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Abstract

Verb Phrase Ellipsis is a well-studied topic in
theoretical linguistics but has received little at-
tention as a computational problem. Here we
propose a decomposition of the overall resolu-
tion problem into three tasks—target detection,
antecedent head resolution, and antecedent
boundary detection—and implement a num-
ber of computational approaches for each one.
We also explore the relationships among these
tasks by attempting joint learning over different
combinations. Our new decomposition of the
problem yields significantly improved perfor-
mance on publicly available datasets, including
a newly contributed one.

1 Introduction

Verb Phrase Ellipsis (VPE) is the anaphoric process
where a verbal constituent is partially or totally unex-
pressed, but can be resolved through an antecedent
in the context, as in the following examples:

(1) His wife also [antecedent works for the paper], as
did his father.

(2) In particular, Mr. Coxon says, businesses are
[antecedent paying out a smaller percentage of
their profits and cash flow in the form of
dividends] than they have historically.

In example 1, a light verb did is used to represent the
verb phrase works for the paper; example 2 shows
a much longer antecedent phrase, which in addition
differs in tense from the elided one. Following Dal-
rymple et al. (1991), we refer to the full verb expres-
sion as the “antecedent”, and to the anaphor as the
“target”.

VPE resolution is necessary for deeper Natural
Language Understanding, and can be beneficial for
instance in dialogue systems or Information Extrac-
tion applications.

Computationally, VPE resolution can be modeled
as a pipeline process: first detect the VPE targets,
then identify their antecedents. Prior work on this
topic (Hardt, 1992; Nielsen, 2005) has used this
pipeline approach but without analysis of the interac-
tion of the different steps.

In this paper, we analyze the steps needed to re-
solve VPE. We preserve the target identification task,
but propose a decomposition of the antecedent se-
lection step in two subtasks. We use learning-based
models to address each task separately, and also ex-
plore the combination of contiguous steps. Although
the features used in our system are relatively sim-
ple, our models yield state-of-the-art results on the
overall task. We also observe a small performance
improvement from our decomposition modeling of
the tasks.

There are only a few small datasets that include
manual VPE annotations. While Bos and Spenader
(2011) provide publicly available VPE annotations
for Wall Street Journal (WSJ) news documents, the
annotations created by Nielsen (2005) include a more
diverse set of genres (e.g., articles and plays) from
the British National Corpus (BNC).

We semi-automatically transform these latter anno-
tations into the same format used by the former. The
unified format allows better benchmarking and will
facilitate more meaningful comparisons in the future.
We evaluate our methods on both datasets, making
our results directly comparable to those published by
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Nielsen (2005).

2 Related Work

Considerable work has been done on VPE in the
field of theoretical linguistics: e.g., (Dalrymple et al.,
1991; Shieber et al., 1996); yet there is much less
work on computational approaches to resolving VPE.

Hardt (1992; 1997) presents, to our knowledge,
the first computational approach to VPE. His system
applies a set of linguistically motivated rules to select
an antecedent given an elliptical target. Hardt (1998)
uses Transformation-Based Learning to replace the
manually developed rules. However, in Hardt’s work,
the targets are selected from the corpus by search-
ing for “empty verb phrases” (constructions with an
auxiliary verb only) in the gold standard parse trees.

Nielsen (2005) presents the first end-to-end system
that resolves VPE from raw text input. He describes
several heuristic and learning-based approaches for
target detection and antecedent identification. He
also discusses a post-processing substitution step in
which the target is replaced by a transformed version
of the antecedent (to match the context). We do not
address this task here because other VPE datasets do
not contain relevant substitution annotations. Simi-
lar techniques are also described in Nielsen (2004b;
2004a; 2003a; 2003b).

Results from this prior work are relatively difficult
to reproduce because the annotations on which they
rely are inaccessible. The annotations used by Hardt
(1997) have not been made available, and those used
by Nielsen (2005) are not easily reusable since they
rely on some particular tokenization and parser. Bos
and Spenader (2011) address this problem by anno-
tating a new corpus of VPE on top of the WSJ section
of the Penn Treebank, and propose it as a standard
evaluation benchmark for the task. Still it is desir-
able to use Nielsen’s annotations on the BNC which
contain more diverse text genres with more frequent
VPE.

3 Approaches

We focus on the problems of target detection and an-
tecedent identification as proposed by Nielsen (2005).
We propose a refinement of these two tasks, splitting
them into these three:

1. Target Detection (T), where the subset of VPE
targets is identified.

2. Antecedent Head Resolution (H), where each
target is linked to the head of its antecedent.

3. Antecedent Boundary Determination (B),
where the exact boundaries of the antecedent
are determined from its head.

The following sections describe each of the steps in
detail.

3.1 Target Detection
Since the VPE target is annotated as a single word
in the corpus1, we model their detection as a binary
classification problem. We only consider modal or
light verbs (be, do, have) as candidates, and train a lo-
gistic regression classifier (LogT ) with the following
set of binary features:

1. The POS tag, lemma, and dependency label of
the verb, its dependency parent, and the imme-
diately preceding and succeeding words.

2. The POS tags, lemmas and dependency labels
of the words in the dependency subtree of the
verb, in the 3-word window, and in the same-
size window after (as bags of words).

3. Whether the subject of the verb appears to its
right (i.e., there is subject-verb inversion).

3.2 Antecedent Head Resolution
For each detected target, we consider as potential
antecedent heads all verbs (including modals and
auxiliaries) in the three immediately preceding sen-
tences of the target word2 as well as the sentence
including the target word (up to the target3). This
follows Hardt (1992) and Nielsen (2005).

We perform experiments using a logistic regres-
sion classifier (LogH ), trained to distinguish correct
antecedents from all other possible candidates. The
set of features are shared with the Antecedent Bound-
ary Determination task, and are described in detail in
Section 3.3.1.

1All targets in the corpus of Bos and Spenader (2011) are
single-word by their annotation guideline.

2Only 1 of the targets in the corpus of Bos and Spenader
(2011), has an antecedent beyond that window.

3Only 1% of the targets in the corpus are cataphoric.
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However, a more natural view of the resolution
task is that of a ranking problem. The gold annota-
tion can be seen as a partial ordering of the candi-
dates, where, for a given target, the correct antecedent
ranks above all other candidates, but there is no or-
dering among the remaining candidates. To handle
this specific setting, we adopt a ranking model with
domination loss (Dekel et al., 2003).

Formally, for each potential target t in the deter-
mined set of targets T , we consider its set of can-
didates Ct, and denote whether a candidate c ∈ Ct

is the antecedent for t using a binary variable act.
We express the ranking problem as a bipartite graph
G = (V +, V −, E) where vertices represent an-
tecedent candidates:

V + = {(t, c) | t ∈ T, c ∈ Ct, act = 1}
V − = {(t, c) | t ∈ T, c ∈ Ct, act = 0}

and the edges link the correct antecedents to the rest
of the candidates for the same target4:

E = {((t, c+), (t, c−)) | (t, c+) ∈ V +, (t, c−) ∈ V −}
We associate each vertex i with a feature vector xi,

and compute its score si as a parametric function of
the features si = g(w,xi). The training objective is
to learn parameters w such that each positive vertex
i ∈ V + has a higher score than the negative vertices j
it is connected to, V −i = {j | j ∈ V −, (i, j) ∈ E}.

The combinatorial domination loss for a vertex
i ∈ V + is 1 if there exists any vertex j ∈ V −i with a
higher score. A convex relaxation of the loss for the
graph is given by (Dekel et al., 2003):

f(w) =
1
|V +|

∑
i∈V +

log(1 +
∑

j∈V −i

exp(sj − si + ∆))

Taking ∆ = 0, and choosing g to be a linear feature
scoring function si = w · xi, the loss becomes:

f(w) =
1
|V +|

∑
i∈V +

log
∑

j∈V −i

exp(w · xj)−w · xi

The loss over the whole graph can then be minimized
using stochastic gradient descent. We will denote the
ranker learned with this approach as RankH .

4During training, there is always 1 correct antecedent for
each gold standard target, with several incorrect ones.

Algorithm 1: Candidate generation
Data: a, the antecedent head
Data: t, the target
Result: B, the set of possible antecedent

boundaries (start, end)
1 begin
2 as ←− SemanticHeadVerb(a);
3 E ←− {as} // the set of ending positions;
4 for ch ∈ RightChildren(as) do
5 e← RightMostNode(ch);
6 if e < t ∧ValidEnding(e) then
7 E ←− E ∪ {e}
8 B ←− ∅;
9 for e ∈ E do

10 B ←− B ∪ {(a, e)};

3.3 Antecedent Boundary Determination
From a given antecedent head, the set of potential
boundaries for the antecedent, which is a complete or
partial verb phrase, is constructed using Algorithm 1.

Informally, the algorithm tries to generate different
valid verb phrase structures by varying the amount
of information encoded in the phrase. To do so, it
accesses the semantic head verb as of the antecedent
head a (e.g., paying for are in Example 2), and con-
siders the rightmost node of each right child. If the
node is a valid ending (punctuation and quotation are
excluded), it is added to the potential set of endings
E. The set of valid boundaries B contains the cross-
product of the starting position S = {a} with E.

For instance, from Example 2, the following
boundary candidates are generated for are:

• are paying

• are paying out

• are paying out a smaller percentage of their prof-
its and cash flow

• are paying out a smaller percentage of their prof-
its and cash flow in the form of dividends

We experiment with both logistic regres-
sion (LogB) and ranking (RankB) models for this
task. The set of features is shared with the previous
task, and is described in the following section.
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3.3.1 Antecedent Features
The features used for antecedent head resolution

and/or boundary determination try to capture aspects
of both tasks. We summarize the features in Table
1. The features are roughly grouped by their type.
Labels features make use of the parsing labels of
the antecedent and target; Tree features are intended
to capture the dependency relations between the an-
tecedent and target; Distance features describe dis-
tance between them; Match features test whether the
context of the antecedent and target are similar; Se-
mantic features capture shallow semantic similarity;
finally, there are a few Other features which are not
categorized.

On the last column of the feature table, we indicate
the design purpose of the feature: head selection (H),
boundary detection (B) or both (B&H). However, we
use the full feature set for all three tasks.

4 Joint Modeling

Here we consider the possibility that antecedent head
resolution and target detection should be modeled
jointly (they are typically separate). The hypothesis
is that if a suitable antecedent for a target cannot be
found, the target itself might have been incorrectly
detected. Similarly, the suitability of a candidate as
antecedent head can depend on the possible bound-
aries of the antecedents that can be generated from
it.

We also consider the possibility that antecedent
head resolution and antecedent boundary determina-
tion should be modeled independently (though they
are typically combined). We hypothesize that these
two steps actually focus on different perspectives: the
antecedent head resolution (H) focuses on finding the
correct antecedent position; the boundary detection
step (B) focuses on constructing a well-formed verb
phrase. We are also aware that B might be helpful to
H, for instance, a correct antecedent boundary will
give us correct context words, that can be useful in
determining the antecedent position.

We examine the joint interactions by combining
adjacent steps in our pipeline. For the combination of
antecedent head resolution and antecedent boundary
determination (H+B), we consider simultaneously
as candidates for each target the set of all poten-
tial boundaries for all potential heads. Here too, a

logistic regression model (LogH+B) can be used
to distinguish correct (target, antecedent
start, antecedent end) triplets; or a rank-
ing model (RankH+B) can be trained to rank the
correct one above the other ones for the same target.

The combination of target detection with an-
tecedent head resolution (T+H) requires identifying
the targets. This is not straightforward when using
a ranking model since scores are only comparable
for the same target. To get around this problem, we
add a “null” antecedent head. For a given target can-
didate, the null antecedent should be ranked higher
than all other candidates if it is not actually a tar-
get. Since this produces many examples where the
null antecedent should be selected, random subsam-
pling is used to reduce the training data imbalance.
The “null” hypothesis approach is used previously in
ranking-based coreference systems (Rahman and Ng,
2009; Durrett et al., 2013).

Most of the features presented in the previous sec-
tion will not trigger for the null instance, and an
additional feature to mark this case is added.

The combination of the three tasks (T+H+B) only
differs from the previous case in that all antecedent
boundaries are considered as candidates for a target,
in addition to the potential antecedent heads.

5 Experiments

5.1 Datasets
We conduct our experiments on two datasets (see
Table 2 for corpus counts). The first one is the corpus
of Bos and Spenader (2011), which provides VPE
annotation on the WSJ section of the Penn Treebank.
Bos and Spenader (2011) propose a train-test split
that we follow5.

To facilitate more meaningful comparison, we con-
verted the sections of the British National Corpus
annotated by Nielsen (2005) into the format used by
Bos and Spenader (2011), and manually fixed con-
version errors introduced during the process6 (Our
version of the dataset is publicly available for re-
search7.) We use a train-test split similar to Nielsen

5Section 20 to 24 are used as test data.
6We also found 3 annotation instances that could be deemed

errors, but decided to preserve the annotations as they were.
7https://github.com/hunterhector/

VerbPhraseEllipsis
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Type Feature Description Purpose

Labels

The POS tag and dependency label of the antecedent head H
The POS tag and dependency label of the antecedent’s last word B
The POS tag and lemma of the antecedent parent H
The POS tag, lemma and dependency label of within a 3 word around around the
antecedent

B

The pair of the POS tags of the antecedent head and the target, and of their auxil-
iary verbs

H

The pair of the lemmas of the auxiliary verbs of the antecedent head and the target. H

Tree

Whether the antecedent and the target form a comparative construction connecting
by so, as or than

H&B

The dependency labels of the shared lemmas between the parse tree of the an-
tecedent and the target

H

Label of the dependency between the antecedent and target (if exists) H
Whether the antecedent contains any descendant with the same lemma and depen-
dency label as a descendant of the target.

H

Whether antecedent and target are dependent ancestor of each other H
Whether antecedent and target share prepositions in their dependency tree H

Distance
The distance in sentences between the antecedent and the target (clipped to 2) H
The number of verb phrases between the antecedent and the target (clipped to 5) H

Match
Whether the lemmas of the heads, and words in the the window (=2) before the
antecedent and the target match respectively

H

Whether the lemmas of the ith word before the antecedent and i− 1th word before
the target match respectively (for i ∈ {1, 2, 3}, with the 0th word of the target
being the target itself)

H&B

Semantic Whether the subjects of the antecedent and the target are coreferent H

Other Whether the lemma of the head of the antecedent is be and that of the target is do
(be-do match, used by Hardt and Nielsen)

H

Whether the antecedent is in quotes and the target is not, or vice versa H&B

Table 1: Antecedent Features

Documents VPE Instances

Train Test Train Test

WSJ 1999 500 435 119
BNC 12 2 641 204

Table 2: Corpus statistics

(2005)8.
8Training set is CS6, A2U, J25, FU6, H7F, HA3, A19, A0P,

G1A, EWC, FNS, C8T; test set is EDJ, FR3

5.2 Evaluation
We evaluate and compare our models following the
metrics used by Bos and Spenader (2011).

VPE target detection is a per-word binary classi-
fication problem, which can be evaluated using the
conventional precision (Prec), recall (Rec) and F1
scores.

Bos and Spenader (2011) propose a token-based
evaluation metric for antecedent selection. The an-
tecedent scores are computed over the correctly iden-
tified tokens per antecedent: precision is the number
of correctly identified tokens divided by the num-
ber of predicted tokens, and recall is the number of
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correctly identified tokens divided by the number
of gold standard tokens. Averaged scores refer to a
“macro”-average over all antecedents.

Finally, in order to asses the performance of an-
tecedent head resolution, we compute precision, re-
call and F1 where credit is given if the proposed head
is included inside the golden antecedent boundaries.

5.3 Baselines and Benchmarks
We begin with simple, linguistically motivated base-
line approaches for the three subtasks. For target de-
tection, we reimplement the heuristic baseline used
by Nielsen (2005): take all auxiliaries as possible can-
didates and eliminate them using part-of-speech con-
text rules (we refer to this as PosT ). For antecedent
head resolution, we take the first non-auxiliary verb
preceding the target verb. For antecedent boundary
detection, we expand the verb into a phrase by tak-
ing the largest subtree of the verb such that it does
not overlap with the target. These two baselines are
also used in Nielsen (2005) (and we refer to them as
PrevH and MaxB , respectively).

To upper-bound our results, we include an oracle
for the three subtasks, which selects the highest scor-
ing candidate among all those considered. We denote
these as OraT , OraH , OraB .

We also compare to the current state-of-the-art
target detection results as reported in Nielsen (2005)
on the BNC dataset (NielsenT )9.

6 Results

The results for each one of the three subtasks in iso-
lation are presented first, followed by those of the
end-to-end evaluation. We have not attempted to tune
classification thresholds to maximize F1.

6.1 Target Detection
Table 3 shows the performance of the compared ap-
proaches on the Target Detection task. The logistic
regression model LogT gives relatively high preci-
sion compared to recall, probably because there are
so many more negative training examples than pos-
itive ones. Despite a simple set of features, the F1
results are significantly better than Nielsen’s baseline
PosT .

9The differences in the setup make the results on antecedent
resolution not directly comparable.

Notice also how the oracle OraT does not achieve
100% recall, since not all the targets in the gold data
are captured by our candidate generation strategy.
The loss is around 7% for both corpora.

The results obtained by the joint models are low on
this task. In particular, the ranking models RankT+H

and RankT+H+B fail to predict any target in the
WSJ corpus, since the null antecedent is always pre-
ferred. This happens because joint modeling further
exaggerates the class imbalance: the ranker is asked
to consider many incorrect targets coupled with all
sorts of hypothesis antecedents, and ultimately learns
just to select the null target. Our initial attempts
at subsampling the negative examples did not im-
prove the situation. The logistic regression models
LogT+H and LogT+H+B are most robust, but still
their performance is far below that of the pure classi-
fier LogT .

6.2 Antecedent Head Resolution
Table 4 contains the performance of the compared
approaches on the Antecedent Head Resolution task,
assuming oracle targets (OraT ).

First, we observe that even the oracle OraH has
low scores on the BNC corpus. This suggests that
some phenomena beyond the scope of those observed
in the WSJ data appear in the more general corpus
(we developed our system using the WSJ annotations
and then simply evaluated on the BNC test data).

Second, the ranking-based model RankH con-
sistently outperforms the logistic regression model
LogH and the baseline PrevH . The ranking model’s
advantage is small in the WSJ, but much more pro-
nounced in the BNC data. These improvements sug-
gest that indeed, ranking is a more natural modeling
choice than classification for antecedent head resolu-
tion.

Finally, the joint resolution models RankH+B and
LogH+B give poorer results than their single-task
counterparts, though RankH+B is not far behind
RankH . Joint modeling requires more training data
and we may not have enough to reflect the benefit of
a more powerful model.

6.3 Antecedent Boundary Determination
Table 5 shows the performance of the compared ap-
proaches on the Antecedent Boundary Determination
task, using the soft evaluation scores (the results for
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WSJ BNC

Prec Rec F1 Prec Rec F1

OraT 100.00 93.28 96.52 100.00 92.65 96.18
LogT 80.22 61.34 69.52 80.90 70.59 75.39
PosT 42.62 43.7 43.15 35.47 35.29 35.38

LogT+H 23.36 26.89 25.00 12.52 38.24 18.86
RankT+H 0.00 0.00 0.00 15.79 5.88 8.57

LogT+H+B 25.61 17.65 20.90 21.50 32.35 25.83
RankT+H+B 0.00 0.00 0.00 16.67 11.27 13.45

NielsenT - - - 72.50 72.86 72.68

Table 3: Results for Target Detection

WSJ BNC

Prec Rec F1 Prec Rec F1

OraH 94.59 88.24 91.30 79.89 74.02 76.84
RankH 70.27 65.55 67.83 52.91 49.02 50.89
PrevH 67.57 63.03 65.22 39.68 36.76 38.17
LogH 59.46 55.46 57.39 38.62 35.78 37.15

RankH+B 68.47 63.87 66.09 51.85 48.04 49.87
LogH+B 39.64 36.97 38.26 30.16 27.94 29.01

Table 4: Results for Antecedent Head Resolution

WSJ BNC

Prec Rec F1 Prec Rec F1

OraB 95.06 88.67 91.76 85.79 79.49 82.52
LogB 89.47 83.46 86.36 81.10 75.13 78.00
RankB 83.96 78.32 81.04 75.68 70.12 72.79
MaxB 78.97 73.66 76.22 73.70 68.28 70.88

Table 5: Soft results for Antecedent Boundary Determination

WSJ BNC

Prec Rec F1 Prec Rec F1

OraH+OraB 95.06 88.67 91.76 85.79 79.49 82.52
RankH+LogB 64.11 59.8 61.88 47.04 43.58 45.24
RankH+RankB 63.90 59.6 61.67 49.11 45.5 47.24
LogH+LogB 53.49 49.89 51.63 34.77 32.21 33.44
LogH+RankB 53.27 49.69 51.42 36.26 33.59 34.88

RankH+B 67.55 63.01 65.20 50.68 46.95 48.74
LogH+B 40.96 38.20 39.53 30.00 27.79 28.85

Table 6: Soft results for Antecedent Boundary Determination with non-gold heads
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WSJ BNC

Prec Rec F1 Prec Rec F1

OraT +OraH+OraB 95.06 88.67 91.76 85.79 79.49 82.52
LogT +RankH+RankB 52.68 40.28 45.65 43.03 37.54 40.10
LogT +RankH+LogB 52.82 40.40 45.78 40.21 35.08 37.47
LogT +LogH+RankB 49.45 37.82 42.86 33.12 28.90 30.86
LogT +LogH+LogB 49.41 37.79 42.83 31.32 27.33 29.19
PosT +PrevH+MaxB 19.04 19.52 19.27 12.81 12.75 12.78

LogT +RankH+B 54.82 41.92 47.51 41.86 36.52 39.01
LogT +LogH+B 38.85 29.71 33.67 26.11 22.78 24.33

Table 7: Soft end-to-end results

the strict scores are omitted for brevity, but in general
look quite similar). The systems use the output of the
oracle targets (OraT ) and antecedent heads (OraH ).

Regarding boundary detection alone, the logis-
tic regression model LogB outperforms the ranking
model RankB . This suggests that boundary deter-
mination is more a problem of determining the com-
patibility between target and antecedent extent than
one of ranking alternative boundaries. However, the
next experiments suggest this advantage is dimin-
ished when gold targets and antecedent heads are
replaced by system predictions.

6.3.1 Non-Gold Antecedent Heads
Table 6 contains Antecedent Boundary Determina-

tion results for systems which use oracle targets, but
system antecedent heads. When RankH or LogH

are used for head resolution, the difference between
LogB and RankB diminishes, and it is even better to
use the latter in the BNC corpus. The models were
trained with gold annotations rather than system out-
puts, and the ranking model is somewhat more robust
to noisier inputs.

On the other hand, the results for the joint resolu-
tion model RankH+B are better in this case than the
combination of RankH+RankB , whereas LogH+B

performs worse than any 2-step combination. The
benefits of using a ranking model for antecedent head
resolution seem thus to outperform those of using
classification to determine its boundaries.

6.4 End-to-End Evaluation
Table 7 contains the end-to-end performance of dif-
ferent approaches, using the soft evaluation scores.

The trends we observed with gold targets are pre-
served: approaches using the RankH maintain an
advantage over LogH , but the improvement of LogB

over RankB for boundary determination is dimin-
ished with non-gold heads. Also, the 3-step ap-
proaches seem to perform slightly better than the
2-step ones. Together with the fact that the smaller
problems are easier to train, this appears to validate
our decomposition choice.

7 Conclusion and Discussion

In this paper we have explored a decomposition of
Verb Phrase Ellipsis resolution into subtasks, which
splits antecedent selection in two distinct steps. By
modeling these two subtasks separately with two
different learning paradigms, we can achieve better
performance then doing them jointly, suggesting they
are indeed of different underlying nature.

Our experiments show that a logistic regression
classification model works better for target detec-
tion and antecedent boundary determination, while
a ranking-based model is more suitable for select-
ing the antecedent head of a given target. However,
the benefits of the classification model for bound-
ary determination are reduced for non-gold targets
and heads. On the other hand, by separating the two
steps, we lose the potential joint interaction of them.
It might be possible to explore whether we can bring
the benefits of the two side: use separate models on
each step, but learn them jointly. We leave further
investigation of this to future work.

We have also explored jointly training a target de-
tection and antecedent resolution model, but have not
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been successful in dealing with the class imbalance
inherent to the problem.

Our current model adopts a simple feature set,
which is composed mostly by simple syntax and lex-
ical features. It may be interesting to explore more
semantic and discourse-level features in our system.
We leave these to future investigation.

All our experiments have been run on publicly
available datasets, to which we add our manually
aligned version of the VPE annotations on the BNC
corpus. We hope our experiments, analysis, and more
easily processed data can further the development
of new computational approaches to the problem of
Verb Phrase Ellipsis resolution.
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