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Abstract

Recent work on information extraction has
suggested that fast, interactive tools can be
highly effective; however, creating a us-
able system is challenging, and few publi-
cally available tools exist. In this paper we
present IKE, a new extraction tool that per-
forms fast, interactive bootstrapping to de-
velop high-quality extraction patterns for tar-
geted relations. Central to IKE is the no-
tion that an extraction pattern can be treated
as a search query over a corpus. To oper-
ationalize this, IKE uses a novel query lan-
guage that is expressive, easy to understand,
and fast to execute - essential requirements
for a practical system. It is also the first
interactive extraction tool to seamlessly in-
tegrate symbolic (boolean) and distributional
(similarity-based) methods for search. An
initial evaluation suggests that relation ta-
bles can be populated substantially faster than
by manual pattern authoring while retain-
ing accuracy, and more reliably than fully
automated tools, an important step towards
practical KB construction. We are making
IKE publically available (http://allenai.org/
software/interactive-knowledge-extraction).

1 Introduction

Knowledge extraction from text remains a funda-
mental challenge for any system that works with
structured data. Automatic extraction algorithms,
e.g., (Angeli et al., 2015; Carlson et al., 2009;
Nakashole et al., 2011; Hoffmann et al., 2011), have
proved efficient and scalable, especially when lever-
aging existing search engine technologies, e.g., (Et-

zioni et al., 2004), but typically produce noisy re-
sults, e.g., the best F1 score for the KBP slot filling
task was 0.28, as reported in (Angeli et al., 2015).
Weakly supervised automatic bootstrapping meth-
ods (Carlson et al., 2010; Gupta and Manning, 2014)
are more precise in the initial bootstrapping itera-
tions, but digress in later iterations, a problem gen-
erally referred to as semantic drift.

More recently there has been work on more in-
teractive methods, which can be seen as a “machine
teaching” approach to KB construction (Amershi et
al., 2014; Amershi et al., 2015; Li et al., 2012). For
example, (Soderland et al., 2013) showed that users
can be surprisingly effective at authoring and refin-
ing extraction rules for a slot filling task, and (Freed-
man et al., 2011) demonstrated that a combination of
machine learning and user authoring produced high
quality results. However, none of these approaches
have evolved into publically available tools.

In this paper we present IKE, a usable, general-
purpose tool for interactive extraction. Central to
IKE is the notion that an extraction pattern can be
treated as a search query over a corpus, building
on earlier work by (Cafarella et al., 2005). It ad-
dresses the resulting requirements of expressiveness,
comprehensibility, and speed with a novel query
language based on chunking rather than parsing,
and is the first tool to seamlessly integrate sym-
bolic (boolean) and distributional (similarity-based)
methods for search. It also includes a machine learn-
ing component for suggesting new queries to the
user. A preliminary evaluation suggests that relation
tables can be populated substantially faster with IKE
than by manual pattern authoring (and more reliably
than fully automated tools), while retaining accu-
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racy, suggesting IKE has utility for KB construction.

Query Interpretation
the dog matches “the” followed by “dog”
NP grows an NP followed by “grows”
(NP) grows Capture the NP and place in column

1 (1 column table)
(NP) conducts (NP)

Capture the two NPs into columns 1
and 2 (2 column table)

(?<Energy> NP) is conducted by (?<Material> NP)
Capture the two NPs and place in
columns named Energy and Material

the {cat,dog} “the” followed by “cat” or “dog”
cats and {NN,NNS}

“cats and” followed by NN or NNS
JJ* dog Zero or more JJ then “dog”
JJ+ dog One or more JJ then “dog”
JJ[2-4] dog 2 to 4 JJ then “dog”
dog .[0-4] tail “dog” followed by any 0 to 4 words

followed by ‘tail”
dog∼50 Matches “dog” and the 50 words

most distributionally similar to “dog”
. dog Any word then “dog”
$colors Any entry in the single-column “col-

ors” table
$colors ∼100 same plus 100 most similar words
$flower.color Any in the “color” column of

“flower” table
Table 1: IKE’s Query Language, described by example.

2 Interactive Knowledge Extraction (IKE)

We first overview IKE and a sample workflow us-
ing it. IKE allows the user to create relation tables,
and populate them by issuing pattern-based queries
over a corpus. It also has a machine learning compo-
nent that suggests high-quality broadenings or nar-
rowings of the user’s queries. Together, these allow
the user to perform fast, interactive bootstrapping.

2.1 IKE’s Query Language
A key part of IKE is treating an extraction pat-
tern as a search query. To do this, the query lan-
guage must be both comprehensible and fast to exe-
cute. To meet these requirements, IKE indexes and
searches the corpus using a chunk-based rather than
dependency-based representation of the text corpus.
IKE’s query language is presented by example in Ta-
ble 1. The query language supports wildcards, win-
dow sizes, POS tags, chunk tags, and general regular

expression queries similar to TokenRegex (Chang
and Manning, 2014) and Lucene, ElasticSearch’s
(Gormley and Tong, 2015) query language. Addi-
tionally, IKE supports distributional similarity based
search (e.g. dog∼50 would find 50 words similar to
“dog”). “Capture groups”, indicated by parenthe-
ses, instruct IKE to catch the matching element(s)
as candidate entries in the table being populated.
The user can also reference data in other already-
constructed tables using the $ prefix.

The use of a chunk-based representation has sev-
eral advantages over a dependency-based one (e.g.,
(Freedman et al., 2011; Gamallo et al., 2012; Hoff-
mann et al., 2015; Akbik et al., 2013)). First, both
indexing and search are very fast (e.g., <1 sec to
execute a query over 1.5M sentences), essential for
an interactive system. Second, authoring queries
does not require detailed knowledge of dependency
structure, making the language more accessible. Fi-
nally, the system avoids parse errors, a consider-
able challenge for dependency-based systems. Cor-
responding challenges with chunk-based representa-
tions, e.g., defining constituent boundaries in terms
of POS chunks, are partially alleviated by providing
predefined, higher-level POS-based patterns, e.g.,
for verb phrases.

2.2 Machine Learning

IKE also has a ML-based Query Suggestor to pro-
pose improved queries to the user. This module
performs a depth-limited beam search to explore
the space of query variants, evaluated on the user-
annotated examples collected so far. Variants are
generated by broadening/narrowing a query.

Narrowing a query involves searching the space
of restrictions on the current query, e.g., replacing
a POS tag with a specific word, adding prefixes or
suffixes to the query, adjusting distributional simi-
larity based queries etc. Similarly, the broaden fea-
ture generalizes the given user query e.g. replac-
ing a word by its POS tag. In both cases the can-
didate queries are ranked by the weighted sum of
the number of positive np, negative nn, and unla-
beled nu instances it matches, the weights being
user-configurable (default 2, -1, -0.05 respectively).
For example, for the query

($conducts.Material) VBZ ($conducts.Energy)
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the top three suggested narrowings are:

($conducts.Material) conducts ($conducts.Energy)
($conducts.Material) absorbs ($conducts.Energy)
($conducts.Material) produces ($conducts.Energy)

all patterns that distinguish positive examples from
negatives well.

2.3 Example Workflow

We now describe these features in more de-
tail by way of an example. Consider the task
of acquiring instances of the binary pred-
icate conducts(material,energy), e.g., con-
ducts(“steel”,“electricity”). In IKE, relations
are visualized as tables, so we treat this task as
one of table population. A typical workflow is
illustrated in Figure 1, which we now describe.

2.3.1 Define the types material and energy

First, the user defines the argument types material
and energy. To define a type, IKE lets a user build a
single column table, e.g., for type material, the user:

1. Creates a single column table called Material.
2. Manually adds several representative examples

in the table, e.g., “iron”, “wood”, “steel”.
3. Expands this set by searching for cosine-

vector-similar phrases in the corpus, and mark-
ing valid and invalid members, e.g., the query

$Material ∼20
searches for the 20 phrases most similar to any
existing member in the Material table, where
similar is defined as the cosine between the
phrase embeddings. Here we use 300 di-

ARG1	
  conducts	
  ARG2
ARG1	
  melts	
  ARG2	
  TO
ARG2	
  flows	
  through	
  ARG1
ARG1	
  VB	
  NN	
   ARG2

Material,	
  Energy
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
iron,	
  electricity
water,	
  heat
copper,	
  heat
water,	
  sound

…..

IKE  query  
suggest

~10  seed  
examples

Candidate  patterns,  
along  with  example  
instances

User  
annotates  
candidate  
queries

Run  
pattern  
queries  on  
corpus

Material,	
  Energy
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
copper,	
  electricity

metal,	
  sound
human	
  body,	
  electricity

plastic,	
  electricity
…..

Candidate  instances

Add  positive  
instances  to  
the  set

Instance	
  
Set

+
+
+
-­‐

User  annotates
candidate  
instances

+
-­‐
+
-­‐

Query	
  
Set

Figure 1: IKE interactive bootstrapping workflow

mensional word2vec embeddings learned us-
ing (Mikolov et al., 2013)’s implementation of
word2vec on a science document corpus.

4. Repeat step 3 until the table adequately charac-
terizes the intended notion of material

The process is repeated for the type Energy. Note
that here we are using only embedding-based fea-
tures to populate a type. We could also use Hearst-
style patterns (Hearst, 1992; Snow et al., 2004; Tur-
ney, 2006) to populate the type, e.g.,:

materials such as (NP)
materials such as $Material and (NP)

or a combination of patterns and word2vec expres-
sions.

2.3.2 Create and Seed the conducts Table
The user next creates a two-column table con-

ducts, and then uses a seed pattern to find initial
pairs to populate it, e.g., the pattern

($Material) conducts ($Energy)

extracts pairs of materials and energies they con-
duct. The user selects valid pairs to initially populate
the table. Invalid pairs (negative examples) are also
recorded by IKE.

2.3.3 Bootstrapping to Expand the Table
The user can now bootstrap by invoking the ML-

based Query Suggestor to find additional patterns
(queries) expressing the target relation (Section 2.2).
It does so by searching for narrowings or broaden-
ings of the current query that cover a large number
of positive pairs and few of the negative pairs in the
table so far. The user then clicks on one of these pat-
terns to select and execute it (with edits if desired) to
find more instances of the relation, marks good/bad
pairs, and expands the table (Figure 2). By repeating
this process, the user rapidly populates the table.

2.4 Execution Speed

IKE uses BlackLab (Institute Dutch Lexicology,
2016) for indexing the corpus. This, combined with
the chunk-based representation, results in fast query
execution times (e.g., <1 second for a query over
1.5M sentences), an essential requirement for an in-
teractive system (Table 2).
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conducts ($conducts.Material ~500)	
  absorbs	
  ($conducts.Energy)

Figure 2: Search for examples of “X absorbs Y”, where X is distributionally similar (∼500) to existing entries in the Material

column of the conducts table. The user then annotates examples for inclusion in the table.

Corpus # sentences Avg. query-time (sec.)
Science textbook 1.2K 0.253
ck2.org texts 17K 0.286
SimpleWikipedia 1M 0.530
Web Subset (small) 1.5M 0.595
Web Subset (large) 20M 2.809

Table 2: Avg. query-times with different sized corpora.

3 Preliminary Evaluation

3.1 Experiments

Although IKE is still under development, we have
conducted a preliminary evaluation, comparing it
with two other methods for populating relation ta-
bles. Our interest is in how these different methods
compare in terms of precision, yield and time:
• Manual: The user manually authors and refines

patterns (without any automatic assistance) to
populate a table.
• Automatic: The user provides an initial table

with a few entries, and then lets the system boot-
strap on its own, without any further interaction.
• Interactive (IKE): Interactive bootstrapping, as

described earlier.
The manual system was implemented in IKE by dis-

abling the embedding-based set expansion and ML-
based query suggestion features. The automatic ap-
proach was simulated in IKE by removing both user
annotation steps in Figure 1, and instead adding all
machine-learned patterns suggested by the Query
Suggestor (Section 2.2) and instances that occur at
least k times in the corpus (using k = 2). This is a
simple baseline method of bootstrapping, compared
with more sophisticated methods such as co-training
(Collins and Singer, 1999; Neelakantan and Collins,
2014). For a fair comparison, we compared results
after 3 bootstrapping iterations (for Automatic, IKE)
and a similar amount of user time (∼30 mins, for
Manual and IKE). The number of iterations were
limited to 3 to keep the annotation time within rea-
sonable limits.

3.2 Tasks and Datasets

We compared these methods to define and popu-
late two target relations: conducts(material,energy),
and has-part(animal,bodypart). All methods ex-
tract knowledge from the same corpora of science
text, consisting of ∼1.5M sentences (largely) about
elementary science drawn from science textbooks,
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Simple Wikipedia, and the Web. For each relation,
two (different) users familiar with IKE were asked to
construct these tables. The numbers presented in Ta-
ble 3 and Table 4 are averaged over these two users.
Although this study is small, it provides helpful in-
dicators about IKE’s utility.

Method Acquired Patterns Extractions Time
No. of Average Number Yield in min.

patterns Precision (total) (+ves)
Manual 7 25.5 106 27 30
Automatic 108 34.4 183 63 -
IKE 31 52.7 112 59 20

Table 3: conducts(material,energy) table after 3 iterations or

∼30 minutes user time. IKE helps the user discover substan-

tially more patterns than the manual method (31 vs. 7), with

better precision and in less time, resulting in the overall yield of

59 relation instances. Fully automatic bootstrapping produced a

large number of lower precision (34.4%) patterns compared to

IKE (52.7%) patterns.

Method Acquired Patterns Extractions Time
No. of Average Number Yield in min.

patterns Precision (total) (+ves)
Manual 16 25.2 290 73 35
Automatic 228 3.5 1386 48 -
IKE 21 22.5 449 101 30

Table 4: has-part(organism,bodypart) table after 3 iterations

or ∼30 minutes user time. Again, IKE produces the highest

yield by helping the user discover 21 patterns with precision

(22.5%) comparable to manual patterns (25.2%). Note that fur-

ther use of IKE continues to expand the yield (e.g., after 3 more

iterations of IKE the yield rises to 262 while maintaining aver-

age precision).

3.3 Results
Table 3 shows the results for building the con-
ducts(material,energy) table. Most importantly,
with IKE the user was able to discover substan-
tially more patterns (31 vs. 7) with higher accuracy
(52.7% vs. 25.5%) than the manual approach, result-
ing in a larger table (59 vs. 27 rows) in less time (20
vs. 30 mins). It also shows that fully automatic boot-
strapping produced a large number of low quality
(34.4% precision) rules, with an overall lower yield
(63 rows).

Note that for both Manual and IKE, users have to
decide how to spend their time budget, in particu-
lar between work on creating high-quality patterns
vs. work on annotating examples found by those

patterns. Thus the precision scores in the Tables re-
flect how the users chose to make this tradeoff, while
the yield reflects their success at the overall goal,
namely building a good table.

Table 4 shows similar results for constructing the
has-part(organism,bodypart) table, IKE having the
highest overall yield. Although this is a small case
study, it suggests that IKE has value for rapid knowl-
edge base construction.

4 Conclusion

We have presented IKE, a usable, general-purpose
tool for interactive extraction. It has an ex-
pressive, easily comprehensible query language
that integrates symbolic (boolean) and distribu-
tional (similarity-based) methods for search, and
has a fast execution time. A preliminary evalua-
tion suggests that IKE is effective for the task of
knowledge-base construction compared to manual
pattern authoring or using fully automated extrac-
tion tools. We are currently using this tool to ex-
pand the KB used by the Aristo system (Clark et
al., 2016), and are making IKE publically avail-
able on our Web site at http://allenai.org/software/
interactive-knowledge-extraction.
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