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Abstract

Understanding open-domain text is one of the
primary challenges in NLP. Machine com-
prehension benchmarks evaluate a system’s
ability to understand text based on the text
content only. In this work, we investi-
gate machine comprehension on MCTest, a
question answering (QA) benchmark. Prior
work is mainly based on feature engineer-
ing approaches. We come up with a neu-
ral network framework, named hierarchical
attention-based convolutional neural network
(HABCNN), to address this task without any
manually designed features. Specifically,
we explore HABCNN for this task by two
routes, one is through traditional joint mod-
eling of document, question and answer, one
is through textual entailment. HABCNN em-
ploys an attention mechanism to detect key
phrases, key sentences and key snippets that
are relevant to answering the question. Exper-
iments show that HABCNN outperforms prior
deep learning approaches by a big margin.

1 Introduction

Machine comprehension is an open-domain
question-answering problem which contains factoid
questions, but the answers can be derived by extrac-
tion or induction of key clues. Figure 1 shows one
example in MCTest (Richardson et al., 2013). Each
example consists of one document, four associated
questions; each question is followed by four answer
candidates of which only one is correct. Questions
in MCTest have two categories; “one” questions can
be answered based on a single sentence from doc-
ument where “multiple” questions require several

Figure 1: One example with 2 out of 4 questions in the MCTest.

“*” marks correct answer.

sentences. To correctly answer the first question in
the example, the two blue sentences are required;
for the second question instead, we only need the
red sentence. The following observations hold for
the whole MCTest. (i) Most of the sentences in
the document are irrelevant for a given question.
It hints that we need to pay attention to just some
key regions. (ii) Answer candidates vary in length
and abstraction level and usually do not appear in
the document. For example, candidate B for the
second question is “outside”, which is one word and
does not exist in the document, while the answer
candidates for the first question are longer texts
with some auxiliary words like “Because” in the
text. This requires our system to handle flexible
texts via extraction as well as abstraction. (iii)
Some questions require multiple sentences to infer
the answer, and those vital sentences mostly appear
close to each other (we call them snippet). Hence,
our system should be able to make a choice or
compromise between potential single-sentence clue
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and snippet clue.
Prior work is mostly based on feature engineering.

We take the lead in presenting a deep neural network
without linguistic feature engineering.

Concretely, we propose HABCNN, a hierarchical
attention-based convolutional neural network, to ad-
dress this task in two roadmaps. In the first one,
we project the document in two different ways, one
based on question-attention, one based on answer-
attention and then compare the two projected doc-
ument representations to determine whether the an-
swer matches the question. In the second one, every
question-answer pair is reformatted into a statement,
then the whole task reduces to textual entailment.

In both roadmaps, convolutional neural network
(CNN) is explored to model all types of text. As
human beings usually do for such a QA task, our
model is expected to be able to detect the key snip-
pets, key sentences, and key words or phrases in
the document. In order to detect those informative
parts required by questions, we explore an attention
mechanism to model the document so that in its rep-
resentation the required information is emphasized.
In practice, instead of imitating human beings in
QA task top-down, our system models the document
bottom-up, through accumulating the most relevant
information from word level to snippet level.

Our approach is novel in three aspects. (i) A doc-
ument is modeled by a hierarchical CNN for differ-
ent granularity, from word to sentence level, then
from sentence to snippet level. (ii) In the exam-
ple in Figure 1, apparently not all sentences are re-
quired given a question, and usually different snip-
pets are required by different questions. Hence,
the same document should have different represen-
tations based on what the question is. To this end, at-
tention is incorporated into the hierarchical CNN to
guide the learning of dynamic document representa-
tions which closely match the information require-
ments by questions. (iii) Document representations
at sentence and snippet levels both are informative
for the question. Therefore a highway network is
developed to combine them, enabling our system to
make a flexible tradeoff.

Overall, we make three contributions. (i) We
present a hierarchical attention-based CNN system
“HABCNN”. It is, to our knowledge, the first deep
learning (DL) based system for this MCTest task.

Figure 2: Illustrations of HABCNN-QAP (top), HABCHH-QP

(middle) and HABCNN-TE (bottom). Q, A, S: question, an-

swer, statement; D: document

(ii) Prior document modeling systems based on deep
neural networks mostly generate generic representa-
tion, this work is the first to incorporate attention so
that document representation is biased towards the
question requirement. (iii) Our HABCNN systems
outperform other DL competitors by big margins.

2 Related Work

Existing systems for MCTest are mostly based on
manually engineered features, e.g., (Narasimhan
and Barzilay, 2015; Sachan et al., 2015; Wang et al.,
2015; Smith et al., 2015). In these works, a common
route is first to define a loss function based on fea-
ture vectors, then the effort focuses on designing ef-
fective features based on various rules. Even though
this research is groundbreaking for this task, its flex-
ibility and capacity for generalization is limited.

DL approaches appeal to increasing interest in
analogous tasks. Weston et al., (2015b) introduce
memory networks for factoid QA. Memory network
framework is extended in (Weston et al., 2015a; Ku-
mar et al., 2016) for Facebook bAbI dataset. Peng
et al. (2015)’s Neural Reasoner infers over multiple
supporting facts to generate an entity answer for a
given question and it is also tested on bAbI. All of
this work deals with short texts with simple gram-
mar, aiming to generate an answer that is restricted
to be one word denoting a location, a person etc.

There is also work on other kinds of QA, e.g.,
(Iyyer et al., 2014; Hermann et al., 2015). Overall,
for open-domain MCTest machine comprehension
task, we are the first to use deep neural networks.

HABCNN shares similarities with the model pub-
lished by Trischler et al. (2016) six weeks after our
submission on arxiv. It considers multiple levels of
granularity in a way that is similar to our approach.
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Figure 3: HABCNN. Feature maps for phrase representations pi and the max pooling steps that create sentence representations

out of phrase representations are omitted for simplification. Each snippet covers three sentences in snippet-CNN. Symbols ◦ mean

cosine similarity calculation.

Trischler et al. (2016) achieve better performance
than HABCNN, but they still use linguistically engi-
neered features like Stanford dependencies whereas
our approach is more truly end-to-end.

3 Model

We investigate this task by three approaches, illus-
trated in Figure 2. (i) We can compute two different
document (D) representations in a common space,
one based on question (Q) attention, one based on
answer (A) attention, and compare them. This ar-
chitecture is named HABCNN-QAP (“QAP” means
projecting D based on Q and A). (ii) We compute a
representation of D based on Q attention (as before),
but now we compare it directly with a representa-
tion of A. We name this architecture HABCNN-QP.
(iii) We treat this QA task as textual entailment (TE),
first reformatting Q-A pair into a statement (S), then
matching S and D directly. This architecture we
name HABCNN-TE. All three approaches are im-
plemented in the common framework HABCNN.

3.1 HABCNN

Recall that we use the abbreviations A (answer), Q
(question), S (statement), D (document). HABCNN
performs representation learning for triple (Q, A,
D) in HABCNN-QP and HABCNN-QAP, for tuple
(S, D) in HABCNN-TE. For convenience, we use
“query” to refer to Q, A, or S uniformly. HABCNN,

depicted in Figure 3, has the following phases.
Input Layer. The input is (query, D). Query

is two individual sentences (for Q, A) or one sin-
gle sentence (for S), D is a sequence of sentences.
Words are initialized by d-dimensional pre-trained
word embeddings. As a result, each sentence is
represented as a feature map with dimensionality of
d × s (s is sentence length). In Figure 3, each sen-
tence in the input layer is depicted by a rectangle
with multiple columns.

Sentence-CNN is used for sentence representa-
tion learning from word level. Given a sentence of
length s with a word sequence: v1, v2, . . . , vs, let
vector ci ∈ Rwd be the concatenated embeddings of
w words vi−w+1, . . . , vi where w is the filter width,
d is the dimensionality of word representations and
0 < i < s+w. Embeddings for words vi, i < 1 and
i > s, are zero padding. We then generate the rep-
resentation pi ∈ Rd1 for the phrase vi−w+1, . . . , vi

using the convolution weights W ∈ Rd1×wd:

pi = tanh(W · ci + b) (1)

where bias b ∈ Rd1 . CNN has d1 = s+ w − 1 ker-
nels. Sentence-CNNs for query and all document
sentences share the same weights, so that the gener-
ated representations are comparable.

Sentence-Level Representation. The sentence-
CNN generates a new feature map (omitted in Fig-
ure 3) for each input sentence, one column in the
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feature map denotes a phrase representation (i.e., pi

in Equation (1)).
For the query and each sentence of D, we

do element-wise 1-max-pooling (“max-pooling” for
short) (Collobert and Weston, 2008) over phrase
representations to form their representations at this
level.

We now treat D as a set of “vital” sentences and
“noise” sentences. We propose attention-pooling to
learn the sentence-level representation of D as fol-
lows: first identify vital sentences by computing at-
tention for each of D’s sentences as the cosine sim-
ilarity between its representation and the query rep-
resentation, then select the k highest-attention sen-
tences to do max-pooling over them. Taking Figure
3 as an example, based on the output of the sentence-
CNN layer, k = 2 important sentences with blue
color are combined by max-pooling as the sentence-
level representation vs of D; the other – white-color
– sentence representations are neglected as they have
low attention. (If k = all, attention-pooling returns
to the common max-pooling in (Collobert and We-
ston, 2008).) When the query is (Q, A), this step will
be repeated, once for Q, once for A, to compute rep-
resentations of D at the sentence level that are biased
with respect to Q and A, respectively.

Snippet-CNN. As the example in Figure 1 shows,
to answer the first question “why did Grandpa an-
swer the door?”, it does not suffice to compare this
question only to the sentence “Grandpa answered
the door with a smile and welcomed Jimmy in-
side”; instead, the snippet “Finally, Jimmy arrived at
Grandpa’s house and knocked. Grandpa answered
the door with a smile and welcomed Jimmy inside”
should be used to compare. To this end, it is nec-
essary to stack another CNN layer, snippet-CNN, to
learn representations of snippets, i.e., units of one
or more sentences. Thus, input to snippet-CNN
(resp. sentence-CNN) are sentences (resp. words)
and the output is representations of snippets (resp.
sentences).

Concretely, snippet-CNN puts all sentence rep-
resentations in column sequence as a feature map
and conducts another convolution operation over
it. With filter width w, this step generates repre-
sentation of snippet with w consecutive sentences.
Similarly, we use the same CNN to learn higher-
abstraction query representations, treating query as

a document with one sentence, so that the higher-
abstraction query representation is in the same space
with corresponding snippet representations.

Snippet-Level Representation. For the output of
snippet-CNN, each representation is more abstract
and denotes bigger granularity. We apply the same
attention-pooling process to snippet level represen-
tations: attention values are computed as cosine sim-
ilarities between query and snippets and the snip-
pets with the k largest attention are retained. Max-
pooling over the k selected snippet representations
then creates the snippet-level representation vt of D.
Two selected snippets are shown as red in Figure 3.

Overall Representation. Based on convolution
layers at two different granularity, we have derived
query-biased representations of D at sentence (vs)
and snippet (vt) levels. In order to create a flexible
choice for open QA, we develop a highway network
(Srivastava et al., 2015) to combine the two levels of
representations as an overall representation vo of D:

vo = (1− h)� vs + h� vt (2)

where highway network weights h are learned by

h = σ(Whvs + b) (3)

where Wh ∈ Rd1×d1 . With the same highway net-
work, we can generate the overall query representa-
tion, ri in Figure 3, by combining query’s represen-
tation at sentence level rs and at snippet level rt.

3.2 HABCNN-QP & HABCNN-QAP
HABCNN-QP/QAP computes the representation of
D as a projection of D, either based on attention
from Q or based on attention from A. We hope that
these two projections of the document are close for
a correct A and less close for an incorrect A. As we
said in related work, machine comprehension can be
viewed as an answer selection task using the docu-
ment D as critical background information. Here,
HABCNN-QP/QAP do not compare Q and A di-
rectly, but they use Q and A to filter the document
differently, extracting what is critical for the Q/A
match by attention-pooling. Then they match the
two document representations in the new space.

For simplicity, we have used the symbol vo so
far, but in HABCNN-QP/QAP we compute two dif-
ferent document representations: voq, for which at-
tention is computed with respect to Q; and voa for
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which attention is computed with respect to A. ri

also has two versions, one for Q: riq, one for A: ria.
HABCNN-QP and HABCNN-QAP make differ-

ent use of voq. HABCNN-QAP projects D twice,
once based on attention from Q, once based on at-
tention from A and compares the two projected rep-
resentations, voq and voa, shown in Figure 2 (top).
HABCNN-QP only utilizes the Q-based projection
of D and then compares the projected document voq

with the answer representation ria, shown in Figure
2 (middle).

3.3 HABCNN-TE

HABCNN-TE treats machine comprehension as tex-
tual entailment. We use the statements that are pro-
vided in MCTest. Each statement corresponds to a
question-answer pair; e.g., the Q/A pair “Why did
Grandpa answer the door?” / “Because he saw the
insects” (Figure 1) is reformatted into the statement
“Grandpa answered the door because he saw the in-
sects”. The question answering task is then cast as:
“does the document entail the statement?”

For HABCNN-TE, shown in Figure 2 (bottom),
the input for Figure 3 is the pair (S, D). HABCNN-
TE tries to match S’s representation ri with D’s rep-
resentation vo.

4 Experiments

4.1 Dataset

MCTest1 has two subsets. MCTest-160 contains 160
items (70 train, 30 dev, 60 test), each consisting of
a document, four questions followed by one correct
anwer and three incorrect answers and MCTest-500
500 items (300 train, 50 dev, 150 test).

4.2 Training Setup

Our training objective is to minimize the following
ranking loss function:

L(d, a+, a−) = max(0, α+ S(d, a−)− S(d, a+))
(4)

where S(·, ·) is a matching score between two repre-
sentation vectors. Cosine similarity is used through-
out. α is a constant.

Multitask learning. Based on work showing that
question typing is helpful for QA (Sachan et al.,

1http://requery.microsoft.com/mct

k lr d1 bs w L2 α

[1,3] 0.05 [90, 90] 1 [2,2] 0.0065 0.2
Table 1: Hyperparameters. k: top-k in attention-pooling for

both CNN layers; lr: learning rate; d1: number of kernels in

CNN layers; bs: mini-batch size; w: filter width; L2: L2 regu-

larization; α: constant in loss function.

2015), we stack a logistic regression layer over ques-
tion representation riq, with the purpose that this
subtask can favor the parameter tuning of the whole
system, and finally the question is better recognized
and answer identification is more accurate.

To be specific, we classify questions into 12
classes: “how”, “how much”, “how many”, “what”,
“who”, “where”, “which”, “when”, “whose”,
“why”, “will” and “other”. The question label is
created by querying for the label keyword in the
question. If more than one keyword appears in a
question, we adopt the one appearing earlier and the
more specific one (e.g., “how much”, not “how”). In
case there is no match, the class “other” is assigned.

We train with AdaGrad (Duchi et al., 2011) and
use 50-dimensional GloVe embeddings (Pennington
et al., 2014) to initialize word representations,2 kept
fixed during training. Table 1 gives hyperparameter
values, tuned on dev.

We consider two evaluation metrics: accuracy
(proportion of questions correctly answered) and
NDCG4 (Järvelin and Kekäläinen, 2002). Unlike ac-
curacy which evaluates if the question is correctly
answered or not, NDCG4, being a measure of rank-
ing quality, evaluates the position of the correct an-
swer in our predicted ranking.

4.3 Baseline Systems

(i) Addition. Directly compare question and an-
swers without considering the document. Sentence
representations are computed by element-wise addi-
tion over word representations. (ii) Addition-proj.
First compute sentence representations for Q, A and
all D sentences as in Addition. Then identify two
sentences from D, taking xq and xa as example, sat-
isfying that they are most similar to Q and A, re-
spectively. The match score between Q and A is
then the cosine similarity of xq and xa. (iii) NR.
The Neural Reasoner (Peng et al., 2015) has an en-

2http://nlp.stanford.edu/projects/glove/
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MCTest-150 MCTest-500
method acc NDCG4 acc NDCG4

one mul all one mul all one mul all one mul all
B

as
el

in
es Addition 39.3 32.4 35.7 60.4 50.3 54.6 35.7 30.2 32.9 56.6 55.2 55.8

Addition-proj 42.1 38.7 40.3 65.3 61.3 63.2 39.4 36.7 38.0 63.3 60.1 61.7
AR 48.1 44.7 46.3 70.5 68.9 69.6 44.4 39.5 41.9 66.7 64.2 65.4
NR 48.4 46.8 47.6 70.7 68.2 69.7 45.7 45.6 45.6 71.9 69.5 70.6
HABCNN-QP 57.9 53.7 55.7 80.4 80.0 80.2 53.7 46.7 50.1 75.4 72.7 74.0
HABCNN-QAP 59.0 57.9 58.4 81.5 79.9 80.6 54.0 47.2 50.6 75.7 72.6 74.1
HABCNN-TE 63.3 62.9 63.1 86.6 85.9 86.2 54.2 51.7 52.9 76.1 74.4 75.2
Sachan et al. (2015) – – – – – – 67.6 67.9 67.8 86.7 86.9 86.8
Wang et al. (2015) 84.2 67.8 75.2 – – – 72.0 67.9 69.9 – – –

Table 2: Experimental results for one-sentence (one), multiple-sentence (mul) and all cases.

coding layer, multiple reasoning layers and a final
answer layer. The input for the encoding layer is a
question and the sentences of the document (called
facts); each sentence is encoded by a GRU into a
vector. In each reasoning layer, NR lets the question
representation interact with each fact representation
as reasoning process. Finally, all temporary reason-
ing clues are pooled as answer representation. (iv)
AR. The Attentive Reader (Hermann et al., 2015)
is implemented by modeling the whole D as a word
sequence – without specific sentence / snippet repre-
sentations – using an LSTM. Attention mechanism
is implemented at word representation level.

Baselines Addition(-proj) do not involve complex
composition and inference. NR and AR are the top-
performing deep neural networks for QA.

4.4 Results

Table 2 lists the performance of baselines,
HABCNN systems, and two top-performing
non-DL systems (Sachan et al. (2015), Wang et
al. (2015)) in the first, second, and last block,
respectively. Consistently, our HABCNN systems
outperform all baselines, especially surpass the two
competitive DL systems AR and NR. The margin
between our best-performing ABHCNN-TE and
NR is 15.5/16.5 (accuracy/NDCG) on MCTest-150
and 7.3/4.6 on MCTest-500. This demonstrates the
promise of our architecture in this task.

As said before, both AR and NR systems aim
to generate answers in entity form. Their designs
might not suit this machine comprehension task, in
which the answers are openly-formed based on sum-
marizing or abstracting the clues. To be more spe-
cific, AR models D always at word level, atten-

tion is also paid to corresponding word representa-
tions, which is applicable for entity-style answers,
but is less suitable for comprehension at sentence
level or even snippet level. NR contrarily models
D in sentence level always, neglecting the discover-
ing of key phrases which however compose most of
the answers. In addition, the attention of AR system
and the question-fact interaction in NR system both
bring large numbers of parameters, this potentially
constrains their power in a dataset of limited size.

The size of MCTest is quite small. This is the
most likely reason for the inferior performance of
all deep learning approaches compared to non-deep-
learning approaches. If the amount of training data
is limited, then it may not be possible to get top per-
formance without a large feature engineering effort.3

5 Conclusion

This work takes the lead in presenting a CNN based
neural network system for open-domain machine
comprehension task. Our systems try to solve this
task in a document projection way as well as a tex-
tual entailment way. The latter demonstrates slightly
better performance. Overall, our architecture, mod-
eling dynamic document representation by attention
scheme from sentence level to snippet level, shows
promising results in this task. In the future, more
fine-grained representation learning approaches are
expected to model complex answer types and ques-
tion types.

Acknowledgments. We thank DFG for support-
ing this work (grant SCHU 2246/4-2).

3Please refer to the extended version at
arxiv.org/pdf/1602.04341v1.pdf for attention visualization
and error analysis.
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