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Abstract

In the LOD era, the conceptual interop-
erability of language resources is estab-
lished by using modular architectures like
the Ontologies of Linguistic Annotations
(Chiarcos, 2008a, OLiA). Available as a
part of the Linguistic Linked Open Data
(LLOD) cloud,' OLiA provides ontologi-
cal representations of annotation schemes
for over 70 languages, as well as their link-
ing to a reference model. We success-
fully train an ontology-based POS tagger
on corpora with different tag sets of di-
vergent granularity and partially compat-
ible annotations. Making use of OLiA,
we achieve interoperability of annotation
schemes, and, despite sparse training data,
we do not only outperform state-of-the-art
POS taggers in concept coverage, but also
show how traing on heterogeneously an-
notated data produces richer morphosyn-
tactic annotation with no or only marginal
loss of precision.

1 Introduction

Ontologies have long been recognized as a pri-
mary device for interoperability among annota-
tions and linguistic descriptions (Farrar and Lan-
gendoen, 2003; Ide and Romary, 2004; Saulwick
et al., 2005), and they have been applied to fa-
cilitate querying (Saulwick et al., 2005; Rehm et
al., 2007), interoperability among modules in NLP
pipelines (Buyko et al., 2008; Hellmann, 2010),
or for post-processing (i.e., merging, enriching or
disambiguating) the output of NLP tools (Pareja-
Lora and Aguado de Cea, 2010; Chiarcos, 2010a;
Hellmann et al., 2013). In this paper, we describe
a novel approach towards the next challenge along
this trajectory, i.e., the development of NLP tools

"http://linguistic-lod.org
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that can directly produce and consume ontological
descriptions.

In comparison with classical, string-based an-
notation, key advantages include a detailed assess-
ment of classification accuracy for different an-
notation concepts (rather than for opaque strings
representing bundles of these), a freely scalable
degree of granularity (the system produces state-
ments at all levels of granularity), and interop-
erability with state-of-the-art technologies from
NLP and the Semantic Web. Another advantage
is that annotations from different sources become
interoperable, and tools can be trained on annota-
tions from multiple corpora annotated according
to different schemes.

In this regard, this paper describes a novel
approach toward automatic part-of-speech (POS)
annotation, and investigates the extent to which
ontology-based annotations allow us to train NLP
tools on corpora with divergent, but conceptu-
ally related annotations, and whether the increase
in the granularity of analysis outweighs possible
losses in precision arising from the heterogeneity
of the training data.

2 Corpora

For reasons of interpretability, we use English cor-
pora for this experiment, but we consider the ap-
proach to be language-independent, and (in the
longer perspective) particularly relevant to less-
resourced languages with a lower degree of de
facto standardization in annotated corpora than
English. Historical and modern less-resourced
languages are often annotated according to a great
variety of annotation schemes which can not be
trivially mapped to a generalization without sub-
stantial loss of information. In order to emulate the
conditions for less-resource languages, we use two
heterogeneously annotated, but deliberately small
corpora. Even though the amount of annotated
training data is much lower than in traditional ap-
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| training  test total | tag set
EWT 50,767 4,767 55,534 | 51
Susanne | 54,109 4,886 58,995 | 270

Table 1: Corpus statistics: tokens , tagsets with
number of POS tags

proaches, we outperform state-of-the-art taggers
in concept coverage and precision (Sect. 6).

We conduct our experiments on two manu-
ally annotated corpora with different annotation
schemes, namely, Susanne (Sampson, 1995), and
the English Web Treebank (Silveira et al., 2014,
EWB), Tab. 1.

Susanne contains annotations of 130,000 words
of literary prose, drawn from the (unannotated)
Brown corpus. Its hallmark is the Susanne-
specific tagset (further Susa) with its high gran-
ularity and detailization of POS tags (270 unique
tags). In addition, the Penn Treebank (Taylor et
al., 2003, PTB) includes an independent annota-
tion of the Susanne corpus, which enabled us to
conduct the evaluation on the data annotated with
both PTB and Susanne tags.

The EWT is a corpus of online reviews manu-
ally annotated with the PTB tag set. In comparison
with Susanne, the lexical diversity of the EWT re-
views is lower which can easily be explained by
the peculiarities of the genre. Here, we use a sub-
section of Susanne proportional to the size of the
EWT reviews and a 90:10 split into training and
test corpora, respectively.

3 Ontologies of Linguistic Annotations

The Ontologies of Linguistic Annotations
(Chiarcos, 2008a)? represent an architecture of
OWL2/DL ontologies that formalize the mapping
between annotations, a ‘Reference Model’ and ex-
isting terminology repositories (‘External Refer-
ence Models’): OLiA solves the problem of differ-
ent heterogeneous schemes by a modularized rep-
resentation of annotation schemes and its declara-
tive linking with an overarching Reference Model.
Unlike a tag set, whose string-based annotations
require disjoint categories at a fixed level of gran-
ularity, this ontology-based approach allows to de-
compose the semantics of annotations and con-
sider all aspects independently.

The OLiA ontologies were developed as part of
an infrastructure for the sustainable maintenance

http://purl.org/olia/, includes PTB and Susa
models
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of linguistic resources (Schmidt et al., 2006), and
within the LLOD cloud, OLiA serves as a vocab-
ulary hub for linguistic terminology for various
phenomena and resources. It currently provides
ontological representations for over 70 languages
with morphological, morphosyntactic, syntactic
and discourse levels of annotation.

3.1 OLIiA Architecture

In the OLIiA architecture, four different types of
ontologies are distinguished (cf. Fig. 1):

e The OLIA REFERENCE MODEL specifies
the common terminology that different anno-
tation schemes can refer to. It is derived from
existing repositories of annotation terminol-
ogy and extended in accordance with the an-
notation schemes that it was applied to.

Multiple OLTA ANNOTATION MODELSs for-
malize annotation schemes and tag sets. An-
notation Models are based on the origi-
nal documentation, so that they provide an
interpretation-independent representation of
the annotation scheme.

For every Annotation Model, a LINKING
MODEL defines C relationships between
concepts in the respective Annotation Model
and the Reference Model. Linking Models
are interpretations of the Annotation Model
in terms of the Reference Model.

Community-maintained terminology reposi-
tories in OWL2/DL (Farrar and Langendoen,
2003; Saulwick et al., 2005, etc.), are inte-
grated as EXTERNAL REFERENCE MODELS:
Linking Models specify C relationships be-
tween Reference Model concepts and Exter-
nal Reference Model concepts.

The OLiA Reference Model specifies classes for
linguistic categories (e.g., olia:Determiner) and
grammatical features (e.g., olia:Accusative), as
well as properties that define relations between
these (e.g., olia:hasCase).

Conceptually, Annotation Models differ from
the Reference Model in that they include not only
concepts and properties, but also individuals: Indi-
viduals represent concrete tags, while classes rep-
resent abstract concepts similar to those of the
Reference Model.

Figure 1 gives the ontological representation of
the Susanne tag APPGE as an example, used for
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Figure 1: The Susanne tag APPG{, its representa-
tion in the Annotation Model and (partial) linking
with the Reference Model, cf. Chiarcos (2008a)

her as a possessive determiner, the corresponding
inheritance structure of the word class and the case
property. Using the inheritance structures in the
Linking Model, the tag can be rendered in terms
of the Reference Model by the following OWL2
class description

PossessiveDeterminer 1 JhasCase.Genitive
JhasPerson.Third N JhasGender. Feminine N
JhasNumber.Singular

Through ontological inheritance within the Ref-
erence Model, we can further infer that APPGE
is also an instance of Determiner and Pro-
nounOrDeterminer (superconcepts of Posses-
siveDeterminer).

One important difference between this descrip-
tion and the (similar) description in terms of the
Annotation Model is that this description is tag-
set neutral, and does not only apply to the En-
glish her as a possessive, but also to the corre-
sponding tags in other annotation schemes (even
if from different languages), e.g., the PTB tag for
her, PRPS$. Although this does provide a partial
description only (PossessiveDeterminer Il Deter-
miner 1 PronounOrDeterminer), we can gener-
alize over both tags by referring to atomic state-
ments found in both ontological renderings (i.e.,
their intersection).

3.2 Related Research

Using OLIA for processing of heterogeneously an-
notated corpora has several benefits in comparison
with other approaches. As such, we would like
to emphasize that the ontology-based approach is
lossless. Instead of simplifying heterogeneous tag

€ Susanne
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sets to a common meta tag set or creating a map-
ping between the tag sets, we decompose tag sets
into statements (triples) grounded in an ontology.
This is a major difference as compared to radically
reductionist approaches like Petrov et al. (2012)
which inevitably lead to an extensive informa-
tion loss, especially for highly detailed annotation
schemes such as Susanne. A different kind of in-
formation loss frequently occurs with approaches
based on a meta tag set as ‘interlingua’ (Leech and
Wilson, 1996; Zeman, 2008): Here, a taxonomy
tags is enforced from one set of languages (that the
taxonomy was developed for) to another, where
the pressure to stay within the pre-defined model
frequently leads to ‘tag abuse’, see Chiarcos and
Erjavec (2011) for the corresponding analysis of
MULTEXT-East (Erjavec, 2004). But it also dif-
fers from more flexible, bottom-up-grown meta
tag sets (Zeman, 2008), because without the im-
plicit disjointness assumption of tags (categories)
in classical tagsets, it is possible to preserve diver-
gent, but compatible analyses, e.g., enduring in ca-
pable of enduring friendships is both a verb (mor-
phologically) and an adjective (syntactically).

As being lossless, OLiA ensures that the infor-
mation contained in the original schemes will be
preserved to a maximal extent by its conceptual
representation.

3.3 From OLIiA to neural networks

Originally, the OLiA ontologies were conceived
for conceptually interoperable information re-
trieval and tag set independent corpus querying
(Saulwick et al., 2005; Rehm et al., 2007), but
also have found a use case in NLP, so far, however,
only to represent the output of modules in an NLP
pipeline in a tool-independent fashion (Buyko et
al., 2008; Hellmann, 2010), or to merge the output
of different NLP tools in an ensemble combina-
tion architectures, where information from differ-
ent sources (say, NLP tools) was integrated on the
basis of the Reference Model and disambiguated
using ontological axioms (Chiarcos, 2010a).
Here, we describe the first approach on di-
rectly produce ontology-based descriptions, with
an ontology-based POS tagger, opening the field
for future applications of ontology-based NLP
which raises the current string-based state of the
art of annotation in NLP to conceptual annota-
tion processing. In order to do so, we employ
a neural network architecture, as its output vec-



tor is capable to represent and to predict proba-
bility/confidence scores for all concepts and fea-
tures in the ontology simultaneously, regardless of
whether these are compatible with each other.

Then, for encoding and decoding annotations,
MorphosyntacticCategorys from the OLiA Refer-
ence Model are employed. Note that for the ex-
periments described here, we only consider these
and leave morphosyntactic (and other) features for
subsequent research.

4 Configuring and Training Neural
Networks

We trained neural networks on EWT reviews, an
equally sized subset of the Susanne corpus (Sect.
2), and on both training sets combined. The core
of the algorithm is a feed-forward neural network
with resilient backpropagation with the following
structure:

1. 75 input neurons that correspond to three 25-
dimensional word embeddings (Turian et al.,
2010)° of the target word, its predecessor and
its successor from its immediate context;

. one hidden layer with the tanh activation
function. The number of neurons in the hid-
den layer is heuristically set to the average
length of input and output layers, thus, a nat-
ural geometric (pyramidal) design;

. alayer of output neurons that represent OLiA
MorphosyntacticCategorys, again with tanh
normalization. The activations of these neu-
rons represent the output vector.

The first step of our algorithm is generation of
OLIA triples from heterogeneously annotated cor-
pora using existing Susa and PTB annotation and
linking models. Instead of a POS tag, every
word is annotated with a set of triples, each as-
signing the word a MorphosyntacticCategory as
its associated class (concept). For example, the
Susanne tag AT for the definite article the is
now annotated with RDF triples like _:word; a

3Note that we aim to study whether neural classifiers
trained over different corpora — which will show an increase
in coverage (or annotation granularity) by design — will suf-
fer in their precision. This research question is indepen-
dent from the dimensionality of the embeddings, so that
we chose the minimal embeddings available from http://
metaoptimize.com/projects/wordreprs. With
higher-dimensional embeddings, better results are likely to
be obtained.

26

olia:DefiniteArticle. For the sake of simplicity,
we abbreviate OLiA type assignment triples for
any given word here by the assigned concept, here
DefiniteArticle. Through subsumption inference
over the ontology, every DefiniteArticle is also an
Article, the full set of classes for AT can thus
be given as {DefiniteArticle, Article, Determiner,
PronounOrDeterminer}, for the Susanne tag AT1
(indefinite article a) as {IndefiniteArticle, Article,
Determiner; PronounOrDeterminer}, etc.

The PTB tag set is not as rich as Susa and
does not distinguish between definite and indefi-
nite articles, assigning to both the and a the tag
DT. It conversion to OLiA thus yields the set
{Determiner, PronounOrDeterminer}.

In the training data, the target vector is then
populated with ternary values for assigned triples
(4+1), underspecified/non-predictable triples (0,
i.e., not predictable from the given tag set), and
non-assigned (but predictable) triples (—1) for a
given gold annotation. For a tag set X € {PTB,
Susa}, Tx is the set of unique OLiA concepts pre-
dictable from any tag in X. Every cell in the out-
put layer 7/ thus corresponds to an assignment of a
unique concept from 1" = T}, UTsy,5,. For a given
word w; with PTB annotation and its concept set
s C Ty, every output node y;, with k € {1..|T|}
is assigned as follows:

1, if.tp€s
Y =4 0, if,ty, € T\ Tpu,
—1, if,t; € Tptb \ S

For, say, training on EWT, all the output values
that corresponded to the concepts generated only
from Susa (e.g., DefiniteArticle and Article from
the example above) are thus set to 0.

Training against this data is a regression prob-
lem whose application of the neural networks to
the unseen data will produce values normalized
between -1 and 1 for every output node y,, resp.,
its associated MorphosyntacticCategory concept.

5 Decoding the Output Layer

For decoding the output vectors produced by the
neural network, we interpret the value of an out-
put node ¥, as a confidence score for the associ-
ated concept, with positive scores indicating high
probabilities, lower scores indicating low proba-
bility (or underspecification in/lack of evidence
from the training data) and negative scores indicat-
ing counter-evidence for the corresponding triple.



These scores provide a ranking of concepts which
forms the basis to decode an output vector into a
set of OLiA triples (concept assignments).

In an ideal world, the ontology provides us with
consistency constraints, e.g., regarding the dis-
jointness of two classes. At present, however, no
publicly available ontology of linguistic annota-
tion is fully axiomatized. Therefore, we employ
and evaluate pruning heuristics to infer consis-
tency axioms: structural (path) pruning (exploit-
ing the hierarchical structure of the ontology), and
two variants of corpus pruning (exploiting concept
combinations observed in the training set).

5.1 Structural (Path) Pruning

In an ontology, conecpt assignments are dependent
on each other: assigning class C' necessarily en-
tails assigning of its superclass C’. From all con-
cepts with positive activation, we calculate the set
P of all possible paths along the ancestor (super-
class) axis in the ontology, represented as a list,
e.g., pr = (Determiner, PronounOrDeterminer)
for the PTB tag DT.

This set is reduced by eliminating partial paths:
If any path p is a sublist of another path g, it is re-
moved from P. For example, p; is a sublist of the
path po (DefiniteArticle, Article, Determiner,
PronounOrDeterminer) (for Susa AT) and thus to
be removed if py is a possible solution.

From the reduced set of non-redundant, and
maximal paths P’, we select the path with the
highest confidence, i.e.,

Here, y,,,) is the activation of the output neuron
y; that corresponds to the nth element in the path
p. In order to prevent any bias towards longer
paths, the sum of activation scores is divided by
the length of the path |p|. Concepts that are com-
patible with the path but have values less than 0 (=
negative evidence) are skipped.

Path-based pruning follows Chiarcos (2010b)
who also assumed that classes along the subclass-
superclass axis are compatible with each other,
whereas siblings (and their descendants) are in-
compatible.

Z':‘:o Yp(n)

Pbest = argimax
|

peEP’

5.2 Corpus Pruning

As an alternative to structural pruning, we estimate
path consistency directly out of the tags of the
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training corpus: Given a particular training corpus,
we consider any pair of concepts compatible with
each other for which co-occurrence is observed.
For well-attested, frequent concepts, this is a very
elegant way to enable an assignment to multiple
classes. For example, an adjectival participle like
enduring in the example above is analyzed as a
verb in Susanne (VBD, concepts {Ing, Participle,
NonFiniteVerb, Verb}), while in PTB, it is ana-
lyzed as an adjective (JJ, concepts {Adjective}).
With a corpus having both Susa and PTB annota-
tions, such systematic double analyses can be ob-
served and thus, tolerated, but would be ruled out
by structural Pruning.

A drawback of this method is that concepts not
sufficiently attested in the training corpus may be
regarded incompatible with other tags — although
their occurrence would be possible, they were just
too rare to be observed in the training set.

With two heterogeneously annotated corpora,
we employ two variants of corpus pruning: Dis-
Jjoint corpus pruning on each corpus individually,
and joint corpus pruning on the merged annota-
tions of texts in the intersection of both corpora.

With the disjoint corpus pruning strategy, con-
cepts generated by either tagset A or B are com-
patible with each other if they co-occur in A-
or B-annotations, any concept generated only by
tagset A (or B) is compatible with every concept
generated only by tagset B (resp., A).

This strategy may be too permissive, so that if
A- and B-annotations for the same stretch of text
are available (or can be produced using automatic
tools), we merge the triple sets for every word be-
fore the corpus pruning routine applies. By doing
so, we are able to learn that systematic correspon-
dences between Susa Participle and PTB Adjec-
tive exist. This joint corpus pruning strategy, how-
ever, presupposes that a considerable body of text
is annotated according to both schemes, a situa-
tion that, fortunately, we face for the intersection
of PTB and Susanne (PTBUSusa referring to the
Susanne corpus with both annotations merged).

6 Experimental Results

Three neural networks were trained on the train-
ing sets: EWT/PTB data only, Susanne/Susa data
only, and both training sets combined. Several
state-of-the-art POS taggers have been trained
on this data as baseline: TreeTagger (Schmid,
1999), Lapos (Tsuruoka et al., 2011) and Stanford



(Toutanova et al., 2003), all trained and tested on
the same (non-combined) data as the neural net-
works.

Training these on PTB annotations was straight-
forward. On Susa, however, TreeTagger could not
accomodate 270 unique tags and was thus skipped,
and Lapos could be trained but showed very low
performance on the full tagset. The Stanford tag-
ger was successfully trained using state-of-the-art
MaxEnt (left3words) models for EWT and Su-
sanne, respectively.

Like the training data for the neural network, the
output of each tagger was mapped to OLiA Refer-
ence Model concepts by means of the correspond-
ing Annotation and Linking Models. This is the
basis for comparative evaluation with the neural
networks.

tagset corpus/ coverage

tool Joconcepts  Ptriples
PTB EWT 64.9% (50)  81.2%
Susa Susanne 85.7% (66) 85.7%
PTBUSusa NN:Combined 100% (77) 100%

Table 2: Evaluation: Coverage/granularity
9oconcepts: number of predictable concepts per tagset, rela-
tive to the number of concepts predictable from PTBUSusa
Ytriples: number of NN:Combined-predicted triples inter-
pretable against the gold tagset

Table 2 shows how NN:Combined yields a gain
of informativity in comparison to the original an-
notations (and tools trained on that basis). Nei-
ther of both original tagsets is a proper subset
of (the ontological representation of) the other
one (%concepts), and accordingly, NN:Combined
(with structural pruning) predicts more triples than
can actually be evaluated against the gold annota-
tion (1-%triples). We refer to this evaluation met-
ric as (OLiA) concept coverage.

While NN:Combined trivially a gain in concept
coverage over tag-based tools by design, this is
logically independent from accuracy, and it may
be suspected that training over heterogeneous an-
notations adds additional noise. Yet, as we eventu-
ally observed, it reaches the precision of state-of-
the-art string-based POS taggers.

In order to evaluate this aspect, we employ two
precision metrics. Concept precision is calculated
in the conventional way with the following defini-
tions: A predicted concept is a true positive if also
generated from the gold annotation, e.g., Noun
from both predicted tag NNP and observed tag NN.
Otherwise, it is a false positive, e.g., ProperNoun
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from predicted NNP but not from observed NN
(common noun).

For path precision, a path is considered to be
a true positive only if all the concepts in the path
are also generated from the gold tag. In the ex-
ample above, the predicted tag NNP yields the
path (ProperNoun, Noun), while the gold tag NN
yields (CommonNoun, Noun), hence, a false posi-
tive. For conventional taggers, path precision cor-
responds to standard tag precision.

As shown in Tab. 2, Susa generates 66 unique
concepts while 50 concepts are generated by PTB,
the union of both is 77 unique concepts. To calcu-
late concept and path precision for tag set-specific
taggers (Tab. 3), concepts not predictable by the
gold data are excluded from the evaluation. Thus,
18.8% of the concepts predicted by NN:Combined
for the EWT test set and 14.3% predicted for the
Susanne test set are ignored in the evaluation, as
they could not have been generated from the orig-
inal gold annotation, but only from the ‘other’ tag
set (Tab. 2) Yet, the precision of these ‘alien’
concepts can evaluated on the (test set of the)
PTB/Susanne intersection with double annotations
(PTBUSusa). The gold data in the test set is the
union of PTB and Susa triples for the same word.

Table 3 provides overall evaluation results for
the conventional taggers as well as the different
neural network configurations in terms of con-
cept and path precision on triple-represented an-
notations of EWT, Susanne and the merged PTB-
Susanne annotations on the PTBUSusa test set.

In general, path precision is lower than concept
precision (Tab. 3). A likely reason is that tagging
errors tend to occur between related POS. For ex-
ample, proper nouns are frequently erroneously
tagged as common nouns, but concept precision
still rewards the common superconcept. Thus, the
higher the granularity of a tag set, the greater the
discrepancy between path and concept precision.
The neural network trained only on EWT achieves
the best path precision on the EWT test set, outper-
forming Lapos by almost 3%. The neural network
trained only on Susanne outperforms the Stanford
tagger both by path and concept precision. The
neural network trained on both Susanne and EWT
fell slightly short of the best tagger in path and
concept precision on EWT, but still outperforms
the best tagger (Stanford) on the Susanne test set.
Furthermore, concept precision of the combined
neural network on the Susanne data is only 0.3%



lower than the precision of the neural network
trained on Susanne only.

Statistics over the most frequent* false predic-
tions are given in Tab. 4. The first column of Tab.
4 contains the gold concept, the second column the
predicted concept, the third column is the error e ;
for the concept pair (g, t), counted as

freq(concept,, concept)
€gt =

freq(concepty)

The fourth column of Tab. 4 shows the contribu-
tion of e, ; to the total error.

For NN:Combined, the key result is that we
achieve a substantial increase in coverage (18.8%,
resp. 14.3%, Tab. 2) while facing only a
marginal drop of precision (around 1%, Tab. 3)
between individually trained neural networks and
NN:Combined. The precision neural network pre-
dictions against individual corpora remains con-
stantly high, and also for the merged test set. Fur-
thermore, neural networks in any configuration
reach state-of-the-art tagger performance; neural
networks with structural pruning even outperform
it, for both path and concept precision.

Tab. 3 shows little — if any — decay of precision
if the neural network is trained over heterogeneous
annotations of different corpora: In comparison
to the best-performing conventional tagger consid-
ered (Lapos), NN:Combined (with structural prun-
ing) loses 0.2% in path precision and 0.6% in con-
cept precision, but yields a gain of 18.8%, resp.
14.3% in coverage.

To our surprise we found that structural prun-
ing — which we initially regarded as being too re-
strictive — outperforms other decoding strategies,
whereas joint corpus pruning showed the lowest
precision. One reason is probably that not all de-
viations in annotation were eventually compatible,
but that some of those mismatches were actual tag-
ging errors, thus propagated into the neural learn-
ing algorithm. Such original annotation errors in
the linguistic analyses are possibly the main rea-
son why the performance of the combined network
is slightly lower than the performance of networks
trained on homogeneous data. The disjoint cor-
pus pruning suffered less from annotation incon-
sistency, but its poor performance can probably
be attributed to sparsity issues, i.e., rarely attested
concept were incorrectly regarded as inconsistent
with possible other concepts.

*concept frequency >1000, excluding punctuation
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concepty concepty €g,t total(e)
ProperNoun CommonNoun 30.2% 1.8%
ProperNoun Adjective 16.3% 1%
AuxiliaryVerb Indicative(Full)Verb 8.2% 2.5%
AuxiliaryVerb Finite(Full)Verb 8.2% 2.5%
Participle Adjective 5.8% 3.6%
PersReflPronoun DemonstrativeDeterminer 5.8% 5.6%
PersonalPronoun DemonstrativeDeterminer 21.1% 5.4%

Table 4: Confusion matrix

concepty are gold standard concepts, ordered by their per-
centage of the total error total(e). eg4: is a relative count
for concept, erroneously predicted as concept; to the total
count of concept, predictions.

It should be noted that our NN setting was de-
liberately minimalistic: We used minimal context
information with the smallest-dimensional word
embeddings available, and trivial backpropaga-
tion without employing any more advanced pro-
cedures to improve convergency properties (e.g.,
deep learning). Also, we did not optimize hyper-
parameters but followed a simple geometric (pyra-
midal) structure for their initial assessment. De-
spite the lack of any such optimization, we were
nevertheless able to prove an increase in cover-
age while maintaining state-of-the-art precision,
thereby proving the feasibility and the potential of
ontology-based neural learning over multiple het-
erogeneously annotated corpora.

7 Discussion and Outlook

We presented an ontology-based neural network
approach to POS tagging, or, more precisely,
predicting morphosyntactic categories underlying
part-of-speech annotation.

Unlike other approaches trying to generalize
over heterogeneously annotated corpora (Sect.
3.2), our approach is informationally lossless. The
usefulness of such approach is obvious when deal-
ing with heterogeneous annotations with different
granularity. But also comparably-designed anno-
tation schemes can differ in their use of apparently
identical categories: POS tag semantics conflate
different criteria from morphology, syntax, seman-
tics and lexicon, respectively, but at the same time
enforce categories (tags) to be disjoint. As for at-
tributive possessive pronouns, for example, these
are both pronouns (semantically) and determiners
(syntactically). (Other examples for English are
numerals vs. determiners, participles vs. adjec-
tives, subordinating conjunctions vs. prepositions,
various functions of TO, lexical vs. syntactic def-
inition of auxiliary verbs, etc., so this is really



path precision concept precision

EWT | Susanne | PTBUSusa | EWT | Susanne | PTBUSusa
baseline taggers
TreeTagger 71.3% | - - 85.6% | - -
Lapos 92.0% | 16.9% - 95.4% | 31.0% -
Stanford 91.4% | 82.5% - 94.8% | 89.4% -
disjoint corpus pruning
NN:EWT Only 934% | - - 95.0% | - -
NN:Susanne Only | - 88.7% - - 91.4% -
NN:Combined 91.9% | 87.0% 82.1% 94.7% | 90.6% 89.9%
joint corpus pruning
NN:EWT Only 92.1% | - - 93.9% | - -
NN:Susanne Only | - 87.5% - - 90.3% -
NN:Combined 91.2% | 86.2% 76.5% 94.3% | 90.0% 86.7%
structural (path) pruning
NN:EWT Only 94.9% | - - 952% | - -
NN:Susanne Only | - 90.1% - - 91.8% -
NN:Combined 91.8% | 88.7% 86.3% 94.8% | 91.5% 91.4%

Table 3: Evaluation: Path and concept precision

wide-spread even for English as the “prototypical”
NLP language.) Tagset designers do not have the
expressive means to state if categories overlap, so
an ad hoc decision has to be made, thus naturally
leading to incompatibilities between tagsets both
cross-lingually and monolingually.

Using an ontology, no implicit disjointness cri-
terion applies, but instead, every tag can be de-
composed into a set of triples. This has been elab-
orated before by Chiarcos (2008b) and Chiarcos
and Erjavec (2011). In our setting, we learn con-
cept (and feature) assignments for every possible
statement independently (and simultaneously), to-
gether with a confidence score (activation of the
output layer=, and then employ pruning strategies
to extract ontologically consistent descriptions of
maximum granularity and confidence. This ap-
proach does not only guarantee consistent results,
but it also is way more flexible than any string-
based annotation and tools trained on that ba-
sis, whereas tags — given the likely sources of
deviation in the use and interpretation of near-
equivalent categories mentioned above — represent
more or less opaque bundles of features.

Moreover, this allows us to combine the ad-
vantages of coarse-grained tagsets (more training
data, robust categories) and fine-grained tagsets
(fine-grained categories and features, but less re-
liably trainable on limited amounts of data). More
general concepts and features higher in the hier-
archy occur more frequently, and like in a small
tagset that can be more robustly trained against
limited training data, these can be reliably learned.
Using a confidence-based ranking, this means
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that these concepts are first selected during the
pruning. That is, more general concepts/features
guide the choice among more fine-grained con-
cepts/features (whose reliability is likely to im-
prove as a result).

Also, this was an experiment in preparation
for research on low-resource languages: By us-
ing pretrained word embeddings as input vectors,
we reduced the need for large POS-annotated cor-
pora, and achieved state-of-the-art results even
limited amounts of labeled training data. This
scenario particularly beneficial for less-researched
major languages such as Hausa or Farsi for which
only sparse data annotated with different tagsets
is available, but where it is rather unproblematic
to acquire large amounts of unannotated texts (e.g.
by web crawling) to compute word vector repre-
sentations.

Our findings indicate the viability of ontological
models for part of speech tags: Even with overly
restrictive consistency constraints applied, these
guarantee consistent results. Future research will
focus on optimizing parameters and explore ap-
plications of this technique to less-resourced lan-
guages and cross-lingual applications: The OLiA
ontologies employed here are both cross-lingual
and cross-tagset, and therefore, our monolingual
use case can be easily extended to multi-lingual
scenarios projection, where the output of annota-
tions originating from difference source languages
is to be combined.
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