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Abstract

In this paper, we describe the development
of a morphological analyzer for learner Hun-
garian, outlining extensions to a resource-
light system that can be developed by differ-
ent types of experts. Specifically, we discuss
linguistic rule writing, resource creation, and
different system settings, and our evaluation
showcases the amount of improvement one
gets for differing levels and kinds of effort,
enabling other researchers to spend their time
and energy as effectively as possible.

1 Introduction

There is much work on developing technology
and corpora for lesser-resourced languages (LRLs),
involving varying assumptions about the amount
of available data (e.g., Feldman and Hana, 2010;
Duong et al., 2015; McDonald et al., 2011; Gar-
rette et al., 2013; Garrette and Baldridge, 2013;
Lynn et al., 2013; Smith and Dickinson, 2014). To
our knowledge, though, there has been very lit-
tle work focusing on tools for automatically ana-
lyzing learner language. Yet LRLs present many
challenges and opportunities, not least of which is
the chance, through language learning, to increase
awareness and usage of the language. In that light,
we build from our work in Ledbetter and Dickin-
son (2015) to develop a morphological analyzer for
learner Hungarian in a resource-light way, extending
the framework to handle a wider range of phenom-
ena and to increase accuracy, addressing the trade-
offs between effort and performance.

Part of the purpose in Ledbetter and Dickinson
(2015) is to push for the automatic analysis of
learner language beyond English, incorporating a
wider range of linguistic and error patterns. But
there is little indication about how much effort is
required to build a system of sufficient accuracy.
Garrette and Baldridge (2013) point out exactly the
time spent in annotation, and we follow in that vein
of estimating time costs, here for analyzing learner
language, to foster resource-light development (cf.
Smith and Dickinson, 2014).

Indeed, there is a convenient connection between
LRLs and the automatic analysis of learner lan-
guage, one enabling a rule-based approach. In a
low-resourced setting, there is a lack of data for data-
driven modeling, and one can write rules in a short
amount of time; because such rules are linguisti-
cally motivated, they are relatively easy to connect to
tasks such as providing feedback on learner input or
modeling learner behavior, i.e., tasks requiring lin-
guistic analysis. Systems for learner language are
also amenable to low-resource development in that
the vocabulary is often restricted and the require-
ment for high precision dovetails nicely with using
linguistic rules. Such an approach allows for quick,
transparent development, helping identify parts of
the linguistic system that the tool gets (in)correct.

Given the need to interact with NLP researchers,
educators, and learners, this linguistic transparency
is a key property (cf. Loukina et al., 2015). In this
work, we propose a number of different kinds of
extensions to a system, appropriate for different as-
pects of analysis. The system is rule-based, which—
in addition to being appropriate for Hungarian mor-
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phology in a resource-light setting—makes it feasi-
ble to plug in different components and thus allows
one to test the effect of different extensions. We
envision different kinds of experts (linguists, teach-
ers, NLP researchers, etc.) being able to contribute
within such a paradigm, thus broadening the range
of who can contribute to successful analyzer design.

Corresponding to different types of knowledge,
we propose four kinds of system improvements: 1)
writing linguistic rules (e.g., exception marking); 2)
creating resources (e.g., name dictionary); 3) op-
timizing system settings (e.g., automatic ranking);
and 4) analyzing system output. Seeing the effects of
these improvements can help contribute to a broader
discussion of which components are most in need
of development for learner data (cf. constraint re-
laxation (Reuer, 2003; Schwind, 1995)). The main
contribution of this work is thus to outline and iden-
tify the benefits of different kinds of resources for
building a transparent analyzer, highlighting the best
gains for the amount of time one has available.

In section 2 we cover the basics of Hungarian,
turning to learner Hungarian and the general frame-
work in section 3. In section 4 we outline the types
of improvement, detailing specific modifications to
the system and the amount of effort involved in each
one. Section 5 then shows the results for tagging ac-
curacy, and we provide general advice on prioritiz-
ing effort in section 6. Although our current results
are below the state-of-the-art, we have spent little
time in getting a workable system. We do not ad-
dress in this paper how accurate an analyzer needs
to be in order to be deployed for providing learner
feedback, but it is important to note: a) we highlight
starting points for development, not a finished prod-
uct; and b) for some purposes—such as assisting
in the semi-automatic annotation of a learner cor-
pus or targeting subparts of the grammar (for which
the system is more accurate) for learner modeling—
even the current system can be of benefit.

2 Hungarian

Hungarian is a Finno-Ugric language known for its
rich agglutinative morphology, in which words are
formed by joining morphemes together, as shown in
(1). Morphemes convey information such as num-

ber and case (e.g., INESSive) for nouns (1a), num-
ber, person, tense, and definiteness for verbs (1b), or
changes to part-of-speech (1c). Hungarian also ex-
hibits vowel harmony, which requires that the back-
ness of vowels (represented by the feature [+/-BK])
matches during affixation (Törkenczy, 2008); e.g.,
the front vowel variant -ben is inappropriate for (1a).

(1) a. fá
tree[+BK]

-k
-PL

-ban
-INESS[+BK]

‘in trees’
b. felejt

forget[-BK]
-ett
-PST[-BK]

-em
-1SG.INDEF[-BK]

‘I forgot’
c. álm

sleep[+BK]
-atlan
-NEG.ADJ[+BK]

-ság
-NOM[+BK]

‘sleeplessness/insomnia’

3 Framework

We build from the analyzer in Ledbetter and Dick-
inson (2015). Given the nature of Hungarian, the
morphological analyzer follows in the tradition of
rule-based approaches (Prószéky and Kis, 1999;
Megyesi, 1999; Trón et al., 2005, 2006), as a statis-
tical approach relying on large amounts of data for
training would be more challenging in a resource-
light setting. Data sparsity, common with agglu-
tinative languages in which a given wordform ap-
pears few times in training data, compounds this
problem. The amount and type of resources neces-
sary for our work is comparable to other research on
morphologically-rich languages in low-resource set-
tings, e.g. for some Indian languages (Singh et al.,
2006; Shrivastava and Bhattacharyya, 2008; Alfter,
2014). Details of the system are in section 3.2.

3.1 Data

To develop and evaluate a system, we rely on both
native language and learner data. The corpus of
learner data was collected from L1 English students
of Hungarian, divided into three levels of proficiency
(Beginner, Intermediate, Advanced) as determined
by course placement in one of three two-semester
sequences. The corpus consists of journal entries,
each a minimum of ten sentences in length on a
topic selected by the student. The data and error an-
notation are described in Dickinson and Ledbetter
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(2012). For native data, we use the Szeged Corpus
of Hungarian (Csendes et al., 2004).

For development of all our improvements, we use
the same 1000 words of native data and 1024 words
of learner data that were used in Ledbetter and Dick-
inson (2015). The native data is taken from compo-
sitions, so as to be relatively comparable to the jour-
nal entries found in the learner corpus. For evalua-
tion (section 5), we use new approximately same-
sized (1000, 1032) sections of data, i.e., the test
sets are comprised of new compositions never before
seen by the analyzer. Note that there is no training
data, as we are assuming a small set of resources.

3.2 Morphological analyzer

The morphological analyzer is affix-driven and
works simply by using a small set of known affixes
to derive a final analysis. For example, with a suf-
fix -at in the grammar that takes a noun stem (N) to
the left to derive a cased noun phrase (KP)—notated
KP\N—the word házat (‘house+ACC’) obtains a KP
analysis, segmented as ház+at.

The analyzer supports using features, too, e.g.,
KP\N {vh:bk} to indicate that vowel harmony (vh)
requires back (bk) vowels here. Error detection can
thus be performed on top of morphological analysis
simply by allowing for and storing feature clashes
(instead of requiring feature unification). In this pa-
per, we focus on providing correct morphological
tags, as this is the tool’s most primary function.

The baseline performance of the morphological
analyzer assumes the minimum of resources re-
quired to function: a knowledge base of grammatical
affixes and the analyzer (i.e., rule compiler) itself. In
section 5, we report two baseline scores, with 10 and
then with 50 affixes. Although Ledbetter and Dick-
inson (2015) also start with a dictionary, we assume
no other resources for our baseline; with only af-
fixes, the resulting scores are accordingly low. Each
improvement to the analyzer (section 4) is then eval-
uated separately with respect to this baseline.

Since we are concerned about time, we should
note that the rule compiler is around 3000-4000 lines
of Python code (depending on how one counts com-
ments, data handling, printing of intermediate out-
put, system-internal checks, etc.). We estimate it

would take 1–2 months for someone to build, but
as it relies on a CYK parser (see details in Ledbet-
ter and Dickinson, 2015) and as one may choose
different kinds of rule compilers for the same ef-
fect (e.g., a constraint grammar compiler (Didriksen,
2016) or an FST-based system (Hulden, 2009)), this
time could be significantly less.

4 Improvements

The morphological analyzer is designed with low-
resource scenarios in mind, starting with as little as
a rule compiler and however much grammatical in-
formation one has time to specify in rules (i.e., af-
fixes). We want to improve beyond this simple de-
sign, but we need to determine the best ways to im-
prove. Ideal improvements: a) require little time
to implement; b) contribute (significantly) to better
performance; and c) are as transparent as possible.

As mentioned in section 1, improvements to the
analyzer are divided into four categories. For ease
of implementation and development, each category
can represent a different person or team, based on
the resources and expertise available.

In each subsection below, we discuss a series of
related improvements we have completed and es-
timate the time required to implement them to the
same degree we have. We assume 1 day = 8 hours
of work for one person. For these estimates, we do
not strictly follow our own experience, as we did
not precisely log the time and, more importantly,
we expect future users to require less time to choose
and implement changes. We also assume someone
of moderate expertise in the area for which the im-
provements need to be made—e.g., someone famil-
iar with Hungarian linguistics enriching the knowl-
edge base (section 4.1) vs. someone familiar with
corpus linguistics extracting a most frequent word
list (section 4.2). The improvements in section 4.4
are more likely than any other to involve discussion
and cooperation among the different people, as it in-
volves incremental changes in the other areas.

4.1 Linguistic rule writing

The first set of improvements involves writing rules
that correspond to linguistic generalizations. These
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come in different levels of granularity, e.g., general
rules (#1) vs. exceptions (#3).

1. Enrich the knowledge base (KB): The mor-
phological analyzer relies primarily on grammatical
rules encoded in the knowledge base (KB) of af-
fixes, all of which can be obtained from a traditional
grammar reference or language textbook. The size
of the KB can vary, and the system’s performance
increases with richer and more complete grammat-
ical information. The baseline systems detailed in
section 3.2 assume a modest base of either 10 or 50
affixes.

Although we experiment with small KBs, it is
possible to obtain over 200 affixes for Hungarian us-
ing a grammar reference (Törkenczy, 2008), such as
the derivational suffix in (2). Here, the affix -ság
creates a noun (N) when combined with an adjec-
tive (A) to its left. Furthermore, the adjective stem
must contain back vowels to match the harmoniz-
ing suffix (indicated by the feature vh and its re-
quired value bk in braces). An example word can
be found in (3). The adjective boldog (‘happy’) can
combine with the nominalizing suffix ság because it
contains back vowels, as specified in the knowledge
base. Thus, the completed derivation is the noun
boldogság (‘happiness’). Time estimate: 2 days.

(2) -ság: N\A{vh:bk}

(3) boldog
A{vh:bk}

-ság
N\A{vh:bk}

“happiness” (N)

2. Modify knowledge base features: The KB
can be augmented with grammatical features, used
to constrain, i.e., eliminate certain combinations of
morphemes. (In the case of learner language, fea-
tures may only disfavor analyses—see the Free set-
ting in section 4.3.) As seen in (2), the feature
vh constrains a derivation based on vowel harmony.
Features also supply key information during deriva-
tion to increase the accuracy of morphological tags.
In (4), the feature k indicates that the noun stem (N)
suffixed with -t will become a cased noun phrase
(KP) in the accusative case (acc).

(4) -t: KP{k:acc}\N

Note that modifications to grammatical features
are included in all results presented in section 5, as
removing a single feature from each entry in the KB
to measure its effectiveness would take a long time
and provide little in the way of guidance for future
researchers. Time estimate: 1-2 days.

3. Encode exceptions (Except): Any target lan-
guage will have exceptions to grammatical rules.
A list of the most frequent grammatical exceptions
(even as few as 5–10), including handling of irregu-
lars, may provide a boon to performance. In Hungar-
ian, irregular stem changes during verb conjugation,
for example, can mask the relatedness of different
forms in the paradigm, and only one stem will be
found in a dictionary (when a dictionary is used).
Forms like those in (5) can be linked to a single
stem—the dictionary form of ‘to be,’ van—to facil-
itate a complete paradigm. The analyzer makes use
of only five such cases, targeting the most frequent
irregular verb stem changes. Time estimate: 1 day.

(5) a. vagy
be

-ok
-1SG

‘[I] am.’

b. van
be

-nak
-3PL

‘[they] are.’

4.2 Resource creation

The next improvements involve building resources,
generally corresponding to finding data that fits the
context under which the language is being produced
(e.g., learners with a first language (L1) of English).

1. Obtain a language dictionary (Dict): A
dictionary of attested target language words is a
straightforward improvement. If available digitally,
a target language dictionary is simple to add; oth-
erwise, one must be built by hand or via transcrip-
tion. In the latter case, a minimal list of words
can be obtained from a grammar reference or lan-
guage textbook and then digitized. Our analyzer ac-
cesses an English-Hungarian dictionary of 161,000
entries (Vonyó, 1998) with words only (i.e., no part-
of-speech or other grammatical information). Time
estimate: 1 day (electronic resource).

2. Obtain a list of common names (Names):
A common problem for morphological analysis is
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the treatment of unknown words. A list of names
common to the source (when known) and target
languages is often easy to acquire or create and
could alleviate a frequent cause of unknown words.
The analyzer has access to a list of 400 common
first names, 200 from English (L1 in our data)
and 200 from Hungarian (L2), obtained from be-
hindthename.com. Time estimate: 1 day.

3. Obtain a list of the most frequent words
(Freq): A small number of words (e.g., function
words) appear very frequently in written data, inde-
pendent of domain, while the vast majority of words
appear only a few times. With access to corpus
data, a list of the most frequent words in the lan-
guage with the proper morphological tags (added by
hand) can ensure that the analyzer is accurate for
a large amount of written data. Of the 100 most
frequent words in the Hungarian National Corpus
(Oravecz et al., 2014), 50 were selected and placed
in a database for the analyzer along with the appro-
priate morphological tags. Selection proceeded one
word at a time, beginning with the most frequent,
using several criteria, including familiarity to learn-
ers, opaque rather than transparent morphology, and
appropriateness to genre. Time estimate: 1 day.

4.3 System settings

The third set of improvements focus on implementa-
tion, deriving ways to obtain the best analysis from
among many possible ones or in cases where little-
to-no information is known.

1. Devise a method to rank analyses (Rank):
Morphological analysis for learner data must be
more flexible than similar methods for native lan-
guage data. Misspelled words, clashes of gram-
matical features, and a non-targetlike distribution of
morphological affixes can all cause failure for rules
designed to analyze the standard target language.
Overgeneration is accordingly a significant problem
for any system that attempts to account for such dif-
ferences. A method for prioritizing one possible
analysis over another is essential for reducing ambi-
guity, which in turn has a direct effect on precision.

We created a simple method to rank analyses in
the output of the analyzer. First, any analysis that

makes use of a stem found in the dictionary is ranked
higher than one that doesn’t. Second, an analysis
is ranked higher than another if it exhibits fewer
clashes of grammatical features during derivation
(section 3.2). If neither of the above rules applies,
analyses are ranked in the order they were created.
Future work can explore more sophisticated meth-
ods of ranking. Time estimate: 1 week.

2. Determine a default tag for unknown words
(Def): As indicated earlier, unknown words can
reduce accuracy during analysis, and learners are
prone to innovate new forms. This problem can
be minimized by assigning a default analysis to un-
known words. Our analyzer proposes a single tag
Nc-sn (noun: common, singular, nominative case)
when it fails to produce a derivation. Following stan-
dard practice in POS tagging, this default tag specif-
ically targets the most likely open class of words.
Time estimate: 1 day.

3. Hypothesize roots (Hyp): The design of the
analyzer emphasizes flexibility to account for the
differences between learner data and standard target
language data. In order to make the system more ro-
bust, a derivation can hypothesize a potential stem
after an affix from the knowledge base has been rec-
ognized. This allows for non-standard roots (e.g.,
those that have been misspelled) during derivation,
even if the system is relying on dictionary lookup.

(6) *haz
house

-ban
-INESSIVE

‘in [a] house.’

In (6), for example, a system built to analyze stan-
dard Hungarian may not recognize haz as part of a
valid word, as ház (‘house’) is the likely intended
form. By completing a derivation when possible, on
the basis of the suffix (e.g., Nhyp + KP\N), the ana-
lyzer can be more robust—though, it can also over-
posit analyses. Time estimate: 2 days.

4. Relax constraints (Free): Another method for
introducing flexibility into the analyzer involves the
features associated with the affixes in the KB. When
analyzing target language data, the features of stems
and affixes should unify, resulting in a complete
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derivation. In learner data, on the other hand, we
expect feature clashes as learners have not yet mas-
tered the rules of the target language grammar. By
relaxing the unification of features to allow clashes,
we can more often obtain complete derivations.

(7) *ház
house

-ben{vh:fr}
-INESSIVE

‘in [a] house.’

Consider the example in (7). The suffix -ben re-
quires a stem with front vowels (the value of the fea-
ture vh must be fr), but the stem ház contains back
vowels. With the appropriate setting, our analyzer
permits the derivation and provides the correct mor-
phological tag. Time estimate: 2 days.

The last two modifications (Hyp, Free) are pro-
posed in Ledbetter and Dickinson (2015), but need
to be evaluated within the space of other settings.

4.4 System analysis

The improvement in this section is relevant to the
whole system, relying on other settings and not eas-
ily isolated to a single area of expertise. No evalu-
ation of this improvement is provided, as it was un-
dertaken at several stages during development.

1. Perform a system/error analysis: Time can be
spent on an analysis of system performance, using a
small set of (annotated) development data. At any
stage of development, it is useful to inspect the out-
put of the analyzer and investigate potential mistakes
in rules, affixes, features, improvements, or the un-
derlying code itself. Thus, creating a small set of
annotated data is important for this stage.

Indeed, some of the time for the other improve-
ments is “hidden” in this task. In our experience, we
were able to identify a number of ways in which the
system was not functioning as expected. We iden-
tified affixes omitted from the KB, discovered new
features to restrict spurious analyses, and developed
the initial ideas for ranking analyses—in addition,
of course, to debugging the underlying code. Re-
solving each of these led to an increase in accuracy.
Time estimate: 1 month (or more).

5 Evaluation

After devising the improvements on the develop-
ment data, we evaluate the morphological analyzer
first on native Hungarian data and then on learner
data, recording precision, recall, and accuracy mea-
sures. Each improvement to the system is first con-
sidered individually, assessing its value apart from
all others, and then combined with other improve-
ments to determine the overall effectiveness.

The test sets, as mentioned in section 3, are new
excerpts from the target (1000 tokens) and learner
corpora (1032 tokens). The analyzer produces as
output one or more morphological tags for each
word in the input. During evaluation, this list of
output tags is compared to a list of gold standard
tags. For native data, the gold tag list from the
target language corpus contains the correct context-
specific tag as well as a list of possible tags based on
morphology. The annotation of the target language
corpus uses corrected output from the magyarlanc
(Zsibrita et al., 2013) tool. For learner data, we an-
notate a single gold standard tag for each word.

We evaluate how many tags from the analyzer
match possible tags from the gold standard and
whether the correct context-specific tag appears in
the output. Specifically, we report:

• Precision (P): the number of tags in the output
that appear in the gold standard, divided by the
number of tags in the output.

• Recall (R): the number of tags in the output
that appear in the gold standard, divided by the
number of tags in the gold standard.

• Accuracy (A): the number of correctly iden-
tified context-specific tags divided by the total
number of words in the input.

5.1 Individual improvements

The precision, recall, and accuracy measures for
each individual improvement are given in Table 1
for native data and Table 2 for learner data. The
top half of the table, labeled KB-10, indicates that
the analyzer used a knowledge base of ten affixes,
and the lower half of KB-50 indicates 50 affixes. All
other improvements are identified by columns with
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KB-10 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.970 0.018 0.023 0.107 0.018 0.385 0.018 0.221 0.145 0.018
R 0.413 0.008 0.010 0.051 0.008 0.182 0.008 0.094 0.070 0.008
A 0.930 0.018 0.023 0.089 0.018 0.303 0.018 0.058 0.125 0.018
KB-50 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.970 0.037 0.041 0.213 0.037 0.401 0.037 0.239 0.221 0.037
R 0.413 0.016 0.018 0.115 0.016 0.190 0.016 0.103 0.146 0.016
A 0.930 0.036 0.041 0.194 0.036 0.321 0.036 0.076 0.245 0.036

Table 1: Evaluation for each improvement (native data)

KB-10 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.850 0.003 0.016 0.062 0.003 0.290 0.003 0.104 0.079 0.003
R 0.850 0.003 0.016 0.068 0.003 0.311 0.003 0.105 0.091 0.003
A 0.850 0.003 0.016 0.068 0.003 0.311 0.003 0.105 0.091 0.003
KB-50 ML Base Except Dict Names Freq Rank Def Hyp Free
P 0.850 0.011 0.024 0.147 0.011 0.297 0.011 0.112 0.162 0.011
R 0.850 0.011 0.024 0.184 0.011 0.319 0.011 0.112 0.240 0.011
A 0.850 0.011 0.024 0.184 0.011 0.319 0.011 0.112 0.240 0.011

Table 2: Evaluation for each improvement (learner data). Recall (R) = Accuracy (A) since only one gold standard tag is annotated.

labels matching their descriptions in section 4. The
ML column provides a comparison with a native lan-
guage tool, magyarlanc (Zsibrita et al., 2013).

For native data (Table 1), magyarlanc attains
nearly perfect precision and very high accuracy.
This is to be expected, given that the tool was used
in creating the gold standard annotation of the test
corpus. Recall, naturally, is less, as magyarlanc dis-
ambiguates among all the context-independent tags.
These figures provide a rough estimate of the diffi-
culty of morphological analysis for Hungarian. As
expected, the baseline performance of our analyzer
is extremely low, at 2% precision and less than 1%
recall with a meager knowledge base, and about
double that with a slightly richer one.

For every improvement, the size of the knowl-
edge base increases performance. Three different
improvements (Names, Rank, and Free), however,
make no difference in performance as compared to
Base, irrespective of the difference in size of the
KB. By far, the most effective improvement is Freq
(most frequent word list), attaining the highest per-
formance (e.g., precision above 40%) with 50 affixes
in the KB. The Dict, Def, and Hyp improvements
also exhibit noteworthy gains for all three metrics.

There is a slight gain from the addition of Except,
but no more than 1%—unsurprising, given the small
number of encoded cases.

For learner data (Table 2), performance is lower
across the board. The magyarlanc tool loses about
13% in precision and 8% in accuracy, illustrating the
increased difficulty of the task of analyzing learner
language. Our analyzer begins with baseline scores
at 1% or lower for both KB-10 and KB-50. The re-
sults for learner data parallel those for native data:
the Names, Rank, and Free improvements provide
no increase in performance, while Freq provides the
greatest gains, reaching nearly 30% precision and
32% recall and accuracy. Likewise, the Dict, Def,
and Hyp improvements provide noticeable gains,
with Except providing small gains.

While no single improvement on its own results
in very high scores, the evaluation highlights the
most effective improvements. The Freq improve-
ment alone, for example, contributes nearly 40% to
precision for native language data.

5.2 Improvements in combination

We now turn to an evaluation of the system in suc-
cessive iterations, beginning with the baseline sys-
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tem and adding one new improvement each time.
Table 3 shows the results for native data, while Ta-
ble 4 shows the results for learner data. The last
column in each table gives the results of a final test
with all improvements added. In each series of tests,
a knowledge base of 50 affixes is used.

Base +Dict +Freq +Def +Hyp All
P 0.037 0.213 0.497 0.579 0.472 0.451
R 0.016 0.115 0.281 0.323 0.350 0.363
A 0.036 0.194 0.479 0.517 0.567 0.594

Table 3: Evaluation for stepwise improvements in combination,

moving left to right (KB 50, native data)

Base +Dict +Freq +Def +Hyp All
P 0.011 0.147 0.378 0.457 0.384 0.370
R 0.011 0.184 0.492 0.592 0.631 0.661
A 0.011 0.184 0.492 0.592 0.631 0.661

Table 4: Evaluation for stepwise improvements in combination,

moving left to right (KB 50, learner data)

Note that the order of added improvements is
based on both practical concerns and effectiveness
in the individual evaluations discussed above. The
first improvement added to the system is Dict (a tar-
get language dictionary): though this did not pro-
vide the greatest gains in the evaluation metrics, it
is the most central resource and one of the easiest
to obtain. The next improvements (Freq, Def, and
Hyp) were selected for their contributions during in-
dividual evaluations, and each is added in an order
corresponding to its impact on performance. Finally,
the other modules (Except, Names, Rank, Hyp) are
added for the All model.

For native data (Table 3), the system displays a
general trend of increasing precision, recall, and
accuracy as improvements are added. Precision
reaches its peak at 58% with the addition of the de-
fault tag (Def) improvement, while recall and accu-
racy continue to increase. Both recall and accuracy
reach their maximum with all improvements added.
Precision at its maximum remains well below that of
magyarlanc’s 97%, but recall reaches 36% with all
improvements, just 5% short of magyarlanc. The
All model, despite making use of every improve-
ment, exhibits a drop in precision; an inspection of
the data reveals that this is due to the increased num-

ber of proposed analyses. The system is outputting
more tags that are correct (thus, the increase in re-
call), but the number of proposed analyses increases
by a larger margin, and thus precision falls.

For learner data (Table 4), the trends are nearly
identical for the successive improvements. The Dict,
Freq, and Def improvements obtain a precision of
46%, compared to magyarlanc’s 85%, while recall
and accuracy rise to 66% with all improvements
added, about 20% from magyarlanc’s 85%. As with
native data, precision falls with the All model, even
though the number of correct tags is at its highest.
The figures for maximum recall and accuracy are en-
couraging, considering that magyarlanc makes use
of contextual information for disambiguating possi-
ble morphological tags. Our analyzer currently uses
no contextual information, analyzing one word at a
time. With the incorporation of additional informa-
tion such as syntactic frames, the results could be
more competitive with those for native data. It is
also important to note that the magyarlanc tool is
based on the morphdb database (Trón et al., 2006),
which represents years of work, while many of our
system improvements require less than a month.

It may seem surprising that recall and accuracy
for learner data surpass the results for native data.
This stems from the fact that the gold standard an-
notation for learner data has only one correct tag.
Similarly, for the calculation of precision, multiple
analyses proposed by the system adversely affect the
score, even if alternatives may be correct for a word.

Although the evaluation data is different, we can
roughly compare accuracies of 0.594 and 0.661 to
corresponding accuracies of 0.505 and 0.478 in Led-
better and Dickinson (2015). This gain is in spite of
using 205 affixes in the KB in Ledbetter and Dick-
inson (2015) vs. 50 here, highlighting the point
that some improvements (e.g., Freq) are more time-
effective than others (e.g., expanding the KB).

6 Discussion and Outlook

Concerning ourselves with the balance between
improving analyzer accuracy and/or coverage and
spending time to do so, the most valuable improve-
ment for the analysis of L2 Hungarian morphology
is a list of the most frequent words and the corre-
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sponding tags. Other notable improvements include
incorporating a method for hypothesizing stems, a
dictionary of Hungarian words, and a default tag
for analysis. Finally, some rich knowledge base of
grammatical information is essential, and even small
KB sizes can have moderate performance with other
improvements in place.

With the exceptions of enriching the knowledge
base and creating a method for hypothesizing stems,
each improvement is estimated to need only a single
day to implement (to the level we have). Together,
all these improvements would require just over a sin-
gle work week. Additional time, when available,
may be spent on further improvements or system
analysis, as discussed in section 4.4.

The recommended improvements are spread
across several areas of expertise, and many require
at least some existing resources. In some settings,
it may not be possible to implement even these few.
With these restrictions in mind, we propose the fol-
lowing prioritization of improvements:

1. Target language dictionary. While not the
largest improvement, it is hard to envision ad-
equate analysis without a dictionary. For many
languages, the ease of acqusition and wide-
spread availability of this resource make it
quick and effective to obtain. In the absence
of an electronic dictionary, it is possible to ex-
tract some lexicon from a grammar resource or
language textbook; much more time will then
be spend in digitization.

2. Frequent word list. This improvement provides
the greatest benefit for performance, requiring a
moderate amount of target language data to as-
certain the most common words. It may also be
necessary to add morphological information if
the corpus isn’t annotated. If no corpus data is
available, one could also use intuition to derive
something akin to the most common, or most
salient, words in a language.

3. Default tag. One of the simplest methods to im-
prove the analyzer, a default tag requires very
little knowledge of coding to implement.

4. Knowledge base. The size of the knowledge
base directly affects performance, though it

takes longer to implement. We have shown that
as few as 10 affixes may be used to begin anal-
ysis, and 50 shows great promise.

5. Hypothesized stems. This requires knowledge
of the underlying code of the analyzer and may
need fine-tuning for different target languages.

6. System analysis. System analysis should be a
part of every stage of development, but it also
requires the most time of any improvement.

Performance of the system with these improve-
ments does not reach the level of a tool designed
for native language morphological analysis. How-
ever, our work illustrates that significant gains can
be made with fewer resources, most of which are
easily accessible, assuming only a grammar refer-
ence or language textbook to begin. With the priori-
tized list of improvements above, time and energy
can be used efficiently to streamline the develop-
ment of a low-resource morphological analyzer.

There is still much to do to get a better han-
dle on the impact of different improvements to
obtain a better analyzer. We envision exploring
larger knowledge bases and their effect on increas-
ing ambiguity, developing more methods for ranking
analyses—perhaps incorporating trends from any
possible available learner data—and experimenting
with resources (dictionaries, name lists) which are
targeted towards particular domains or learning con-
texts. Additionally, one question has still not been
addressed by our evaluation: how good is good
enough? Utilizing other evaluation measures that
probe into real-world usage, e.g., for error detection
and grammar extraction (Ledbetter and Dickinson,
2015), will be crucial in that respect.
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Attila Vonyó. 1998. A magyar elektronikus könyvtár.
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