, which only happens in very small texts. A
0 entry also hints to small texts, as large texts tend to
contain at least a fraction of every motif type. Small
articles in Wikipedia are rarely featured, so both ex-
treme values of the distribution largely correspond
to non-featured articles, which distorts the point bis-
erial correlation coefficient. To eliminate the effects
of article length in the correlations, we create sub-
collections of featured and non-featured article ver-
sions with similar amounts of motifs, measured by
mean average values and standard deviation.

We found two motifs with a distinctively negative
correlation to the featured quality label, and three
motifs with distinctively positive correlation coeffi-
cients. See Table 8 for these results. All these mo-
tifs have also been identified by our machine learn-

Figure 4: Distribution of values for motif (4) over all motif

signatures.

Motif Correlation
(1) 0.2015307459
(3) 0.1847741318
(2) 0.1803760107
(8) -0.2691052665
(4) -0.27433768

Table 8: All motifs with correlation coefficient of absolute

value > 0.15

ing approach, which confirms our findings. We con-
centrated our qualitative interpretation on the motifs
with most dominant results, which are motifs (1),
(3), (4) and (8) of Fig 3.

6 Qualitative Results

The two motifs that are most positively correlated
with the featured quality label are motifs (1) and (3).
The huge amount of data made an exhaustive inves-
tigation of all motif occurrences infeasible. There-
fore, we examined random examples of these motifs
in our data set.

Many examples of motif (1) showed this sentence
structure: The first sentence introduces two con-
nected entities; the second sentence offers details
about the first entity; the third sentence explains
the other entity. One example from the German
Wikipedia:

(a) Von den drei Hartstrahlen der Rückenflosse
wurde der erste zur Angel (Illicium) mit
anhängendem Köder (Esca) umgebildet.

(b) Das Illicium hat oft eine Streifenzeichnung.

(c) Die Esca hat bei den einzelnen Anglerfisch-
arten eine unterschiedliche Form und ist ein
wichtiges Unterscheidungsmerkmal zwischen
den Arten.
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Analyzing motif (3) revealed a similar, but deci-
sively different pattern: The first sentence introduces
one entity, the second sentence introduces a second
one. The last sentence combines the two mentions
and draws a connection.

(a) Die Haupthenne bleibt mit dem Hahn oft über
mehrere Jahre zusammen.

(b) Bei den Nebenhennen handelt es sich meistens
um recht junge Weibchen.

(c) Der Hahn paart sich zunächst mit der
Haupthenne, sodann mit den Nebenhennen.

These two ways to introduce and connect entities
are an indication of good writing style. The reader
can see explanations for the two mentioned entities
and their connection in direct vicinity. This makes it
easy to understand and to follow the argument struc-
ture.

Motifs (4) and (8) are highly negatively corre-
lated with the Wikipedia article quality. They share a
very similar structure: Motif (4) is a maximally con-
nected 3-node subgraph, motif (8) is a maximally
connected 4-node subgraph. Many text examples of
these motifs share a pattern of repetition. One noun
is used three or four times in a row in very close
proximity.

(a) Die Nahrungssuche erfolgt in der Regel
einzeln, seltener als Paar.

(b) Bei Beobachtungen waren die Tiere in 92 %
aller Fälle allein auf Nahrungssuche.

(c) Beutejagd und Nahrungssuche bestehen vor
allem darin, dass die Füchse ihre Beute zumeist
zwischen und unter Steinen suchen und gele-
gentlich auch graben.

Repetition is a strong stylistic device that can en-
hance learning effects, but it can also make the text
tedious and reduce the attention of a reader (Grill-
Spector et al., 2006; Tannen, 2007). Too much rep-
etition is a sign of bad writing style and is certainly
avoided in good articles, as our findings demon-
strate.

7 Conclusion and Outlook

We have seen that motif analysis can improve the
assessment – and our understanding – of the quality
of a document. For that, we explored one particular
setting and presented the results in this paper. We
formulated the following research questions:

1. Quantitative: does motif analysis as a stand-
alone tool help us assess the quality of text doc-
uments statistically?

2. Quantitative: does it help us in conjunction
with other quality measures?

3. Qualitative: does it help us understand the na-
ture of quality any better?

Our empirical findings In our corpus, only 7%
of all articles are featured. Hence, categorizing all
articles as non-featured gives quite a high base line.
If the threshold is well chosen, the word count of an
article miscategorizes 5%.

Our motif analysis alone is not better than that, so
the answer to the first research question is not strictly
positive. However, we showed that our combination
of both criteria reduces the share of miscategorized
articles from 5% down to 4%.

For our third research question, we identified a
subset of motifs with high positive or negative cor-
relation to the featured label. Two motifs occur out-
standingly frequently in the featured articles, and
two other motifs occur outstandingly frequently in
the non-featured articles. All four motifs are indeed
indicators of text quality as desired: the two former
ones are frequently induced by two concepts of good
writing style, whereas the two latter ones are fre-
quently induced by two cases of repetitive style.

Future work In the future, we will extend our
work to other concepts of quality. However, we an-
ticipate that other quality criteria will require com-
pletely different approaches with different networks
and, possibly, even different sets of motifs.
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