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Abstract 

In the paper we present the construction of the 

FactForge service. FactForge represents a 

reason-able view over several Linked Open 

Data (LOD) datasets including DBPedia, 

Freebase and Geonames. It enables users to 

easily identify resources in the LOD cloud by 

providing a general unified method for 

querying a group of datasets. FactForge is 

designed also as a use case for large-scale 

reasoning and data integration. We describe 

the datasets, ontologies, inference rules, and 

manipulations done over the data. The datasets 

are unified via a common ontology – 

PROTON, whose concepts are mapped to the 

concepts of the involved LOD datasets. Each 

of the mapping rules relates a PROTON class 

or a PROTON property to the corresponding 

class or property of the other ontologies. This 

mechanism of constructing a reason-able view 

over selected LOD datasets ensures that the 

redundant instance representations are cleaned 

as much as possible. The instances are 

grouped in equivalent classes of instances. 

1 Introduction 

Linked Open Data (LOD) (LOD 2014) 

facilitates the emergence of a web of linked data 

by publishing and interlinking open data on the 

web in RDF (Brickley and Guha 2004). The 

current datasets in LOD cover a wide spectrum 

of subject domains – biomedical, science, 

geographic, generic knowledge, entertainment, 

government (LOD Cloud 2011). As they 

constantly grow, we face the problem of 

conveniently accessing, manipulating and further 

developing them. It is believed that this large set 

of interconnected data will enable new classes of 

applications, making use of more sophisticated 

querying, knowledge discovery and reasoning.  

However, LOD is characterized by heterogeneity 

and inconsistency of the datasets, which makes 

their automated use via algorithms difficult. A lot 

of research effort nowadays has been focused on 

                                                 
 * The research reported here is done within Ontotext AD 

detecting methods to cope with and preserve the 

diversity of LOD, which can scale and manage 

their increasing growth rates. These methods 

bring experimental results, which show that the 

state of the art is still far from the performance 

necessary for real life applications. Highly 

heterogeneous contexts such as LOD and the 

Web need mechanisms to ensure consistency 

based on a set of data agreed upon or commonly 

acceptable, shared by various datasets, and make 

them interconnected. In order to provide such a 

mechanism we use a reference layer, consisting 

of one or more ontologies with different degrees 

of generality built on top of LOD and interlinked 

with their schemata and instances. This is a 

viable and optimal solution for handling LOD 

heterogeneity. In the Semantic Web, the idea of 

having an integrated global ontology which 

extracts information from the local ontologies 

and provides a unified view through which users 

can query the local ontologies is unrealistic, 

since it is practically impossible to maintain this 

global ontology in a highly dynamic 

environment. The idea of building reference 

structures at the schema level has been advocated 

previously (Jain et al. 2010). They state that it 

would be valuable to have a schema describing 

the subject domain of the datasets in LOD. 

Besides the reference layer, we think that the 

actual datasets in LOD needs to be tuned to fit 

the reference layer. Such a tuning includes: 

unification of modelling principles for the 

various datasets and cleaning the instance data 

that do not fit the conceptualization. In the paper 

we present the preparation of datasets for one 

LOD service including these two components: a 

reference layer and cleaning of the involved 

datasets, based on the detected conceptual 

mismatches  between the common ontology and 

conceptualization of each involved dataset. 

LOD are valuable source of information of NLP 

like extraction of vobularies, names, features. In 

this paper we do not discuss any concrete NLP 

task or application, but for each of them we need 

a reliable LOD dataset - the topic of the paper. 
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The structure of the paper is as follows: Section 

2 gives the background of our idea. Section 3 

focuses on the conctruction of FactForge. 

Section 4 concludes the paper. 

2 Background  

This section outlines the three components our 

approach is based on: (a) conceptual schema of 

the world (ontologies); (b) instance data; and (c) 

mechanisms for inferring new information from 

these two sources of information. First, we 

provide a general overview of ontologies with 

emphasis on upper level ontologies. Then, we 

characterize LOD and describe an approach to 

using the LOD data with reasoning. 

Ontologies. Ontologies are defined as “a formal, 

explicit specification of a shared 

conceptualization” (Studer et al. 1998). They are 

sets of definitions in a formal language for terms 

describing the world. Ontologies organize 

knowledge domains in concepts and relations 

between them. They allow for inheritance of 

properties and characteristics, and for reasoning 

according to different logics. These are some of 

the powerful mechanisms of ontologies that offer 

increased knowledge coverage, consistency, and 

lack of redundancy or contradiction. Depending 

on the generality of the knowledge domains they 

cover, several types of ontologies are 

distinguished. These are upper-level ontologies, 

domain ontologies and application ontologies. 

Upper-level ontologies, or foundational 

ontologies, describe very general concepts that 

can be used across multiple domains; examples 

include DOLCE 1 , SUMO 2 , and PROTON 3 . 

Domain ontologies cover the conceptualization 

of given subject domains. They describe 

concepts and relationships representative for the 

subject domain like biology, vehicle sales, 

product types, etc. The most common ontology 

design principles include: defining the scope of 

the ontology, creating a balanced class hierarchy, 

providing methods to evaluate the concepts and 

properties, as well as consistency checking. The 

OntoClean method (Guarino, N., & Welty 2002) 

is a very popular ontology design method. It 

recommends distinguishing between type and 

role when defining the concepts. It uses 

metaproperties to check the consistency of the 

ontology with predefined constraints helping to 

discover taxonomic errors. Data driven 

                                                 
1 http://www.loa-cnr.it/DOLCE.html 
2 http://www.ontologyportal.org/ 
3 http://www.ontotext.com/proton-ontology 

ontologies, such as the ontology of DBpedia4 , 

select the concepts based on the availability of 

data instantiating them. 

Linked Open Data. The notion of “linked data” 

is defined by Tim Berners-Lee (Berners-Lee 

2006), as RDF graphs, published on the WWW 

so that one can explore them across servers by 

following the links in the graph in a manner 

similar to the way the HTML web is navigated. 

“Linked data” are constituted by publishing and 

interlinking open data sources, following the 

principles of:  

 Using URIs as names for things; 

 Using HTTP URIs, so that people can look up 

these names; 

 Providing useful information when someone 

looks up a URI; 

 Including links to other URIs, so that people 

can discover more things. 

To this end, data publishers should make sure 

that: 

 The “physical” addresses of the pieces of 

published data are the same as the “logical” 

addresses, used as RDF identifiers (URIs); 

 Upon receiving an HTTP request, the server 

should return a set of triples describing the 

resource. 

LOD provide sets of referenceable, semantically 

interlinked resources with defined meaning. The 

central dataset of the LOD is DBpedia. Because 

of the many mappings between other LOD 

datasets and DBpedia, the latter serves as a sort 

of a hub in the LOD graph ensuring a certain 

level of connectivity. LOD is rapidly growing. 

The largest number of datasets in LOD belongs 

to the bio-medical domain. Another big subject 

area in the LOD cloud is scientific literature 

collection; entertainment data; government data 

like; Language dataetc. Finally, some datasets 

contain general-purpose encyclopedic knowledge 

such as DBpedia and Freebase, and geographic 

knowledge such as Geonames, etc. 

The use of LOD and the development of 

applications based on it are difficult because the 

different LOD datasets are rather loosely 

connected chunks of information, facts, and 

instances. They have varying levels of 

completeness and external linkages. They are 

mainly connected at the instance level, thus 

losing the benefits from the enrichment of the 

data with implicit factual knowledge, when 

ontologies and schema-level mappings are 

involved. Even the linkage between instances of 

                                                 
4 http://dbpedia.org/About 
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different datasets in the LOD cloud, via the 

predicate owl:sameAs shows drawbacks due to 

the fact that the instances are not described in the 

same way in the different datasets. They are, 

strictly speaking, not the same. For instance, 

New York’s population in DBpedia is given as of 

July 2009, and counts 8,391,881, whereas in 

Freebase it is 8,363,710 as of 2008. 

Nevertheless, the two instances of New York 

from DBpedia and from Freebase are linked 

together with owl:sameAs, which implies that the 

two resources are fully identical. Yet, the “facts” 

for each instance differ. Another example points 

to the country of Kosovo. In DBpedia, it is 

described as a country, whereas in Freebase, it is 

denoted as a region. Still these two instances are 

reliably linked with owl:sameAs.  Such 

divergences make the use of LOD data 

challenging in knowledge demanding 

applications or for reasoning tasks. On the other 

hand, introducing schema-level alignment of 

LOD datasets would provide significant 

advantages in ensuring the consistency of 

linkages. Such linkages would enable 

applications that can answer queries requiring 

multiple and disparate information sources. The 

quality of the data in the LOD cloud and their 

linkage are not the only challenges for the 

applications. The RDF datasets are supplied with 

vocabularies, which imply inference and 

generation of implicit facts. This considerably 

increases the overall number of facts available 

for exploration and poses the question of 

managing LOD. Using linked data for data 

management is considered to have great potential 

for the transformation of the web of data into a 

giant global graph (Heath and Bizer 2011). Still, 

there are several challenges that have to be 

overcome to make this possible, namely: 

 LOD are hard to comprehend – the fact that 

multiple datasets are interlinked and accessible 

in the same data format is not enough to deal 

with hundreds of data schemata, ontologies, 

vocabularies and data modeling patterns; 

 Diversity comes at a price – often there are 

tens of different ways of expressing one and 

the same piece of information even in a single 

dataset, such as DBpedia; 

 LOD is unreliable – many of the servers 

behind LOD today are slow and have down 

times higher than the one acceptable for most 

of the data management setups; 

 Dealing with data distributed on the web is 

slow – a federated SPARQL query that uses, 

say, three servers within several joins can be 

very slow; 

 No consistency is guaranteed – low 

commitment to the formal semantics and 

intended use of the ontologies and schemata. 

Using reason-able views (Kiryakov et al. 2009), 

described below, is one solution to the problem 

of LOD management. Reason-able views are the 

experimental setting for the approach presented 

in this paper. 

Reason-Able Views (RAV). Reasoning within 

LOD with standard methods of sound and 

complete inference with respect to First Order 

Predicate Calculus is practically infeasible. The 

closed-world assumption for sound and complete 

reasoning is practically inapplicable in a web 

context and has never been even considered for 

the web of data. Due to the nature of the data in 

LOD in its current state, inference with them in 

many cases is useless, as it derives many false 

statements. Having datasets dispersed in different 

locations makes reasoning with them impractical. 

Reason-able views are an approach to reasoning 

over and managing linked data. Reason-able 

view is an assembly of independent datasets, 

which can be used as a single body of knowledge 

with respect to reasoning and query evaluation. 

The key principles of constructing reason-able 

views can be summarized as follows: 

 Group selected datasets and ontologies in a 

compound dataset; 

 Clean up, post-process and enrich the datasets 

if necessary. Do this conservatively, in a 

clearly documented and automated manner, so 

that (a) the operation can easily be performed 

each time a new version of one of the datasets 

is published; and (b) the users can easily 

understand the intervention made; 

 Load the compound dataset into a single 

semantic repository and perform inference 

with respect to tractable OWL dialects; 

 Define a set of sample queries against the 

compound dataset. These determine the “level 

of service” or the “scope of consistency” 

contract offered by the reason-able view. 

Each RAV aims at lowering the cost and the 

risks of using specific LOD datasets. The design 

objectives behind each reason-able view are to: 

 Make reasoning and query evaluation feasible; 

 Lower the cost of entry through interactive 

user interfaces and retrieval methods such as 

URI auto-completion and RDF search; 
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 Guarantee a basic level of consistency – the 

sample queries guarantee the consistency of 

the data; 

 Guarantee availability – all data is the same 

repository; 

 Easier exploration and querying of unseen 

data – sample queries provide re-usable 

extraction patterns. 

RAVs are built according to certain design 

principles, e.g.:  

 All datasets in the view represent linked data;  

 Single set of reasonability criteria is imposed 

on all datasets;  

 Each dataset is connected to at least one of the 

others.  

RAVs are implemented in two public services, 

namely, FactForge and LinkedLifeData.  

3 Construction of FactForge 

FactForge 5  represents a reason-able view over 

several important Linked Open Data datasets. It 

enables users to easily identify resources in 

the LOD cloud by providing a general unified 

method for querying a whole group of datasets. 

FactForge is designed also as a use-case for 

large-scale reasoning and data integration. In 

brief, the datasets are unified via a common 

ontology – PROTON, whose concepts are 

mapped to the concepts of the involved LOD 

datasets. We do this by a set of rules. Each of 

them maps a PROTON class or a PROTON 

property to the corresponding class or property 

of the other ontologies. This mechanism of 

constructing a reason-able view over selected 

LOD datasets ensures that the redundant instance 

representations (classes and properties) are 

cleaned as much as possible. The instances are 

grouped in equivalent classes of instances. 

Finally, the instances in these datasets are linked 

via owl:sameAs statements. FactForge 

development can be divided into six main steps: 

1. Selecting the LOD datasets 

2. Checking each dataset for consistency 

3. Mapping the PROTON concepts to the 

respective LOD datasets concepts 

4. Cleaning the datasets from any discrepancies 

between the concepts in the different datasets 

and PROTON  

5. Loading all datasets in a joint repository 

6. Loading owl:sameAs statements and checking 

for consistency 

                                                 
5 http://www.ontotext.com/factforge 

Here, we also present solutions for resolving 

discrepancies when mapping concepts from the 

central datasets in FactForge and PROTON, as 

well as the way of cleaning the datasets. In some 

of the cases, we have to add new instances, 

which are introduced via inference rules. 

Ultimately, FactForge provides a deeper 

understanding of: the Linked Open Data 

available on the web, some peculiarities of the 

datasets conceptualization and the problems of 

integrating the different LOD datasets. 

3.1 Reference Layer Mapping Rules 

This section describes the methodology for 

creating a correspondence between two dataset 

conceptualizations of the real world. When 

constructing such a correspondence, several 

manipulations of the datasets facts are 

conducted: (1) introducing new individuals; (2) 

deleting some individuals; (3) modifying some 

individuals; (4) inserting/deleting/updating 

relations between individuals; (5) 

inserting/deleting/updating characteristics of the 

individuals. The idea behind LOD is that such 

transformations are minimal. Ideally, there 

should be no transformations at all. We respect 

this recommendation, as much as possible, when 

constructing FactForge, except in cases where 

the resulting reason-able view contradicts with 

the conceptualization of the PROTON ontology.   

Thus, in the development of FactForge, our first 

aim is to support a full querying of the resulting 

repository via PROTON. We use only 

rdfs:subClassOf or rdfs:subPropertyOf 

statements in order to ensure a complete 

mapping coverage of the PROTON ontology to 

the other schemas in FactForge. Generally, the 

mapping statements can be arbitrary couples but 

in most cases they are simply rdfs:subClassOf 

or rdfs:subPropertyOf statements between 

classes or properties explicitly defined in the 

PROTON ontology, and the ontology or the 

schema of a given dataset. For example6: 

                                                 
6 Here are the namespace declarations used in the document: 
@prefix ptop:    

<http://www.ontotext.com/proton/protontop#> . 

@prefix pext:    

<http://www.ontotext.com/proton/protonext#> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#> . 

@prefix dbp: <http://dbpedia.org/ontology/> . 

@prefix dbp-prop:<http://dbpedia.org/property/> . 

@prefix fb: <http://rdf.freebase.com/ns/> . 
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dbp:SportsTeam  

  rdfs:subClassOf  pext:Team . 

foaf:homepage  

  rdfs:subPropertyOf  pext:hasWebPage . 

However, due to the different conceptualizations, 

in some cases a more complex mapping is 

needed. For example, in the Geonames dataset 

geographical objects are classified by codes and 

not by an ontology hierarchy. In such cases the 

mapping is done by more complex statements 

such as: 
[ rdf:type owl:Restriction ;  

  owl:onProperty geo-ont:featureCode ; 

  owl:hasValue geo-ont:A.PCL ] 

      rdfs:subClassOf pext:Country . 

Some of these compound statements require 

adding new individuals. In such cases, we use the 

OWLIM inference rules to create the necessary 

additions. Here is an example: 
//dbp-ont:PrimeMinister rdfs:subPropertyOf  

// [ptop:hasPosition [pupp:hasTitle]]. 

 Id:PM 

     p  <rdf:type> <dbp-ont:PrimeMinister> 

    --------------------------------------- 

     p <ptop:hasPosition> j 

     j <pext:hasTitle> <pext:PrimeMinister 

Here, the inference rule is necessary because 

the conceptualizations in the DBPedia ontology 

and in the PROTON ontology are different. In 

DBPedia, Prime Minister belongs to a class of 

politicians, which is a class of person, while in 

PROTON, Prime Minister is a title of a job 

position. Thus, in DBPedia, a given Prime 

Minister is an individual whereas in PROTON he 

is an individual who has a position 

PrimeMinister. Since the instance data about the 

position itself (j in the rule above) is missing in 

the DBPedia dataset, it has to be created so that 

the mapping between the two ontologies is 

consistent. 

3.2 Cleaning Two LOD datasets 

In this section we present two of the most 

popular LOD datasets - DBPedia and Freebase 

with respect to discrepancies between their 

conceptualization and ontology in the reference 

layer. 

DBPedia Ontology and Dataset. The DBPedia 

dataset is created by extracting structured 

information from Wikipedia and presenting it in 

an RDF form (http://dbpedia.org/About). The 

conceptualization of the DBPedia dataset is 

based on the categories that are designed and 

implemented in Wikipedia, i.e. the data in the 

                                                                          
@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

info-box section of the articles. This 

conceptualization is presented as an ontology. 

For our purposes, we have used version 3.8. It 

contains 359 classes, 800 object properties and 

975 data types. The instances in the DBPedia 

dataset are classified according to the conceptual 

information in its ontology and some other well-

known ontologies like: http://schema.org and 

http://xmlns.com/foaf/spec/. In addition, some of 

the classes and properties of these other 

ontologies are used in the definition of the 

DBPedia ontology. In the majority of cases, the 

conceptualizations of the DBPedia and PROTON 

ontologies are compatible and the mapping 

between them is straightforward as discussed 

earlier. However, there are still some differences 

as illustrated in the following two examples: 

Architect as a Person. In the DBPedia ontology, 

many roles in society, mainly performed by 

persons, are formalized as subclasses of the class 

dbp-ont:Person. 
dbp-ont:Architect 

      rdf:type owl:Class; 

      rdfs:subClassOf dbp-ont:Person . 

The definition in PROTON is: 
pext:Architect 

 rdf:type pext:Profession ; 

 rdfs:comment "A profession of planning, 

    design and oversight of the  

    construction of buildings and some  

    other artefacts. (Wikipedia)"@en . 

and 
pext:Profession 

  rdf:type owl:Class ; 

  rdfs:subClassOf pext:SocialFunction . 

The main difference is that in PROTON the class 

pext:Architect is defined as a profession and a 

social function, in order for someone (or 

something) to have this profession. This means 

that not only persons can perform it. While in 

DBPedia the definition follows the logic that all 

architects described in Wikipedia are, in fact, 

persons. It is relatively easy to overcome such 

conceptual differences by an appropriate 

mapping between the two ontologies: 
dbp-ont:Architect rdfs:subClassOf  

  [ rdf:type owl:Restriction ;   

    owl:onProperty pext:hasProfession ; 

    owl:hasValue pext:Architect ] . 

This statement determines that all instances of 

dbp-ont:Architect correspond to the instances 

of the PROTON ontology with the profession 

pext:Architect. 

Sport as an Activity. Another example is the 

definition of Sport. DBPedia defines it as follow: 
dbp-ont:Sport 
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      rdf:type owl:Class; 

  rdfs:comment "A sport is commonly  

      defined as an organized,  

      competitive, and skillful  

      physical activity."@en; 

   rdfs:subClassOf dbp-ont:Activity . 

and PROTON defines it as: 
pext:Sport 

 rdf:type owl:Class ; 

 rdfs:comment "A specific type of  

        sport game"@en ; 

 rdfs:subClassOf pext:SocialAbstraction. 

The difference is that in DBPedia, Sport is a 

specific activity and its characteristics such as 

game rules, number of participants, etc. are not 

defined in the class dbp-ont:Sport. In 

PROTON the characteristics of the sport game 

are defined in the class pext:Sport as a social 

abstraction. The actual realization of the 

definition as a sport event is an instance of 

activity. Unfortunately, any mapping between 

the two ontologies cannot solve this conceptual 

difference. The following mappings: 
dbp-ont:Activity 

 rdfs:subClassOf pext:Activity . 

and 
dbp-ont:Sport 

 rdfs:subClassOf pext:Sport . 

automatically make all instances of the class 

dbp-ont:Sport in PROTON to be 

simultaneously instances of the classes 

ptop:Happening and ptop:Abstract, which are 

mutually disjoint. 

In FactForge such conceptualization differences 

between the two ontologies are solved by not 

loading the DBPedia ontology into the FactForge 

repository. In this way, we make use of the 

richness of the DBPedia instances but impose the 

conceptualization of PROTON ontology over it. 

Another reason for not loading the DBPedia 

ontology is that the definitions in the DBPedia 

ontology also contain mappings to other 

ontologies. However, we believe that including 

ontology statements referring to classes 

(properties, etc) of other ontologies is not a good 

practice. First, presenting the necessary 

conceptualization requires importing the other 

ontology. And second, this can introduce some 

contradictions in the ontology that uses these 

statements. For example, the DBPedia ontology 

contains some statements from the Schema 

ontology (http://schema.org). However, because 

DBPedia is not an extension of the Schema 

ontology, therefore it is better to store these 

statements separately. If they are included in the 

definitions of the DBPedia classes, this can lead 

to some contradictions as illustrated in the 

examples below for University and College: 
dbp-ont:University 

 rdf:type owl:Class; 

 rdfs:subClassOf  

      dbp-ont:EducationalInstitution ; 

 owl:equivalentClass  

      schema:CollegeOrUniversity . 

and 
dbp-ont:College a owl:Class; 

 rdf:type owl:Class; 

 rdfs:subClassOf  

     dbp-ont:EducationalInstitution ; 

 owl:equivalentClass  

     schema:CollegeOrUniversity . 

Using owl:equivalentClass makes these two 

classes - dbp-ont:University and dbp-

ont:College - the same. Such equivalent 

statements are difficult to be noticed in the 

DBPedia ontology as it is full of them but it is 

also not very easy to use DBPedia without such 

statements. The instance data also contains 

statements that result from inferences from the 

DBPedia ontology. In order to avoid all 

conceptualizations that follow from the DBPedia 

ontology we have to clean the DBPedia instance 

data from such inferences. Here are some 

examples: 

Subclass - Superclass inference. In the DBPedia 

instance data, each instance of sport is classified 

as sport but also as an activity. Therefore, even if 

we do not load the DBPedia ontology into the 

FactForge repository, this inference is present in 

the instance data. Thus, the classification of the 

DBPedia sport instances will also be wrong in 

PROTON when mapping PROTON to DBPedia. 

To clean this instance data statement we have 

created a deletion statement of the following 

type: 
delete {?s a dbp-ont:SuperClass} where 

    { ?s a dbp-ont:SubClass . 

      ?s a dbp-ont:SuperCLass . } 

Here is an example: 
delete {?s a dbp-ont:Activity} where 

    { ?s a dbp-ont:Sport . 

      ?s a dbp-ont:Activity . } 

In this way, if there is a statement for a subclass, 

we delete all the statements for the super classes. 

After that, we use the inference mechanisms of 

the repository to make the inferences that follow 

from the mapping to the PROTON ontology. 

rdfs:domain and rdfs:range statements. In the 

DBPedia instance data, some statements for 

domain and range have properties connected to 

instances that do not belong to the appropriate 

classes. Such unclassified instances in DBPedia 
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could be wrongly classified in PROTON, based 

on these domain and range statements. In order 

to clean such cases we use queries of the 

following type: 
delete {?s dbp-ont:dbpediaProperty ?y } 

where 

{?s dbp-ont:dbpediaProperty ?y . 

 ?y rdf:type ?c . 

filter( 

         ?c = dbp-ont:Class01 

    ||   ?c = dbp-ont:Class02 

    ||   ...  

    ## List of all unappropriate classes  

    ) 

} 

Here is part of an example of the property dbp-

ont:birthPlace. 
delete {?s dbp-ont:birthPlace ?y } where 

{?s dbp-ont:birthPlace ?y . 

 ?y rdf:type ?c . 

filter(?c = dbp-ont:AcademicJournal     

  ||   ?c = dbp-ont:Activity 

  ||   ?c = dbp-ont:AdministrativeRegion    

... 

        ) 

} 

Apart from the deleted statements discussed 

earlier, we have deleted all instance data 

described by statements using classes that are not 

from the DBPedia ontology. In this way, the 

DBPedia instance data has a clean interpretation 

in terms of the PROTON conceptualization. 

Freebase Dataset. Freebase7 is a community-

curated database of well-known people, places, 

and things. In Freebase, real-world entities are 

represented as topics. There are topics for movie 

stars, countries, cities, etc. The information for 

each topic is structured in three levels as defined 

in the Freebase schema. The first layer comprises 

several domains (76). Each domain is defined by 

type (second layer) and each type has properties 

(third layer).  The types are connected via the 

special relation inclusion of type. This relation 

connects more specific types with more general 

types: the type fb:base/litcentral/named_person 

includes the type: fb:people/person. It is not 

possible to interpret this relation as superclass-to-

subclass relation, because it is not strict in the 

sense that each instance of the subclass inherits 

the properties of the instance of the super class. 

For example, the type fb:film/actor also includes 

the type fb:people/person. But its definition is: 

"The Film Actor type includes people (and 

credited animals) who have appeared in any film  

                                                 
7 http://www.freebase.com/ 

...". Therefore, in most cases, the instances of the 

type fb:film/actor are people but there are also 

cases where they are not. Thus, the interpretation 

of the type inclusion relation is not strict with 

respect to inheritance of the properties from the 

included type. In the example above, if the film 

actor is a person, then he or she inherits all 

properties from the type for persons. But if it is 

not a person, then it does not inherit any of these 

properties. Instead, it inherits properties from 

some other type(s). 

These peculiarities of the Freebase schema 

impose some restrictions over the mapping to the 

PROTON ontology. Mapping so many types and 

properties requires more extensive work. 

Therefore, for our purposes, we have mapped 

only the types with more than 500 instances in 

the Freebase dataset to the PROTON concepts. 

Another criterion is that the mapping does not 

produce any misclassification of some instances. 

For many types the mapping is straightforward: 
fb:location.location 

 rdf:type owl:Class; 

 rdfs:comment "The Location type is 

   used for any topic with a fixed  

   location..."@en ; 

 rdfs:label "Location"; 

    rdfs:subClassOf ptop:Location . 

For types representing professions and other 

social roles, the mappings are similar to the 

mapping used for the DBPedia ontology: 
 fb:military-militarycommander 

  rdfs:subClassOf  

   [rdf:type owl:Restriction ; 

     owl:onProperty pext:hasTitle ; 

     owl:allValuesFrom 

pext:Commander]. 

Some of the types are mediators between a 

type and a grouping of several other types. This 

is mainly used to represents event information. 

For example, the type Website ownership 

describes an event of owning a website by an 

agent for some period. A website can be owned 

by different agents in different periods, thus it is 

important that these ‘owning’ events are 

represented as different instances in the dataset.  

At present, we have not yet mapped the 

mediator types to PROTON. For this type of 

mapping it is necessary to use an appropriate 

subclass of the class ptop:Happening. For 

example, the type Website ownership can be 

mapped to a subclass of the class ptop:Situation, 

where the start and end date of the ownership are 

stated, the owner and the address of the website 

are specified, etc. As this requires huge extension 

of PROTON, it is not featured in the current 

version.  
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In the original dataset, there are also several 

errors in the instance classification. For example, 

organisation and location are very often 

represented by the same instance. More 

specifically, the types 

fb:organization.organization and 

fb:location.location have 42763 instances in 

common. We believe that such cases result from 

the linguistic intuition of the users who created 

the data in question. In many cases, the same 

word denotes both the meaning of an institution 

and a location. We do not consider this a good 

practice for the semantic representation in LOD 

and we think that it should be avoided. The 

different classes (types in Freebase) have 

different properties. Although the Freebase types 

are not strict in inheriting properties, some types 

are still not mutually compatible (intuitively). 

For example, due to this misclassification, the 

instance of the United States of America 

(https://www.freebase.com/m/09c7w0) is not only an 

instance of the types Country, Location but also 

of Food. We believe that such knowledge has to 

be represented in a different way.  

It is important to note that correcting such 

cases of instances classification to many disjoint 

types (classes) is outside the scope of the current 

version of FactForge. In future, we envisage to 

introduce new instances for each disjoint class 

and to keep relations between them where 

necessary via appropriate properties. Although 

we could perform such an extension of Freebase, 

in our view, it is better this to be done in the 

original dataset. We consider these mismatches 

as a result from crowdsourcing where some of 

the providers of knowledge where influenced by 

the semantics of natural language. 

4 Conclusion 

In this paper we present some problems in 

accessing LOD via a common ontology. The 

main problems of using this approach with 

respect to involved datasets are demonstrated via 

examples from two of the most popular LOD 

datasets: DBPedia and Freebase. The main 

lessons learned are as follows: 

1. The world can be modelled in many different 

ways, which can be formally incompatible but 

still understandable by human users. It is true 

that the main value of a dataset is in its 

usefulness to the stakeholders. However, this 

is not enough in terms of the Semantic Web 

where the goal is to have LOD datasets that 

can be processed by machines. To achieve 

this, it is necessary to apply some formal 

evaluation of the represented knowledge. 

2. The incompatibility can appear on different 

levels: granularity of conceptualization, 

representation of different kinds of knowledge 

(for example, the difference between sortals 

and roles), etc. Generally, the conclusion is 

that if we want LOD to achieve their goals, 

they should not only follow some formats but 

also their conceptualizations should adhere to 

certain restrictions and ensure compatibility. 

3. Constructing new ontologies based on existing 

ones has to incorporate the complete 

semantics of the corresponding ontologies 

instead of just fragments of them. Such an 

approach will have an effect on the 

consistency of the new ontologies and their 

interoperability with the existing ones. 

In our view LOD needs more requirements on 

semantic level in order to be more reliable web 

of semantically linked open data.. 
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