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Abstract

In this paper we describe the language
identification system we developed for the
Discriminating Similar Languages (DSL)
2015 shared task. We constructed a clas-
sifier ensemble composed of several Sup-
port Vector Machine (SVM) base classi-
fiers, each trained on a single feature type.
Our feature types include character 1–6
grams and word unigrams and bigrams.
Using this system we were able to outper-
form the other entries in the closed training
track of the DSL 2015 shared task, achiev-
ing the best accuracy of 95.54%.

1 Introduction

Language Identification (LID) is the task of deter-
mining the language of a given text, which may
be at the document, sub-document or even sen-
tence level. Although the task is generally consid-
ered to be a solved problem, recently attention has
turned to discriminating between close languages
or variants. This includes pairings such as Malay-
Indonesian and Croatian-Serbian (Ljubesic et al.,
2007), or even varieties of one language (British
vs. American English).

This has motivated the organization of the Dis-
criminating Similar Languages (DSL) 2015 shared
task where the aim is to build systems for distin-
guishing such pairs. The 2015 edition included 14
language classes.

LID has a number of useful applications includ-
ing lexicography, authorship profiling, machine
translation and Information Retrieval. Another ex-
ample is the application of the output from these
LID methods to adapt NLP tools that require an-
notated data, such as part-of-speech taggers, for
resource-poor languages.

2 Related Work
Work in LID dates back to the seminal research
of Beesley (1988), Cavnar and Trenkle (1994) and
Dunning (1994). Automatic LID methods have
since been widely used in NLP. Although LID
can be extremely accurate in distinguishing lan-
guages that use distinct character sets (e.g. Chi-
nese or Japanese) or are very dissimilar (e.g. Span-
ish and Swedish), performance is degraded when
it is used for discriminating similar languages or
dialects. This has led to researchers turning their
attention to the sub-problem of discriminating be-
tween closely-related languages and varieties.

This issue has been researched in the con-
text of confusable languages, including Malay-
Indonesian (Bali, 2006), Farsi-Dari (Malmasi and
Dras, 2015a), Croatian-Slovene-Serbian (Ljubesic
et al., 2007), Portuguese varieties (Zampieri and
Gebre, 2012), Spanish varieties (Zampieri et al.,
2013), and Chinese varieties (Huang and Lee,
2008). The task of Arabic Dialect Identification
has also drawn attention in the Arabic NLP com-
munity (Malmasi et al., 2015a).

This issue was also the focus of the first
“Discriminating Similar Language” (DSL) shared
task1 in 2014. The shared task used data from
13 different languages and varieties divided into 6
sub-groups and teams needed to build systems for
distinguishing these classes. They were provided
with a training and development dataset comprised
of 20,000 sentences from each language and an
unlabelled test set of 1,000 sentences per language
was used for evaluation. Most entries used surface
features and many applied hierarchical classifiers,
taking advantage of the structure provided by the
language family memberships of the 13 classes.
More details can be found in the shared task re-
port by Zampieri et al. (2014).

1This was part of the Workshop on Applying NLP Tools
to Similar Languages, Varieties and Dialects, which was co-
located with COLING 2014
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Language Code Train Dev Test
Bulgarian BG 18,000 2,000 1,000
Bosnian BS 18,000 2,000 1,000
Czech CZ 18,000 2,000 1,000
Spanish (Argentina) ES AR 18,000 2,000 1,000
Spanish (Spain) ES ES 18,000 2,000 1,000
Croatian HR 18,000 2,000 1,000
Indonesian ID 18,000 2,000 1,000
Malaysian MY 18,000 2,000 1,000
Macedonian MK 18,000 2,000 1,000
Portuguese (Brazil) PT BR 18,000 2,000 1,000
Portuguese (Portugal) PT PT 18,000 2,000 1,000
Slovak SK 18,000 2,000 1,000
Serbian SR 18,000 2,000 1,000
Other XX 18,000 2,000 1,000
Total 252,000 28,000 14,000

Table 1: The languages included in the corpus and the number of sentences in each set.

3 Data

The data for the shared task comes from the DSL
Corpus Collection (Tan et al., 2014). The task
is performed at the sentence-level and the corpus
consists of 294,000 sentences distributed evenly
between 14 language classes. The corpus is subdi-
vided into training, development and test sets. The
languages and the number of sentences in each set
are listed in Table 1.

An interesting addition to this year’s data is the
inclusion of an “other” class which contains data
from various additional languages. The motiva-
tion here is to emulate a realistic language identi-
fication and see how the systems perform in clas-
sifying previously unseen languages.

More details about the data can be found in the
shared task overview paper (Zampieri et al., 2015).

4 Method

In this section we describe the general methodol-
ogy used to construct our system. We use a super-
vised learning approach based on discriminative
classifiers.

4.1 Features
We use two basic classes of surface features: char-
acter n-grams (n = 1–6) and word n-grams (n =
1–2).

4.2 Classifier
We use a linear Support Vector Machine to per-
form multi-class classification in our experiments.

In particular, we use the LIBLINEAR2 package
(Fan et al., 2008) which has been shown to be effi-
cient for text classification problems such as this.
For example, it has been demonstrated to be a very
effective classifier for the task of Native Language
Identification (Malmasi and Dras, 2015b; Malmasi
et al., 2013) which also relies on text classification
methods.

5 Classifier Ensembles

Classifier ensembles are a way of combining dif-
ferent classifiers or experts with the goal of im-
proving accuracy through enhanced decision mak-
ing. They have been applied to a wide range of
real-world problems and shown to achieve better
results compared to single-classifier methods (Oza
and Tumer, 2008). Through aggregating the out-
puts of multiple classifiers in some way, their out-
puts are generally considered to be more robust.
Ensemble methods continue to receive increasing
attention from researchers and remain a focus of
much machine learning research (Woźniak et al.,
2014; Kuncheva and Rodrı́guez, 2014).

Such ensemble-based systems often use a par-
allel architecture, as illustrated in Figure 1, where
the classifiers are run independently and their out-
puts are aggregated using a fusion method. Other,
more sophisticated, ensemble methods that rely on
meta-learning may employ a stacked architecture
where the output from a first set of classifiers is
fed into a second level meta-classifier and so on.

2http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/

36



Input 

Classifier 1 

Classifier 2 
Combiner Decision 

… 

Classifier N 

Ensemble Architecture 
2 

Figure 1: An example of parallel classifier ensemble architecture where N independent classifiers pro-
vide predictions which are then fused using an ensemble combination method.

The first part of creating an ensemble is gen-
erating the individual classifiers. Various meth-
ods for creating these ensemble elements have
been proposed. These involve using different al-
gorithms, parameters or feature types; applying
different preprocessing or feature scaling meth-
ods and varying (e.g. distorting or resampling) the
training data.

For example, Bagging (bootstrap aggregating)
is a commonly used method for ensemble genera-
tion (Breiman, 1996) that can create multiple base
classifiers. It works by creating multiple boot-
strap training sets from the original training data
and a separate classifier is trained from each one
of these sets. The generated classifiers are said to
be diverse because each training set is created by
sampling with replacement and contains a random
subset of the original data. Boosting (e.g. with the
AdaBoost algorithm) is another method where the
base models are created with different weight dis-
tributions over the training data with the aim of
assigning higher weights to training instances that
are misclassified (Freund and Schapire, 1996).

As we describe in section 7, each of the base
classifiers in our ensemble is trained on a different
feature space, as this has proven to be effective.

The second part of ensemble design is choosing
a fusion rule to aggregate the outputs from the var-
ious learners, this is discussed in the next section.

6 Ensemble Combination Methods

Once it has been decided how the set of base clas-
sifiers will be generated, selecting the classifier
combination method is the next fundamental de-
sign question in ensemble construction.

The answer to this question depends on what
output is available from the individual classifiers.
Some combination methods are designed to work
with class labels, assuming that each learner out-
puts a single class label prediction for each data
point. Other methods are designed to work with
class-based continuous output, requiring that for
each instance every classifier provides a measure
of confidence probability3 for each class label.
These outputs for each class usually sum to 1 over
all the classes.

Although a number of different fusion methods
have been proposed and tested, there is no sin-
gle dominant method (Polikar, 2006). The perfor-
mance of these methods is influenced by the nature
of the problem and available training data, the size
of the ensemble, the base classifiers used and the
diversity between their outputs.

The selection of this method is often done em-
pirically. Many researchers have compared and
contrasted the performance of combiners on dif-
ferent problems, and most of these studies – both
empirical and theoretical – do not reach a defini-
tive conclusion (Kuncheva, 2014, p 178).

In the same spirit, we experiment with sev-
eral information fusion methods which have been
widely discussed in the machine learning litera-
ture. Our selected methods are listed below. Var-
ious other methods exist and the interested reader
can refer to the exposition by Polikar (2006).

3i.e. an estimate of the posterior probability for the label.
For non-probabilistic classifiers the distance to the decision
boundary is used for estimating the decision likelihoods.
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6.1 Plurality voting

Each classifier votes for a single class label. The
votes are tallied and the label with the highest
number4 of votes wins. Ties are broken arbitrarily.
This voting method is very simple and does not
have any parameters to tune. An extensive analy-
sis of this method and its theoretical underpinnings
can be found in the work of (Kuncheva, 2004, p.
112).

6.2 Mean Probability Rule

The probability estimates for each class are added
together and the class label with the highest aver-
age probability is the winner. This is equivalent to
the probability sum combiner which does not re-
quire calculating the average for each class. An
important aspect of using probability outputs in
this way is that a classifier’s support for the true
class label is taken in to account, even when it is
not the predicted label (e.g. it could have the sec-
ond highest probability). This method has been
shown to work well on a wide range of problems
and, in general, it is considered to be simple, intu-
itive, stable (Kuncheva, 2014, p. 155) and resilient
to estimation errors (Kittler et al., 1998) making it
one of the most robust combiners discussed in the
literature.

6.3 Median Probability Rule

Given that the mean probability used in the above
rule is sensitive to outliers, an alternative is to use
the median as a more robust estimate of the mean
(Kittler et al., 1998). Under this rule each class
label’s estimates are sorted and the median value
is selected as the final score for that label. The
label with the highest median value is picked as the
winner. As with the mean combiner, this method
measures the central tendency of support for each
label as a means of reaching a consensus decision.

6.4 Product Rule

For each class label, all of the probability esti-
mates are multiplied together to create the label’s
final estimate (Polikar, 2006, p. 37). The label
with the highest estimate is selected. This rule
can provide the best overall estimate of posterior
probability for a label, given that the individual es-
timates are accurate. A trade-off here is that this

4This differs with a majority voting combiner where a la-
bel must obtain over 50% of the votes to win. However, the
names are sometimes used interchangeably.
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FIGURE 5.5 Operation of the average combiner.

Represented by the average combiner, the category of simple nontrainable
combiners is described in Figure 5.4, and illustrated diagrammatically in Figure 5.5.
These combiners are called nontrainable, because once the individual classifiers are
trained, their outputs can be fused to produce an ensemble decision, without any
further training.

◻◼ Example 5.3 Simple nontrainable combiners
The following example helps to clarify simple combiners. Let c = 3 and L = 5.
Assume that for a certain x

DP(x) =

⎡⎢⎢⎢⎢⎣
0.1 0.5 0.4
0.0 0.0 1.0
0.4 0.3 0.4
0.2 0.7 0.1
0.1 0.8 0.2

⎤⎥⎥⎥⎥⎦
. (5.20)

Applying the simple combiners column wise, we obtain:

Combiner 𝜇1(x) 𝜇2(x) 𝜇3(x)

Average 0.16 0.46 0.42
Minimum 0.00 0.00 0.10
Maximum 0.40 0.80 1.00
Median 0.10 0.50 0.40
40% trimmed mean 0.13 0.50 0.33
Product 0.00 0.00 0.0032

Figure 2: An example of a mean probability com-
biner. The feature vector for a sample is input to L
different classifiers, each of which output a vec-
tor of confidence probabilities for each possible
class label. These vectors are combined to form
the decision profile for the instance which is used
to calculate the average support given to each la-
bel. The label with the maximum support is then
chosen as the prediction. Image reproduced from
(Kuncheva, 2014).

method is very sensitive to low probabilities: a sin-
gle low score for a label from any classifier will
essentially eliminate that class label.

6.5 Highest Confidence

In this simple method, the class label that receives
the vote with the largest degree of confidence is
selected as the final prediction (Kuncheva, 2014,
p. 150). In contrast to the previous methods, this
combiner disregards the consensus opinion and in-
stead picks the prediction of the expert with the
highest degree of confidence.

6.6 Borda Count

This method works by using each classifier’s con-
fidence estimates to create a ranked list of the class
labels in order of preference, with the predicted
label at rank 1. The winning label is then se-
lected using the Borda count5 algorithm (Ho et al.,
1994). The algorithm works by assigning points
to labels based on their ranks. If there are N dif-
ferent labels, then each classifiers’ preferences are
assigned points as follows: the top-ranked label
receives N points, the second place label receives

5This method is generally attributed to Jean-Charles de
Borda (1733–1799), but evidence suggests that it was also
proposed by Ramon Llull (1232–1315).
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N − 1 points, third place receives N − 2 points
and so on with the last preference receiving a sin-
gle point. These points are then tallied to select
the winner with the highest score.

The most obvious advantage of this method is
that it takes into account each classifier’s prefer-
ences, making it possible for a label to win even
if another label received the majority of the first
preference votes.

6.7 Oracle
We use an “Oracle” combiner as one possible ap-
proach to estimating the upper-bound for classifi-
cation accuracy. This method has previously been
used to analyze the limits of majority vote clas-
sifier combination (Kuncheva et al., 2001). The
oracle will assign the correct class label for an in-
stance if at least one of the constituent classifiers
in the ensemble produces the correct label for that
data point. Oracles are usually used in compara-
tive experiments and to gauge the performance and
diversity of the classifiers chosen for an ensemble
(Kuncheva, 2002; Kuncheva et al., 2003). They
can help us quantify the potential upper limit of
an ensemble’s performance on the given data and
how this performance varies with different ensem-
ble configurations (Malmasi et al., 2015b).

7 Systems

We test three different systems in our submissions
to the shared task, as outlined here.

7.1 System 1
We train a single model based on a simple combi-
nation of all our feature types into a single feature
space. The model has approximately 13.6 million
features. This was the first system that we built
and it achieved very good results of 94-95% dur-
ing testing. It was selected as our first submission.

7.2 System 2
The second system is an ensemble classifier, as de-
scribed in section 5. The aim here was to improve
over the single classifier system described in sec-
tion 7.1. Each base classifier in the ensemble is
trained on a separate feature type, resulting in a
total of eight classifiers in the system.

During the development of our system we tested
the six ensemble fusion methods described in sec-
tion 6. Our experiments with the training and de-
velopment data showed that the mean probability
combiner yielded the best accuracy.

We achieved an accuracy of 95.5% on the de-
velopment set against an oracle accuracy of 99%,
showing that the combiner was very close to the
upper-bound of possible classification accuracy.
This result was slightly better than that of Sys-
tem 1, so this method was selected for our second
submission. The results from the other combiners
were also in a similar range, but we used the mean
probability combiner for our second system.

7.3 System 3

Our final system is identical to the second system
in its method and setup with the exception that
some weak and redundant features were removed.
We suspected that there may be some redundancy
in the large number of character n-gram features
and removing these might increase the diversity,
and thus accuracy, of the ensemble.

Using the feature analysis methodology out-
lined by Malmasi and Cahill (2015), we analyzed
the feature interactions using the training and de-
velopment sets. This methodology uses Yule’s Q-
coefficient statistic (Yule, 1912), which can be a
useful measure of pairwise dependence between
two classifiers (Kuncheva et al., 2003). This no-
tion of dependence relates to complementarity and
orthogonality, and is an important factor in com-
bining classifiers (Lam, 2000). The calculated Q-
coefficient ranges between −1 to +1, where −1
signifies negative association, 0 indicates no as-
sociation (independence) and +1 means perfect
positive correlation (dependence). We apply this
method to our ensemble to calculate the depen-
dence between the classifiers. The results for the
analysis are shown as a heat map in Figure 3.

We see that the predictions obtained using char-
acter unigrams are very diverse to the other fea-
tures, as noted by the low Q-coefficient. This di-
versity is a result of character unigrams being a
weak feature: they only achieve around 76% ac-
curacy whereas most other feature types can ob-
tain > 90% accuracy. As a result we removed this
feature from the ensemble.

Character bigrams are diverse and also have a
higher accuracy, so they were retained. Charac-
ter trigrams are very similar to 4-grams and their
accuracies are close, so we remove the trigrams.
The same applies to character 5- and 6-grams, and
we decided to remove the 5-grams. Character 4-
grams were retained since they had good accuracy
and diversity, e.g. with word bigrams.
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Figure 3: The matrix of pairwise Q-coefficient values between our feature types, displayed as a heat map.
Smaller values indicate lower dependence between their predictions.

Normal NE Removed

Rank Accuracy Rank Accuracy

Random Baseline — 7.14% — 7.14%

System 1 3 95.31% 2 93.88%

System 2 2 95.44% 3 93.73%

System 3 1 95.54% 1 94.01%

Table 2: Results for our three system on the test
set. The accuracy and rank among all systems in
the shared task are shown. Our optimized ensem-
ble ranked first in both tasks.

To recap, our third system is a modification of
the second system where we remove character 1-,
3- and 5-grams in order to increase the ensemble
diversity. This reduced ensemble was chosen as
our third submission as it achieved slightly higher
results than the full ensemble during development.

8 Results

We entered our systems in both sub-tasks of the
closed training track. We did not enter the open
training track of the competition. The first sub-
task (the “normal” task) required our system to
classify 14,000 unlabelled sentences. The sec-
ond task was also similar, but it used a different
set of sentences which also had all named entities
(NE) removed (“NE Removed” task). This is be-

cause it is assumed that features related to NEs can
strongly influence the results.

Our systems took the top three places for both
subtasks. The results and rankings for each system
are shown in Table 2. We note that System 3 —
the optimized ensemble — was the winning entry
for both tasks. This comports with our initial tests
where it was our best system during development.

The confusion matrix for our best results in the
normal task are shown in Figure 4. We achieved
a perfect 100% accuracy for four classes: Czech
(CZ), Macedonian (MK), Slovak (SK) and Other
(XX). Bulgarian (BG) was also close with only
a single sentence being misclassified as Macedo-
nian. These results suggest that confusion between
Bulgarian–Macedonian and Czech–Slovak is not
a significant issue here. The greatest confusion is
between the Bosnian–Croatian–Serbian6 group as
well as the Spanish and Portuguese dialect pairs.
Bosnian is the worst performing language among
the 14 classes.

We also analyze the learning rate for the fea-
tures in our system. The cross-validation accu-
racy for four different feature types is shown in
Figure 5. Higher order character n-grams seem
to outperform word n-grams. Word bigrams are
lower in accuracy and have a steeper learning rate.

6We also observe that Bosnian is the most confused class
among the three while Serbian has the least errors.
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Figure 5: Learning curves for some of our features
based on cross-validation accuracy. We observe
that character n-grams perform better than word-
based n-grams. The accuracy does not plateau
with the entire training data used.

We also observe that accuracy increases contin-
uously as the training data is increased. This sug-
gests that despite the already large size of the train-
ing set, there is still room for further improvement
by adding more data. However, this would also re-
sult in an increase in the size of our feature space,
which is already quite large due to the prodigious
growth rate of the larger order character n-grams.

9 Discussion and Conclusion

In this work we demonstrated the utility of clas-
sifier ensembles for text classification. Using an
ensemble composed of base classifiers trained on
character 1–6 grams and word unigrams and bi-
grams, we were able to outperform the other en-
tries in the closed track of the DSL 2015 shared
task.

A crucial direction for future work is the investi-
gation of methods to reduce the confusion between
these three groups of classes.

In this work we did not experiment with fea-
ture selection methods to evaluate if this can fur-
ther enhance performance, or at least efficiency by
reducing the dimensionality of the feature space.
One weakness of our system may be the very high
dimensionality of the feature space with almost 14
million features. Having such a large number of
features can be inefficient and may impede the use
of our system for real-time applications.
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