
Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 252–255,
San Diego, California, June 16, 2016. c©2016 Association for Computational Linguistics

Combining Off-the-shelf Grammar and Spelling Tools for the
Automatic Evaluation of Scientific Writing (AESW) Shared Task 2016

René Witte and Bahar Sateli
Knowlet Networks Inc.
Montréal, QC, Canada

http://www.knowlet.net

Abstract

We applied two standard, open source tools
for detecting spelling and grammar errors to
the AESW2016 shared task: After the Dead-
line and LanguageTool. The tools’ output
was combined with a Maximum Entropy ma-
chine learning model to classify each input sen-
tence as requiring or not requiring any edits.
This approach yielded the second-highest pre-
cision of 64.41% in the binary estimation task
at AESW 2016, but also the lowest recall of
36.85%, resulting in an F-Measure of 46.34%.

1 Introduction

The Automated Evaluation of Scientific Writing
Shared Task (AESW 2016) targeted the analysis of
individual sentences, in order to assess whether or not
a sentence as a whole requires editing or not (Daudar-
avicius et al., 2016). The long-term vision behind this
task is to “promote the development of automated
writing evaluation tools that can assist authors in
writing scientific papers”.1

Our work in this area is similarly motivated by the
idea of providing an interactive “virtual research as-
sistant” that supports researchers in their daily tasks.
Writing support includes providing interactive feed-
back on the quality of textual artifacts to academic
authors. Such a support generally requires achieving
high precision over recall, as tools with too many
false positives tend to be ignored by authors. Addi-
tionally, providing salient feedback on detected mis-
takes – ideally together with suggestions for improve-
ments – to the authors is an important feature. Stan-

1AESW 2016, http://textmining.lt/aesw/index.html

dard, open source grammar and spelling tools have
addressed these questions for quite some time, but are
generally not focused on academic texts. Hence, we
were interested in how well existing, general-purpose
tools perform when applied to academic writing. In
our experiments, we applied two well-known tools,
After the Deadline and LanguageTool (described in
Section 2.3), to the AESW data sets. Our hypothe-
sis was that these two tools are (i) complementary
to some degree, so that their combination can in-
crease precision and/or recall; and (ii) a machine
learning approach can combine the tools’ output with
additional syntactical context information, thereby
attuning them to academic writing.

2 Methods

In this section, we discuss the setup of our
AESW 2016 experiments.

2.1 Data and Task Description

Here, we briefly describe the datasets and tasks; for
the full details, please refer to (Daudaravicius et al.,
2016).

The input sentences were randomly selected from
more than 9,000 journal articles across different do-
mains (Computer Science, Physics, Human Sciences,
etc.). The training and development data sets contain
256,389 and 31,732 sentences, respectively. Some
sentences contain changes that were applied by pro-
fessional editors, who are native English speakers.
These sentences have inline <ins> and tags
that mark inserted and removed content, respectively.
An example sentence is shown in Fig. 1.

The test data set (31,085 sentences) “retain texts

252

<sentence sid="3570.3">
The enterprise aims to increase in
<ins>the</ins> output (at the same time to
reduce expenses) _MATH_ and to decrease
in<ins>the</ins> consumed
efforts<ins>effort</ins> _MATH_.

</sentence>

Figure 1: Example sentence in XML format from the AESW

2016 development set

tagged with tags and the tags are dropped.
Texts between <ins> tags are removed.”2

The goal of the AESW tasks was to predict
whether a given sentence as a whole requires editing
– that is, individual insertions or deletions did not
have to be annotated. Thus, the output for the two
tasks was either a boolean feature (True meaning a
sentence requires editing) or a probabilistic feature
with a value in [0,1] (where “1” indicates that an edit
is required).

2.2 Preprocessing
To facilitate cross-fold evaluations, we split all
AESW data sets (development, training, and testing)
into individual XML files containing 1000 sentences
each.

For machine learning, each sentence from the de-
velopment and training sets received an edit feature of
True if it contained at least one <ins> or tag,
otherwise the edit feature was set to False. For train-
ing, content marked as ‘inserted’ (between <ins>
tags as shown in Fig. 1) was removed from the texts.
The tags were likewise removed, but the con-
tent was retained, thereby showing a sentence’s con-
tent before any changes performed by an editor. Note
that this conforms to the format of the test set, as
described above.

2.3 Writing Error Detection Tools
We experimented with two open source tools for writ-
ing error detection:

After the Deadline (AtD) detects spelling, gram-
mar, and style errors (Mudge, 2010).3 We used ver-
sion atd-081310 in its default configuration for our
experiments.

2AESW 2016 Data Set, see http://textmining.lt/aesw/index.
html#data

3After the Deadline, http://www.afterthedeadline.com/

LanguageTool (LT) is another popular open
source spelling and grammar tool,4 which also sup-
ports multiple languages. We used version 3.2-
SNAPSHOT from the LT GitHub repository5 for our
experiments.

2.4 Experimental Setup

To facilitate the combination of the individual results,
we integrated both tools into a pipeline through the
General Architecture for Text Engineering (GATE)
(Cunningham et al., 2011). Each error reported by
one of the tools is added to the input text in the form
of an annotation, which holds a start- and end-offset,
as well as a number of features, such as the type of
the error, the internal rule that generated the error,
and possibly suggestions for improvements, as shown
in Figure 2.

Additionally, we added a number of standard
GATE plugins from the ANNIE pipeline (Cunning-
ham et al., 2002) to perform tokenization, part-of-
speech tagging, and lemmatization on the input texts.
Finally, annotations spanning placeholder texts in the
sentences, such as MATH , were filtered out, as these
were particular to the AESW data.

2.5 Machine Learning

In addition to applying the AtD and LT tools indi-
vidually, we experimented with their combination
through machine learning. Essentially, we follow a
stacking approach (Witten and Frank, 2011) by treat-
ing the AtD and LT tools as individual classifiers and
use them to train a model for assigning the output
‘edit’ feature to a sentence.

ML Features. Table 1 lists all features we derive
from the input sentences. We experimented with
different token root and category n-grams, including
unigrams, bigrams and trigrams.

ML Algorithms. Training and evaluation were per-
formed using the Weka6 (Witten and Frank, 2011)
and Mallet7 (McCallum, 2002) toolkits. These were
executed from within GATE using the Learning

4LanguageTool, https://languagetool.org/
5LanguageTool GitHub repository, https://github.com/

languagetool-org/languagetool
6Weka, https://sourceforge.net/projects/weka/
7Mallet, http://mallet.cs.umass.edu/

253

Figure 2: Combination of the writing analysis tools After the Deadline and LanguageTool in the GATE Developer GUI

Feature Description

Token.root Morphological root of the token
Token.category Part-of-speech tag for the token
LT.rule Rule name as reported by LT
LT.string Reported text (surface form)
AtD.rule Rule name as reported by AtD
AtD.string Reported text (surface form)

Table 1: Machine Learning Features

Framework Plugin.8 We experimented with a number
of classification algorithms, including Decision Trees,
Winnow, Naı̈ve Bayes, KNN, PAUM, and Maximum
Entropy. The latter generally performed best for the
dataset and features, hence in this paper we only
report the results from the MaxEnt model.

3 Results

In this report, we provide a summary of our sys-
tem’s results – for a complete description of all
AESW 2016 results, please refer to (Daudaravicius
et al., 2016).

8GATE Learning Framework Plugin, https://github.com/
GateNLP/gateplugin-LearningFramework

Baseline experiments. To establish a baseline, we
ran the AtD and LT tools on the development set.
Here, every sentence that had at least one error anno-
tation received an edit feature of True. Table 3 shows
the results as reported by the Codalab site9 used in
the competition.

Tool Precision Recall F-Measure

AtD 0.4318 0.7448 0.5467
LT 0.4719 0.4739 0.4729

Table 3: Baseline experiments: Evaluation of the individual tools

on the development set

Feature analysis. We measured the impact of the
various features shown in Table 1 on the classification
performance. A selected set of results is shown in
Table 2. Accuracy was calculated using Mallet with
a three-fold cross-validation on the training data set.
Generally, adding more features increased precision,
but did not improve recall.

Submitted run. For the submitted run, we re-
trained the MaxEnt classifier using the full fea-

9Codalab, http://codalab.org/

254

Feature Set Accuracy

AtD.rule, AtD.string, LT.rule, LT.string 0.6261
AtD.rule, AtD.string, LT.rule, LT.string, Token.root unigrams, Token.category unigrams 0.6584
AtD.rule, AtD.string, LT.rule, LT.string, Token.root bigrams, Token.category bigrams 0.7300
AtD.rule, AtD.string, LT.rule, LT.string, Token.root trigrams, Token.category trigrams 0.8525

Table 2: Three-fold cross-validation of the MaxEnt classifier on the training data with different feature sets

ture set (using trigrams for both Token.root and To-
ken.category) on both development and training set.
The exact same configuration was used for the prob-
abilistic task submission, using the classifier’s con-
fidence as the prediction value (with 1-confidence
for sentences classified as not requiring edits). The
results are summarized in Table 4.

Tool Precision Recall F-Measure

binary 0.6241 (1) 0.3685 (8) 0.4634 (7)
probabilistic 0.7294 (2) 0.6591 (6) 0.6925 (5)

Table 4: Submitted runs for the AESW 2016 task on the test set

(as reported by Codalab)

4 Conclusions

Based on our experiments, standard spell and gram-
mar checking tools can help in assessing academic
writing, but do not cover all different types of edits
observed in the training data. In future work, we
plan to categorize the false negatives and develop
additional features to capture specific writing errors.

As the AESW 2016 task was performed on indi-
vidual sentences, the results do not accurately reflect
the interactive use within a tool: False positive errors,
such as spelling mistakes reported for an unknown
acronym, are counted for every sentence, rather than
once for the entire document, thereby decreasing pre-
cision significantly when an entity appears multiple
times. Also, document-level writing errors, such as
discourse-level mistakes, cannot be captured with
this setup – for example, use of acronyms before
they are defined or inconsistent use of American vs.
English spelling. Finally, while the sentence-level
decision can be helpful in directing the attention of
an editor to a possibly problematic sentence, by itself
it does not explain why a given sentence was flagged
or how it could be improved, which are important
information for academic writers.

References
Hamish Cunningham, Diana Maynard, Kalina Bontcheva,

and Valentin Tablan. 2002. GATE: A Framework and
Graphical Development Environment for Robust NLP
Tools and Applications. In Proceedings of the 40th An-
niversary Meeting of the Association for Computational
Linguistics (ACL’02).

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve
Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, Thomas Heitz, Mark A. Greenwood, Horacio
Saggion, Johann Petrak, Yaoyong Li, and Wim Pe-
ters. 2011. Text Processing with GATE (Version 6).
http://tinyurl.com/gatebook.

Vidas Daudaravicius, Rafael E. Banchs, Elena Volodina,
and Courtney Napoles. 2016. A report on the auto-
matic evaluation of scientific writing shared task. In
Proceedings of the Eleventh Workshop on Innovative
Use of NLP for Building Educational Applications, San
Diego, CA, USA, June. Association for Computational
Linguistics.

Andrew Kachites McCallum. 2002. MALLET: A Ma-
chine Learning for Language Toolkit. http://mallet.cs.
umass.edu/.

Raphael Mudge. 2010. The Design of a Proofreading
Software Service. In Workshop on Computational Lin-
guistics and Writing: Writing Processes and Authoring
Aids (CL&W 2010).

Ian H. Witten and Eibe Frank. 2011. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Morgan
Kaufmann, 2nd edition.

255

