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Abstract

We propose an approach to extracting infor-
mation from text based on the hypothesis that
text sometimes describes the world. The hy-
pothesis is embodied in a generative probabil-
ity model that describes (1) possible worlds
and the facts they might contain, (2) how an
author chooses facts to express, and (3) how
those facts are expressed in text. Given text,
information extraction is done by computing a
posterior over the worlds that might have gen-
erated it. As a by-product, this unsupervised
learning process discovers new relations and
their textual expressions, extracts new facts,
disambiguates instances of polysemous ex-
pressions, and resolves entity references. The
probability model also explains and improves
on Brin’s bootstrapping heuristic, which un-
derlies many open information extraction sys-
tems. Preliminary results on a small corpus
of New York Times text suggest that the ap-
proach is effective.

1 Introduction

The purpose of information extraction (IE) is to pro-
duce both general knowledge structures and specific
facts that will support inference, problem solving,
and question answering. The primary difficulties in-
clude (1) the huge variety and ambiguity of linguis-
tic expressions of underlying content; (2) the prob-
lem of resolving multiple entity references within
and across documents; (3) the complexity of the un-
derlying information itself: its ontology, temporal
and causal structure, provenance, etc. Section 2 de-
scribes the major approaches that have been taken
and their shortcomings.

Recent developments in probabilistic modeling
and inference make it possible to revisit a Bayesian
approach to IE championed by Charniak and Gold-
man (1992), among others. The approach is based
on what one might call ontologically realistic gen-
erative models: that is, probability models that de-
scribe, in a very general sense, both the ways that the
real world might be and the ways that world might
be described in text. 1 Such models explain why
this text is on the page in the same way that physi-
cal theories explain laboratory measurements—that
is, by reference to an underlying reality. Perhaps
surprisingly, commonly used generative models of
language make no such reference.

A simple, initial model (Section 3) posits a world
of facts (binary relations between entities) that are
expressed using arbitrary dependency paths con-
necting named-entity mentions. Using the machin-
ery of a probabilistic programming language such as
BLOG (Milch and Russell, 2010) (augmented with
a new form of proposal distribution for split–merge
MCMC (Wang and Russell, 2015)) and a small,
preprocessed corpus of New York Times sentences,
preliminary results (Section 4) indicate that the ap-
proach is surprisingly effective in discovering rela-
tions, lexicons, and facts in an unsupervised fashion.
A key advantage of this vertically integrated gener-
ative approach, compared to more classical bottom-
up pipelines with deterministic stages, is that no hard
decisions are made and all available context is ap-

1The word “realistic” in this context refers to the philosoph-
ical position of realism, usually ascribed to the Scottish School
of Common Sense, which asserts that there is a real world and
it is the subject of scientific theories and factual discourse.
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plied to reduce uncertainty at every level, resulting
in much higher accuracy (Pasula et al., 2003; Singh
et al., 2013). Parsing, entity resolution, event recog-
nition, and extraction emerge from a single, verti-
cally integrated inference process—no special algo-
rithms are needed.

2 Background and related work

The classical approach to IE involves a multi-stage
pipeline: text goes in one end; each level processes
small sets of input elements to produce larger ele-
ments; the output is usually a partially filled “tem-
plate” describing a complex event. Intermediate lev-
els include complex words, semantic elements (noun
phrases, verb phrases), and elementary facts with
unresolved entity references. Each pipeline stage re-
quires manually created rules, specific to a particular
domain, to recognize patterns among elements; or,
learned classifiers can be used, but they require su-
pervised training. The pipeline architecture has two
major drawbacks: (1) decisions made using only lo-
cal information are often wrong, and (2) errors prop-
agate upwards leading to low overall accuracy.

Brin (1998) proposed a more scalable and
automated approach called bootstrapping.
Given a seed fact for a relation, such as
Author(CharlesDickens,GreatExpectations),
bootstrapping aims to find all authorship facts and
all textual patterns for expressing such facts. It
alternates two steps:

1. Find sentences with known author–book pairs,
e.g., “Charles Dickens wrote Great Expecta-
tions,” and extract the pattern, “x wrote y.”

2. Find sentences matching known patterns,
e.g., “JK Rowling wrote Harry Pot-
ter,” and extract the corresponding fact,
Author(JKRowling,HarryPotter).

Bootstrapping is effective but not perfect: for
example, it finds correlated facts such as “JK
Rowling made millions from Harry Potter” and
concludes (optimistically, perhaps) that “x made
millions from y” describes authorship; more-
over, because of polysemy in “wrote”, it finds
“JK Rowling wrote Neville Longbottom out of
the movie” and concludes an incorrect fact,

Author(JKRowling,NevilleLongbottom). De-
spite these issues, bootstrapping is the core of mod-
ern “open” IE systems, such as CMU’s Never-
Ending Language Learning (Mitchell et al., 2015).
Section 3 describes an IE method grounded in prob-
ability theory that (1) generates bootstrapping infer-
ences as a natural consequence, (2) explains why
and when bootstrapping works, and (3) avoids the
difficulties mentioned above.

As in other areas of NLP, recent work on IE has
adopted statistical models for text. Discriminative
models such as conditional random fields (CRFs) are
trainable, bottom-up classifiers usable for the early
stages of a pipeline approach; they require less man-
ual labor than rule-based methods, although they do
require supervised data. Generative models describe
a stochastic process whose output is text; given some
actual text, an inference algorithm can reconstruct
the underlying hidden variables that would explain
the observed text. Several other groups (see, e.g.,
Rink and Harabagiu (2011) or Yao et al. (2011) and
many variants cited by Grycner et al. (2014)) are de-
veloping generative models for IE and relation dis-
covery, but their models generate text from a de-
scriptive model of text, rather than from a model of
an underlying real world. That is, the hidden vari-
ables include the dictionaries describing the words
that each relation uses to express itself and the types
for each of its arguments, but not the facts that ex-
plain why the text is there. Thus, they cannot truly
reconstruct such a world from text. The difficulty
can be illustrated very simply: if one generates a
very large sample of authorship sentences from such
a model, one will find sentences claiming that ev-
ery person has written every book. In real text, on
the other hand, sentences are statistically coupled by
an important latent variable, namely the real world.
Thus, the statistics of corpora are completely differ-
ent in the two cases. Because this difference is so
important in understanding the model we propose,
we return to it in more detail in Section 3.1.

3 An elementary generative model for
declarative text

Here is a naive but ontologically realistic explana-
tion for declarative text: the world contains facts;
people choose to report some of those facts; they
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choose a way to report each fact; the text is the col-
lection of sentences that results. More precisely, the
model assumes only that the world contains

• some unknown number N of objects, x1, . . . , xN ;
• some unknown number K of binary relations,
R1, . . . , RK ;
• a collection of facts Rk(xi, xj); each of the N2 po-
tential facts for Rk holds with probability σk, which
is an unknown sparsity parameter between 0 and 1.

Here, N and K use a broad prior such as a dis-
crete log-normal; σk has a beta prior with a small
mean. In this naive, declarative world, a theory
of pragmatics predicts what will be reported (Gor-
don and Durme, 2013). The initial theory is trivial:
when writing sentence st, the author chooses a fact
Rk(xi, xj) at random from the set of true facts and
reports it.

Then the semantic–syntactic model describes the
text of sentence st given fact Rk(xi, xj):

• a “verb” v is sampled from the relation Rk’s dictio-
nary Dk, an unknown categorical distribution over
dependency paths that is drawn from a Dirichlet
prior;
• the arguments xi, xj are mentioned verbatim as
named entities (later versions have generative mod-
els for named-entity mentions);
• the final sentence is given by st = xi v xj .

This model can be written in roughly 10 lines of
BLOG code. When supplied with suitable text as
evidence, it automatically produces an improved and
more robust version of bootstrapping, handles poly-
semy, needs no seed facts, and discovers new rela-
tions and their common forms of expression without
requiring hand-engineered features measuring simi-
larity of dependency paths.

Given a probability model that exhibits bootstrap-
ping behavior, one can ask why it works: why is
bootstrapping a reasonable inference in many cases?
The answer is sparsity: given just the sentences
“Charles Dickens wrote Great Expectations” and
“Charles Dickens authored Great Expectations,”
one can show by simple calculation that the poste-
rior odds that wrote and authored refer to the same
relation are approximately proportional to 1/σk. In-
tuitively, if they are not the same relation, the second
sentence requires the reader to believe that a new
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Figure 1: Measuring the ability of inference to extract accu-

rate facts under polysemy: precision–recall curves for different

levels of lexical entropy.

fact holds in the world, which is an unlikely coinci-
dence if σk is small. And common sense suggests
that nearly all relations are very sparse: for exam-
ple, the relation matrix Author(person, book) has
a sparsity of approximately 1 in 7 billion. (In prac-
tice sparsity must be adjusted for the fact that au-
thors are much more likely to be mentioned in text
than the average human, so the effective sparsity is
probably closer to 1 in ten thousand.) Inferences of
this type are not only strong but also frequent, due
to the “birthday paradox” phenomenon: given, say,
a million facts for a relation expressible by two dis-
tinct patterns, a bootstrapping opportunity (when the
two patterns are used with the same pair of argu-
ments) occurs with overwhelming probability after
about 2000 sentences. Each new bootstrapping op-
portunity of this kind connects two previously dis-
joint subgraphs of sentences; one expects that proba-
bilistic analysis of graphs should become a key tech-
nique in the mathematics of information extraction.

One can also study properties of the mathematical
model via simulation. For example, one can gener-
ate worlds whose relational dictionaries exhibit dif-
ferent levels of polysemy, generate text from those
worlds, and measure the ability of inference to ex-
tract true facts. Let dk,i be the probability assigned
by dictionary Dk to word (or dependency path)
wi, and define the lexical entropy of a collection
of dictionaries Dk1 , . . . , Dkm to be the frequency-
weighted average over words wi of the entropy
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of the categorical distribution [dk1,i, . . . , dkm,i]/Z.
Then identical dictionaries (yielding completely am-
biguous text) have lexical entropy 1 and disjoint dic-
tionaries (yielding unambiguous text) have lexical
entropy 0. The results shown in Figure ?? show
that with lexical entropy 0.9, i.e., almost identical
dictionaries that generate text that is impenetrable
to mere humans, it is possible to achieve 90% preci-
sion at 10% recall—i.e., to reliably identify relations
in some cases. Thus, the approach should be highly
robust to polysemy in practice.

Like the original bootstrapping algorithm, it is
susceptible to correlated facts, because it assumes
that each relation samples its facts independently.
Independence fails with relations such as marriage
and divorce, since the latter implies the former;
when the data contain “A got married to B” and “A
just divorced B”, bootstrapping assumes that “x got
married to y” and “x just divorced y” mean the same
thing. This is unfortunate. A similar problem arises
with pairs of relations where one is a more specific
version of the other, for example “x is a professor at
y” and “x is employed by y”. A more sophisticated
model of reality fixes this problem; e.g., one allows
a relation Rk to be either de novo or highly corre-
lated (according to some unknown, but not small,
correlation factor ρk,l) with some other relation Rl.

3.1 Comparison to other generative models for
relational text

In Section 2, we claimed that an ontologically real-
istic model is fundamentally distinct from other gen-
erative models for relational text that have appeared
in the literature. Here we go into more detail on this
point, using as an example the Rel-LDA model in
Figure 1 of Yao et al. (2011). (We choose Rel-LDA
because of its superficial similarity to our model, not
because of any particular failings.) In Rel-LDA, the
generative process is as follows:

• For each relation r ∈ {1, . . . , R}, multinomials
pr,1, pr,v, pr,2 are drawn from Dirichlet priors, rep-
resenting distributions over “words” for the first ar-
gument, “verb”, and second argument, respectively.
• For each document, a multinomial q over R values
is drawn from a Dirichlet prior, where q(r) indicates
the probability that any given sentence is generated
by relation r.

• For each sentence, a relation indicator r is drawn
from the multinomial, and “Words” for the first ar-
gument, verb, and second argument are drawn inde-
pendently from pr,1, pr,v, pr,2, respectively.

Subsequent elaborations of this model add features
for the “verb” dependency path and types for the
arguments. Given an actual document containing
subject-verb-object sentence triples, inference with
this model discovers the underlying relations by
clustering the sentences.

The difference between this model and an onto-
logically realistic model is that Rel-LDA posits no
underlying world. A trained Rel-LDA model de-
scribes what text for a given relation “looks like”,
but lacks the distinction between world and text and
the statistical coupling that a latent world introduces.
For example, a model trained on text that lists facts
about books purchased on Amazon might learn that
Stephen King is the most common first argument for
the author relation. If we include a new sentence
in the corpus, “Vladimir Vapnik wrote The Nature
of Statistical Learning Theory”, and then ask the
model, “Who wrote The Nature of Statistical Learn-
ing Theory?”, the answer will be “Stephen King”.

Another important consequence of the absence of
a latent world is that the Rel-LDA model does not
assign high probability to bootstrapping inferences.
We speculate that this leads to a learning process that
requires many more sentences to reliably discover a
set of relations and dictionaries, but we have yet to
carry out this experiment. For now, we report only
a very preliminary and anecdotal set of results with
our model.

4 Preliminary experiments

The model was applied to a small subset (8500 sen-
tences) of an NYT corpus (Yao et al., 2011). The
subset was chosen heuristically to have a relatively
small number of distinct entity mentions, so as to
increase the number of bootstrapping opportunities.
The sentences contain two named entities connected
by a grammatical dependency path, matching our
trivial grammatical model. The inference process
discovers (1) roughly 200 relations that underlie the
text; (2) the dictionaries describing how each rela-
tion is expressed by dependency paths; and (3) the
facts belonging to each relation.
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We ran smart–dumb/dumb–smart split–merge
MCMC (Wang and Russell, 2015) for about 10 min-
utes and inspected the most likely sampled world.
We found that relation 46, which we might call “sub-
sidiary of”, emerged with the following highly prob-
able dependency paths in its dictionary:
[appos|->unit->prep->of->|pobj]
[appos|-> part->prep->of-> pobj]
[nn| <-unit->prep->of->[pobj]
[partmod|-> own->prep->by->[pobj]
[rcmod|-> own->prep->by-> |pobj]
[appos|-> subsidiary->prep->of-> |pobj]
[rcmod|-> part->prep->of-> |pobj]
[rcmod|-> unit->prep->of ->|pobj]
[poss|<- parent-> |appos]
[appos|-> division->prep->of-> |pobj]
[pobj|<- of<-prep<-office->appos

->part->prep->of-> |pobj]
[pobj|<- of<-prep<-unit->appos

->part->prep->of-> |pobj]
[nn|<- division->prep->of-> |pobj]
[appos|-> unit-> |nn]
[nsubjpass|<-own->prep->by-> |pobj]
[nn|<- office->prep->of-> |pobj]

We also found 60 facts such as
rel46(BBDO Worldwide, Omnicom Group)
and rel46(Fox, News Corporation). Manual
verification of all facts for the most common 20
relations shows roughly 95% precision, with most
errors arising from the limitations of the prepro-
cessor and named entity extractor. Because of the
strength and frequency of bootstrapping inferences,
it seems likely (although this remains to be verified)
that the relation discovery process is more accurate
than in other approaches and requires less data.
Extensions to the generative model to include entity
attributes and a more complete semantic grammar
(see Section 5) will automatically resolve entity
references and avoid the need for pre-parsing or
named-entity recognition.

4.1 A note on evaluation
The traditional method of evaluation for IE systems
relies on the ability to inspect the extracted knowl-
edge base for correctness. As probability models
become more sophisticated, this approach will fail,
because (1) the knowledge is represented using in-
ternal symbols referring to relations and entities the
system discovers for itself, that may not correspond
to standard concepts in English, and (2) the mean-
ing of a given internal symbol varies across possi-

ble worlds in the inference process. Instead, as with
humans, the query interface must, inevitably, be via
language itself. For example, one can ask whether
the subjects of sentences 14 (“Obama roasts WH
press”) and 22 (“President seeks second term”) are
the same entity, or ask for x such that “x is President
of South Sudan” is true.

5 Conclusions and further work

An ontologically realistic generative probabilistic
model has many advantages for information extrac-
tion. Initial experiments show that the approach can
discover relations and extract facts in an unsuper-
vised fashion, performing bootstrapping and disam-
biguation inferences without special heuristics.

Of course, the initial model is vastly oversim-
plified. We need to add types, generative models
for entity mentions, the ability to extract general
knowledge (Clark et al., 2014), and a standard upper
ontology including mereology, time, actions, and
events. (There is no point in forcing a learning al-
gorithm to rediscover these concepts.) A more so-
phisticated model of reporting bias is needed (Gor-
don and Durme, 2013). There should be a “backoff
hierarchy” of weaker and more general semantic–
syntactic models to cope with uninterpretable text;
as learning proceeds, new and more specific gram-
matical forms are added and probability mass moves
down the hierarchy. Finally, our purely symbolic se-
mantics can be augmented by a vector-space model
of word meaning; this should result in faster gener-
alization via sharing among dictionaries.

Obviously there is much new ground to explore
before the proposed approach can handle unre-
stricted text. Engaging in this exploration seems
preferable to trying to extract information about the
world from models that deny the world’s existence.
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