
Proceedings of NAACL-HLT 2016, pages 26–35,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Fashioning Data – A Social Media Perspective on Fast Fashion Brands

Abstract

In this paper, we study the performance of N-gram
language models on classification tasks such as sentiment
analysis and spam detection and evaluate the effect of
prior probability estimates on the results. Our data is in
the form of public online posts pertaining to fast fashion
brands, from different social media channels (Twitter and
Facebook). We propose a novel ensemble model based
on the combination of different N-grams in order to deal
with the heteroskedastic nature of data collected from
these social media channels. This has been further
extended to increase the efficacy of the classification
results.

1 Introduction

In recent years, the rise of social media channels like
Twitter, Facebook and Instagram have opened new
avenues for people to express their opinions and
generate their own content. Companies such as
Simplymeasured (www.simplymeasured.com) and
Gnip (www.gnip.com) aggregate data from
different networks to help brands form a more
complete understanding of how well they engage
with users and perform online. Companies such as
Metamind, Alchemy and Semantria provide online
APIs for sentiment analysis and associated tasks.
Sentiment analysis is a growing area of Natural
Language Processing with research ranging from
document level classification (Pang and Lee [1]) to
learning the polarity of words and phrases (Esuli
and Sebastiani [2]). Given the character limitations
on tweets, classifying the sentiment of Twitter
messages is most similar to sentence-level
sentiment analysis. Some researchers have explored
the use of part-of-speech features [3] but results

remain mixed. Researchers in [4] and [5] have
reported different ways of automatically collecting
training data by relying on emoticons for defining
the sentiment labels in their training data. However
as per our observations the presence of an emoticon
does not necessarily divulge its sentiment and hence
we have taken the approach of manually labeling the
training and test data. Da Silva et al. [6] have
introduced an approach of using classifier
ensembles to determine the sentiment of tweets.
However they only consider a binary classification
of tweets (i.e. positive and negative) and use a
heterogeneous ensemble of classifiers like
Multinomial Naïve Bayes, SVM, Logistic
Regression and Random Forests.
Agarwal et al [7] propose a method of sentiment
analysis using a tree kernel and a set of hand crafted
POS features. Twitter hashtags have been
extensively used in [8] to train a classifier using the
Adaboost algorithm. In recent years several
competitions like SemEval 2014 have included
sentiment analysis of tweets as a major task. This
has led to several state-of-the-art performances like
[9] where the authors have used a Deep Learning
approach using a combination of sentiment specific
semantic word embeddings and hand crafted
features. The authors in [10] have enhanced Twitter
sentiment classification using contextual
information like geolocation, timezones etc.
While a great deal of recent research has focused on
sentiment analysis of Twitter data and spam
detection (Wang et al [11]) less attention has been
devoted to extending these classification tasks to
public Facebook posts. Furthermore, while domains
such as politics (Bakliwal et al. [12]; Yang et al.
[13]) and sports (Hong and Skiena [14]) have
received strong coverage, the genre of commercial

Rupak Chakraborty
Adobe Systems Inc.

A5, Sector-132, Noida – 201304
rupak97.4@gmail.com

Senjuti Kundu
McGill University

506 Pine Avenue, Montreal, QC, H2W1S6
senjuti.kundu@mail.mcgill.ca

Prakul Agarwal
University of California, Irvine
Irvine, CA 92697, United States

prakula@uci.edu

26

fashion brands has not been mined as frequently for
predictive and classification tasks
The absence of literature on cross channel sentiment
analysis with a special focus on the implications of
prior distributions on the classification results has
motivated us to undertake the following study. The
niche segment of fast fashion brands was chosen
because it remains largely unexplored. An attempt
has been made to provide a clear comprehensive
view of the performance metrics across different
channels (Twitter and Facebook in our case) while
noting the difference in trends among them.
The major contributions of the present work are as
follows: We have collected and manually annotated
a dataset**of posts from major social media
channels (Twitter and Facebook). Our dataset was
based on posts about fast fashion brands, thereby
extending the application of sentiment analysis and
spam detection to this infrequently-explored genre.
The inclusion of more than one social channel
provides a cross sectional view of the social media
spectrum. It was also helpful in gauging the
performance of the same algorithm on channels
with disparate content (different in terms of
syntactic and semantic structure).
We have extensively analyzed the effect of priors on
the associated tasks and compared different N-gram
models on many statistical performance metrics like
Accuracy, Precision, Recall, Specificity and F1-
score. Use of N-grams as features obviates the need
for tedious feature engineering which often entails a
classification task. The proposed generative
ensemble model provides an easily implementable
and lightweight framework which can be extended
to any classification problem. This is because it does
not make any implicit/explicit assumption about the
nature or distribution of the data. Thus, we have
developed a roadmap for cross channel text analysis
and classification, thereby providing a unified and
holistic view of any topic or subject (fashion brands
in our case).
The key brands identified were fast fashion brands
(Zara, Forever 21, H&M etc.) which target young
customers in their late teens and early twenties and
have a high turnover rate as part of their business
strategy. We were particularly interested in studying
this demographic since their customers frequently
take to social media to express their satisfaction or
dissatisfaction with products purchased. Due to the
high turnover rate and short shelf-life of most of

their products, opinions about their newest items are
created every few months. This made data
collection easier and more attuned to public opinion.
We divide the paper as follows: In Section 2 we
discuss the collection and distribution of data in
details, we also include the steps taken for pre-
processing the data, in Section 3 the algorithms used
for spam detection and sentiment analysis have been
detailed along with intuitive explanation of why
they work, in Section 4 we present our experiments
and observations which includes a detailed analysis
of the proposed algorithm for each channel along
with a cross channel view of different performance
metrics, in Section 5 we conclude the paper.

2 Data Collection and Distribution

We collected data in the form of posts from
Facebook and Twitter over a period of 3 months
(August to November 2015). The nine selected
fashion brands were Forever 21, Mango, Levis,
H&M, Guess, Free People, True Religion, Rag &
Bone and 7 For All Mankind.
We have used the official Twitter Search API to
fetch the data. Tweets containing hashtags and
names of the mentioned brands were selected. Apart
from these we have sieved tweets containing the
official Twitter handles of these brands. For
example, searching by “@7fam” retrieves tweets
containing the tag @7fam which corresponds to the
official Twitter handle of 7 for all mankind.
In case of Facebook, posts were fetched from the
official pages of the selected brands using the
official Facebook Graph API. Since the brands
advertise their latest arrivals through these pages the
posts were filtered by the author names, so any self-
advertising content has been excluded.
From our observations Twitter is a more fast paced
channel (i.e. frequency of posts is more) in
comparison to Facebook. This is reflected in the
significantly lower number of Facebook posts. On
the other hand Facebook posts are more informative
and verbose compared to 140 character tweets.
Each post has been hand labelled. For sentiment
analysis each post is assigned either of the three
class labels positive, negative or neutral depending
on the content. In case of spam detection it is
assigned a binary label of spam and ham/not spam.

**Dataset can be downloaded from: https://github.com/Senjuti/Dataset-Fashion-Analytics
**Source Code is available at: https://github.com/Senjuti/Fashion-Analytics

27

Each post has been labelled by two annotators. The
average agreement between the two annotators has
been observed to be 83.2%
We are not detecting spam in a traditional sense
here, it is more of a word sense disambiguation. For
example, we need to filter out posts pertaining to
Mango the fruit from those relating to the actual
denim brand. Similarly we need to distinguish
between Levis stadium and Levis the company. As
most of the fashion brand names we have selected
are proper or common nouns the need to add this
additional filter arose, which has been modelled as
a spam detector. Additionally posts promoting
freebies and advertising one’s own fashion
collection have been included in the category of
spam because they do not contain useful opinion
words or sentences and hence they introduce noise
in the training data instead of adding value to it.
Each post is passed through a pre-processing
pipeline before extracting the N-gram features. The
salient steps in the pipeline are as follows – 1.
Cleaning the data of URLs, HTML tags,
punctuation marks, emoticons and similar noise. 2.
Stopword removal (using an English stopword
lexicon). 3. Stemming – Reducing each word to its
root word using the Snowball Stemmer which is
based on Porters Stemmer.

2.1 Distribution of the Training Data

Channel Positive Negative Neutral Total

Facebook 165 (11%) 46 (3%) 1337 (86%) 1548

Twitter 987 (27%) 393 (11%) 2893 (62%) 3705

Channel Spam Ham Total
Facebook 253 (14%) 1548 (86%) 1801

Twitter 1220 (25%) 3705 (75%) 4925

Table 1 lists the distribution of training data (posts)
for sentiment analysis as can be inferred, the class
label distribution is highly skewed, majority of the
posts are neutral for both the channels. The data for
spam detection is equally biased (i.e. the majority of
the posts are not spam) as can be seen in Table 2.
This kind of a data distribution closely resembles
real-life scenarios where majority of the online

posts are likely to belong to a single class.
Motivated by this skewed data distribution, an
attempt has been made to make the classifier fairly
invariant to class label distribution which led to the
proposed ensemble model.

2.2 Distribution of the Test Data

Channel Positive Negative Neutral Total

Facebook 192 (20%) 67 (7%) 712 (73%) 970

Twitter 369 (23%) 138 (8%) 1120 (69%) 1627

Channel Spam Ham Total
Facebook 41 (4%) 970 (96%) 1011

Twitter 613 (25%) 1627 (75%) 2440

The test data distribution closely tails the training
data (as can be seen from tables 3 and 4). This
provides a level ground for measuring model
performance, though it would be interesting to see
the performance on a uniformly distributed dataset.
In order to get a clearer picture of classifier
performance, metrics like precision and specificity
have been included. This skewed distribution makes
the effect of priors more prominent thereby enabling
us to study them for our specific test conditions.

 3. Algorithms

Naïve Bayes classifier with N-grams as the features
has been used. Algorithm 1 (see section 3.1) is used
to combine the output of different N-gram models
in order to calculate a single class probability. Each
classifier outputs two things: the probability of the
most likely class and its corresponding class label.
After experimenting with different N-gram models
(N = 1 to N = 7), it can be seen that there is no
significant gain in performance after N = 5 on the
test data. So for the proposed algorithm N-gram
models up to only order 5 have been used.

Table 1: Distribution of Train Data for Sentiment Analysis

Table 2: Distribution of Train Data for Spam Analysis

Table 3: Distribution of Test Data for Sentiment Analysis

Table 4: Distribution of Test Data for Spam Analysis

28

The use of Naïve Bayes as the classifier of choice
has been motivated by the fact that our main
intention is to study the effect of priors using N-
gram features and Naïve Bayes has proven to be
very effective for many text classification tasks,
often matching state-of-the-art results obtained by
using SVMs and the like. Algorithm 1 proposed
aggregates the outputs of all the classifiers (each
classifier is trained on a different N-gram model,
with values of N ranging from 1 to 5) and predicts
the final class label as the one which has highest
probability among the five input class labels.
The reason why this approach increases the
performance is - N-gram models match the N-grams
in the test sample with the probabilities of the N-
grams calculated during training, thus a larger
posterior probability implies a greater degree of
match of the N-grams of the test sample with the
training set. Hence, intuitively a greater probability
increases the likelihood that the model has seen a
similar post/sample during training, so taking the
class label of the maximum probable N-gram as the
final prediction increases the chances of a correct
classification. The algorithms have been presented
in the form of a pseudocode where each step has
been clearly mentioned, it has been further grouped
into separate training and testing phases (with
additional hyperparameter adjustment phase
wherever necessary). Algorithm 2 (see section 3.2)
is our proposed ensemble algorithm which is built
on top of Algorithm 1.

3.1 Algorithm 1: Combining Different N-grams

Training Phase:

Input: Training data after being passed through
the preprocessing pipeline. Each sample
consists of N-gram features and its associated
class label.

Output: Trained N-gram models (N = 1 to N
=5) using the maximum likelihood probability
estimate followed by add one smoothing.

Testing Phase:

Input: An unknown test sample.

Output: The class label (of the most likely
class) to which the sample belongs.

Step 1: For a given test sample calculate the
pair (Pi, Ci) where Pi is the probability value

output of the ith N-gram model (in our case i =
1 to 5) and Ci is its corresponding class label.
So we will have five such pairs of (Pi, Ci).

Step 2: Find the max value of Pi and take its
corresponding Ci to be the final class label.

Step 3: Output the class label calculated in the
Step 2

Algorithm 1 proposed cannot effectively deal with
the skewness in the data. This is because it is trained
on the entire dataset and hence its performance is
limited by and equal to the best performing N-gram
model (which is N = 5 in most cases across both
classification tasks). In order to deal with the
inherent single class bias of the dataset the training
data has been randomly split into N mutually
exclusive and exhaustive parts. N-gram models
have been trained on each of these N parts using
Algorithm 1 and the weighted output of these N-
gram models has been used to predict the final class
label. The proposed algorithm for ensemble
learning includes a hyper-parameter adjustment
phase where the weight of each model is calculated
based on its performance on a held out set.

Randomly splitting up the training data into
mutually exclusive and exhaustive parts reduces the
effect of a single class bias which is prevalent in the
data. By training individual models on each of these
disjoint parts of the feature space, each model
receives the unique ability to learn the final
hypothesis differently. This prevents overfitting the
data which often plagues individual N-gram models
trained on the entire dataset. The weights of the
models are tuned as per their performance on a held
out set. Hence, the predictions of well performing
models are given more weightage in comparison to
those with lower performance on the held out set.
Taking the final prediction (i.e. final class label) as
the modal (most frequently occurring class) class
label of the weighted output of the individual
models ensures that the predicted class label is the
one on which majority of the models agree upon.
Thus, in spirit our ensemble model works in the
same way as Random Forests [15] which have
shown to be better at learning final hypothesis in
comparison to individual decision trees.

29

Training Phase:

Input: Training data after being passed through the
preprocessing pipeline. Each sample consists of N-
gram features and its associated class label

Output: A total of K N-gram models each trained
using Algorithm 1.

Step 1: Randomly split the training dataset into N
mutually exclusive and exhaustive parts.
Step 2: For each part Ni train model Ki by
Algorithm 1.
Step 3: Save these models for testing and later use.

Hyper parameter Adjustment Phase:

Input: Trained models Ki and held out dataset.

Output: Model Weights Wi corresponding to each
Ki

Step 1: For each model Ki calculate the number of
correct predictions (Xi) and the number of
incorrect predictions (Yi).
Step 2: Calculate weight Wi of each model as
𝑒𝑒𝑥𝑥𝑥𝑥/(𝑦𝑦𝑥𝑥+1)
Step 3: Save the model weights Wi

Testing Phase:

Input: An unknown test sample.

Output: The class label (of the most likely class)
to which the sample belongs.

Initialize: f = { } (Empty List to hold the class
labels)

Step 1: For each model Ki calculate the class label
Ci using Algorithm 1.
Step 2: For each Ki let Qi = Wi x Ci (i.e. each class
label Ci is counted Wi times)
Step 3: For each Ki f = f U Qi (i.e. Add the class
label computed in Step 2 to the list)
Step 4: Output the final predicted class label as the
modal class of f

4. Experiments and Results

N-gram models have been trained for different
values of N (N = 1 to N = 7). During the
classification phase using the Naïve Bayes
classifier, we have experimented under two
conditions
1. Calculating the class label probabilities while
discounting the prior probabilities learned during
the training phase (i.e. assuming equal prior class
distribution). 2. Taking the prior probabilities into
account while calculating the class label
probabilities.
In order to get a clear insight into the effects of
priors on different classification tasks across
different channels, we have studied each scenario
independently. First we present the results of each
channel separately on the twin classification tasks
then we provide a cross channel view of the effect
of priors.

4.1 Results for Facebook

Figure 1: Comparison of N-gram Models for Spam Detection on
Facebook

Figure 2: Comparison of N-gram Models for Sentiment Analysis on
Facebook

3.2 Algorithm 2: Ensemble of Combined N-Grams

30

Figure 1 illustrates the performance (in terms of
accuracy) of different N-gram models for spam
detection on Facebook, as can be seen from the
figure the effect of priors is more profound on the
unigrams and bigrams in comparison to the higher
order N-grams. Another notable feature is how the
performance almost plateaus after N=4 for both
cases (i.e. taking the prior into account and
discounting the prior). Figure 2 juxtaposes the
performance of different N-gram models for
sentiment analysis on Facebook, it follows the same
trend as in figure 1 but the overall classification
accuracy is less in this case, the best performing N-
gram model (N = 7) has an accuracy of 74.15% for
sentiment analysis while it is 93.28% (for N = 7) in
case of spam detection . The obvious reason for this
is that spam detection is a two class classification
problem (only 2 class labels spam and ham), while
sentiment analysis is a three way classification task
(positive, negative and neutral class labels). Thus,
priors play an important role in the prediction of
classes especially if the data is highly biased (as in
our case).

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 16.27 37.57 47.37 26.19 41.91
2 73.53 64.16 59.74 65.21 61.87
3 73.53 64.11 42.94 60.28 51.44
4 73.22 62.88 39.64 59.14 48.62
5 73.53 63.60 39.65 59.29 48.85
6 74.15 65.81 39.93 59.77 49.70
7 74.15 66.12 39.68 59.59 49.59

Tables 5 and 6 elucidates the performance metrics
of N-gram models for sentiment analysis on
Facebook, in order to evaluate the effect of priors on

different N-gram models, we take the results of
table 5 as the baseline. There is a spike in the
accuracy of unigrams (41% over the baseline) while
for the rest there is marginal (in case of bigrams and
trigrams) or no decrease (for N >= 4). The same
trend is visible across other performance parameters
like precision, recall and specificity. A possible
explanation for this behavior is that Facebook posts
are mostly highly structured (i.e. in proper English)
in comparison to tweets and hence higher order N-
grams effectively model the language structure
which obviates the effects of prior probabilities as is
evident from the results.

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 23.22 48.60 43.99 44.81 46.18
2 84.78 52.30 56.71 57.07 54.42
3 92.29 52.48 52.65 52.81 52.56
4 92.78 53.04 52.90 53.07 52.97
5 92.88 52.05 51.82 51.95 51.93
6 93.08 52.29 51.92 52.06 52.11
7 93.28 52.55 52.28 52.16 52.28

Tables 7 and 8 depict the performance of spam
detection on Facebook they are exactly are in the
same vein as the results for sentiment analysis.
There is a massive increase in the accuracy for
unigrams (56%) when we include priors into the
equation however this has side effects of decreasing
the precision and recall.

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 22.96 42.66 51.99 32.66 46.87
2 73.32 65.94 49.63 62.01 56.64
3 73.42 64.87 42.20 59.93 51.13
4 73.22 62.88 39.64 59.14 48.62
5 73.53 63.60 39.65 59.29 48.85
6 74.15 65.81 39.93 59.77 49.70
7 74.15 66.12 39.68 59.59 49.59

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 36.26 48.57 41.67 42.27 44.86
2 88.83 54.16 58.82 59.18 56.39
3 92.39 52.58 52.70 52.86 52.64
4 92.78 53.04 52.90 53.07 52.97
5 92.88 52.05 51.82 51.95 51.93
6 93.08 52.29 51.92 52.06 52.10
7 93.28 52.02 52.02 52.16 52.28

Table 5. Performance Metrics for Sentiment Analysis of Facebook
Posts (Without Priors)

Table 6. Performance Metrics for Sentiment Analysis of Facebook
Posts (With Priors)

Table 7. Performance Metrics for Spam Detection of Facebook Posts
(Without Priors)

Table 8. Performance Metrics for Spam Detection of Facebook Posts
(With Priors)

31

Tables 9 and 10 depict the performance of the
proposed method on sentiment analysis and spam
detection respectively. The improvements by
including priors is measured against the baseline of
discounting priors. Though there is an improvement
in accuracy for both classification tasks, however
the precision, recall and specificity in case of spam
detection decreases marginally. There is an increase
of 33.62% in accuracy for sentiment analysis
whereas for spam detection there is a leap of
32.01%. Precision for sentiment analysis improves
by 26.17% whereas for spam detection a decline of
2% is noted. Recall and specificity improvements
for sentiment analysis is negligible hovering
somewhere around 1%. However in case of spam
detection both decrease by 1.5% and 1.6%
respectively, this may be attributed to the
overwhelming presence of ham labels in the test
data (about 75%).Thus, as a general trend the effect
of priors becomes more dominant with the increase
in the number of classes in data especially if the
distribution of class labels is skewed.
Facebook has unique challenges in comparison to
Twitter. First the verbosity of the posts in
comparison to 140 character tweets is something
which needs to be taken into account. It takes a
longer time to make predictions because of the
greater number of N-grams. Second, the posts are in
proper English and the use of emoticons and
acronyms is less in comparison to Twitter.

4.2 Results for Twitter

Figures 3 and 4 depict the performance of N-gram
models for sentiment analysis and spam detection
on Twitter data, they follow the same general trend
as the N-gram models for Facebook. Similarly the
exclusion of prior probabilities (i.e. considering
equal prior distribution for all classes) has a deeper
impact on the lower order N-grams in comparison
to the higher order N-grams (N >= 3). The intuitive
reason for this may be that unigrams and bigrams
assume a higher degree of conditional independence
of the different words in a sentence hence, cannot
effectively model the syntactic and semantic level
dependencies of the language. The differentiating
factor of the Twitter N-gram models is that their
performance decreases for higher order N-grams (N
>= 3) whereas in case of Facebook it is almost
constant. Also the overall accuracy of the Twitter
models is less than the Facebook ones both in case
of sentiment analysis and spam detection.

Ensemble
Model

Accuracy Precision Recall Specificity F1-
Score

Without
Prior

66.69 51.94 60.95 61.65 56.09

With
Prior

88.04 50.77 51.57 51.76 51.17

Ensemble
Model

Accuracy Precision Recall Specificity F1-
Score

Without
Prior

56.95 49.62 65.78 58.68 56.57

With
Prior

76.10 62.61 66.73 68.66 64.61 Figure 3: Comparison of N-gram Models for Sentiment Analysis of
Tweets

Figure 4: Comparison of N-gram Models for Spam Detection of
Tweets

Table 9: Performance Metrics for Sentiment Analysis on Facebook
(Proposed Method i.e. Algorithm 2)

Table 10: Performance Metrics for Spam Detection on Facebook
(Proposed Method i.e. Algorithm 2)

32

For sentiment analysis the best performing
Facebook model (N = 7) achieves an accuracy of
74.15% whereas the Twitter N-gram has an
accuracy of 76.65%, in case of spam detection the
accuracy is 93.28% and 77.95% for Facebook and
Twitter respectively. Tables 11 and 12 illustrate the
performance of different N-gram models for
sentiment analysis, as can be seen the effect of
priors is deeper on unigrams and bigrams in
comparison to the higher order N-grams. By taking
the performance of the N-grams without prior (table
11) as the baseline we notice the following
improvements – for unigrams there is a massive
improvement in accuracy (41.30%) but at the cost
of a decrease in precision of 7.47%. For rest of the
N-grams (N >= 2) a marginal increase in accuracy
(1.42% to 0.64%) entails an increase in precision
and specificity, with an expected dip in recall
(2.25% to 0.05%).

Tables 13 and 14 describe the performance of the N-
gram models for spam detection, the performance
gain for unigrams and bigrams is marginal while it
decreases for rest of the higher order N-grams when
taking the priors into account. This is consistent
with the general trend for Twitter as shown in [16].
The decrease in accuracy (for N >= 3) is in tandem
with the dip in the precision, recall, specificity and
f1-score.Unigrams perform uniquely while
including the priors, there is an increase in accuracy
of 5.1% while the precision decreases by 2.36% at
the same time.

Ensemble
Model

Accuracy Precision Recall Specificity F1-Score

Without
Prior

69.76 68.61 70.82 70.88 69.69

With
Prior

75.01 72.58 67.93 67.99 70.18

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 16.95 37.46 40.05 23.01 38.71
2 73.21 69.41 69.55 71.49 69.48
3 76.65 75.08 69.02 73.27 71.92
4 75.98 74.47 66.61 71.66 70.32
5 74.87 73.34 61.99 69.24 67.19
6 73.21 72.04 57.93 66.17 64.22
7 72.65 71.86 54.65 64.52 62.09

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 23.95 34.65 40.72 28.96 37.44

2 74.26 71.81 67.98 71.44 69.84

3 77.14 75.67 68.47 73.34 71.89

4 76.65 75.33 66.37 71.92 70.56

5 75.61 74.42 61.89 69.62 67.58

6 73.89 73.19 57.92 66.59 64.67

7 73.09 72.94 54.17 64.70 62.17

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 44.89 51.99 51.87 51.92 51.93
2 75.46 73.51 68.02 68.08 70.66
3 78.08 82.32 68.36 68.42 74.69
4 76.60 81.45 66.03 66.08 72.93
5 75.01 80.43 63.51 63.56 70.98
6 73.24 79.29 60.71 60.76 68.77
7 72.34 79.09 59.21 59.25 67.72

N-gram
Model
Number

Accuracy

Precision

Recall

Specificity

F1Score

1 47.23 50.77 50.82 50.87 50.87

2 77.08 77.14 68.67 68.72 72.66

3 77.95 82.31 68.15 68.20 74.56

4 76.52 81.82 65.78 65.83 72.93

5 74.80 80.36 63.17 63.22 70.74

6 73.16 79.36 60.56 60.60 68.70

7 72.22 78.94 59.02 59.07 67.54

Ensemble
Model

Accuracy Precision Recall Specificity F1-Score

Without
Prior

47.42 47.16 56.65 51.44 51.44

With
Prior

62.03 52.22 54.50 59.96 53.33

Table 11: Performance Metrics for Sentiment Analysis of Tweets
(Without Priors)

Table 12: Performance Metrics for Sentiment Analysis of Tweets
(With Priors)

Table 13: Performance Metrics for Spam Detection of Twitter Posts
(Without Priors)

Table 14: Performance Metrics for Spam Detection of Twitter Posts
(With Priors)

Table 15: Performance Metrics for Sentiment Analysis of Tweets
(Proposed Method i.e. Algorithm 2)

Table 16: Performance Metrics for Spam Detection of Tweets
 (Proposed Method i.e. Algorithm 2)

33

Tables 15 and 16 depict the performance of the
proposed algorithm for sentiment analysis and spam
detection respectively. As stated before, they are
compared under two given conditions including the
priors and excluding them. In order to compare the
effect of priors on the proposed model, the
performance of the proposed ensemble algorithm
while discounting priors is set as the baseline.
Inclusion of prior probabilities in the proposed
model has a marked improvement in accuracy and
precision, while there is a marginal improvement in
the f1 measure. For sentiment analysis there is a leap
of 30.80% in the accuracy while for spam detection
an improvement of only 7.5% has been observed.
Precision for sentiment analysis increases by
10.72% while for spam detection an increase of
5.78% in seen. Recall decreases as the precision
improves since they are inversely proportional to
each other, the decrease in recall for spam detection
is 4.08% while for sentiment analysis it is 3.79%.
Another notable thing in case of spam detection is
the decrease in specificity by 4.07% which means it
classifies some spam tweets as ham, although it is
acceptable in our use case since we are not doing
spam detection in a traditional sense.F1 measure for
sentiment analysis increases by 3.67% while for
spam detection is it a meagre 0.7%.
An important thing to note about Twitter is that the
proposed algorithm does not perform as well as the
naïve N-grams (in terms of accuracy and precision)
for both the tasks of spam detection and sentiment
analysis.
For sentiment analysis the proposed method with
priors has an accuracy of 62% while for N-gram it

has an accuracy of 76.60% (for N = 3).in case of
spam detection the difference is marginal
in terms of accuracy but more profound for
precision, 72% versus 83.31% (for trigrams).

4.3 Cross Channel View of Results
Figure 5 illustrates a cross channel view of the
proposed method under two experimental
conditions (with and without considering the prior
probability distributions) and across a set of four
performance metrics - accuracy, precision, recall
and f1-measure. As is evident from the figure, for
sentiment analysis the Facebook models outperform
the Twitter models by a sizable margin however the
tables are turned in case of spam detection where the
Twitter models are the clear winner across the
different metrics. The only metric where they lag
behind Facebook is in the case of accuracy (while
taking priors into account).
An important conclusion to draw from the given
results is that priors affect not only accuracy but also
precision and recall – which are perhaps more
important metrics for a classifier. Priors also affect
different channels differently: the effects are more
significant for Facebook than Twitter (in terms of
increase of accuracy precision and specificity. For
small datasets the priors have been found to be more
effective than large uniform datasets.)
In the proposed algorithm since we are training each
model on a random subset of the dataset the prior
probability distribution is different for each model
hence their impact is much more significant in
comparison to vanilla N-grams which are trained on
the entire dataset.

Figure 5. Compares the relative performance of the proposed method across the channels (Twitter and Facebook) for the twin
tasks of sentiment analysis and spam detection. The first row contains results of sentiment analysis under two conditions
considering the prior probability and discounting it. The second row juxtaposes the results for spam detection for the same
channels under the same conditions. They have been compared across four performance metrics like Accuracy, Precision, Recall
and F1-measure.

34

5 Conclusion and Future Work

In the future we plan to extend our work to include
other social media channels like Instagram and
Reddit in order to study the effect of the proposed
algorithm on other datasets, thereby providing a
more comprehensive view of the performance of
our classification strategy across the social media
spectrum. It will be interesting to see the
performance of the proposed algorithm on a larger
dataset and validate if the results reported here are
consistent with the increase in data size.
The data preprocessing pipeline can be enhanced by
the addition of emoticon detectors, acronym
lexicons and spell checkers. In place of the currently
used naïve Add One smoothing, other sophisticated
smoothing techniques such as Good-Turing,
Witten-Bell and modified Keysner smoothing could
be used.

The accuracy rate can also be improved by
augmenting the feature set using POS tags, word
polarity and punctuation marks. The effect of
including hashtags, in case of Twitter, could also be
studied. The proposed ensemble model can be
further improved by adjusting the hyper-parameters
of each individual model to reflect the accuracy on
a per class basis (not using average accuracy as is
presently done), thereby enabling each model to
respond to different class labels differently.
Additionally we would also like to explore a smarter
way of combining the output of the ensemble by
using a neural gating network as is often done.

Acknowledgments

The authors would like to thank their family, friends
and colleagues for their constant help and support.

References
[1] Pang, B., and Lee, L. 2008. Opinion mining and

sentiment analysis. Foundations and Trends in
Information Retrieval 2(1-2):1–135.

[2] Esuli, A., and Sebastiani, F. 2006. SentiWordNet: A
publicly available lexical resource for opinion
mining. In Proceedings of LREC.

[3] Barbosa, L., and Feng, J. 2010. Robust sentiment
detection on Twitter from biased and noisy data. In
Proc. of Coling.

[4] Bifet, A., and Frank, E. 2010. Sentiment knowledge
discovery in Twitter streaming data. In Proc. of 13th
International Conference on Discovery Science.

[5] Pak, A., and Paroubek, P. 2010. Twitter as a corpus
for sentiment analysis and opinion mining. In Proc.
of LREC

[6] Da Silva, Nadia FF, Eduardo R. Hruschka, and
Estevam R. Hruschka. "Tweet sentiment analysis
with classifier ensembles." Decision Support
Systems 66 (2014): 170-179.

[7] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and
Passonneau, R. 2011. Sentiment analysis of Twitter
data. Proceedings of the Workshop on Languages in
Social Media (LSM '11). Association for
Computational Linguistics, Stroudsburg, PA, USA,
30-38.

[8] Kouloumpis, Efthymios, Theresa Wilson, and
Johanna Moore. "Twitter sentiment analysis: The
good the bad and the omg!." Icwsm 11 (2011): 538-
541.

[9] Tang, Duyu, et al. "Coooolll: A deep learning system
for Twitter sentiment classification." Proceedings of
the 8th International Workshop on Semantic
Evaluation (SemEval 2014). 2014.

[10] Vosoughi, Soroush, Helen Zhou, and Deb Roy.
"Enhanced Twitter sentiment classification using
contextual information." Association for
Computational Linguistics, 2015.

[11] Wang, Alex Hai. "Don't follow me: Spam detection
in Twitter." Security and Cryptography
(SECRYPT), Proceedings of the 2010 International
Conference on. IEEE, 2010.

[12] Bakliwal, Akshat, et al. "Sentiment analysis of
political tweets: Towards an accurate classifier."
Association for Computational Linguistics, 2013.

[13] Yu, Yang, and Xiao Wang. "World Cup 2014 in the
Twitter World: A big data analysis of sentiments in
US sports fans’ tweets." Computers in Human
Behavior 48 (2015): 392-400.

[14] Hong, Yancheng, and Steven Skiena. "The wisdom
of bookies? sentiment analysis vs. the NFL point
spread." Proceedings of the international conference
on Weblogs and Social media (icWSm-2010). 2010.

[15] Breiman, Leo. "Random forests." Machine learning
45.1 (2001): 5-32

[16] Martínez-Cámara, Eugenio, et al. "Sentiment
analysis in Twitter." Natural Language
Engineering 20.01 (2014): 1-28.

35

