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Abstract

Automatic evaluation of machine transla-
tion (MT) quality is essential in devel-
oping high quality MT systems. De-
spite previous criticisms, BLEU remains
the most popular machine translation met-
ric. Previous studies on the schism be-
tween BLEU and manual evaluation high-
lighted the poor correlation between MT
systems with low BLEU scores and high
manual evaluation scores. Alternatively,
the RIBES metric—which is more sensi-
tive to reordering—has shown to have bet-
ter correlations with human judgements,
but in our experiments it also fails to cor-
relate with human judgements. In this pa-
per we demonstrate, via our submission to
the Workshop on Asian Translation 2015
(WAT 2015), a patent translation system
with very high BLEU and RIBES scores
and very poor human judgement scores.

1 Introduction

Automatic Machine Translation (MT) evaluation
metrics have been criticized for a variety of rea-
sons (Babych and Hartley, 2004; Callison-Burch
et al., 2006). However, the relatively consistent
correlation of higher BLEU scores (Papineni et
al., 2002) and better human judgements in ma-
jor machine translation shared tasks has led to the
conventional wisdom that translations with sig-
nificantly higher BLEU scores generally suggests
a better translation than its lower scoring coun-
terparts (Bojar et al., 2014; Bojar et al., 2015;
Nakazawa et al., 2014; Cettolo et al., 2014).

Callison-Burch et al. (2006) has anecdotally
presented possible failures of BLEU by show-
ing examples of translations with the same BLEU
score but of different translation quality. Through

meta-evaluation1 of BLEU scores and human
judgements scores of the 2005 NIST MT Evalu-
ation exercise, they have also showed high corre-
lations of R2 = 0.87 (for adequacy) and R2 = 0.74
(for fluency) when an outlier rule-based machine
translation system with poor BLEU score and high
human score is excluded; when included the cor-
relations drops to 0.14 for adequacy and 0.74 for
fluency.

Despite showing the poor correlation between
BLEU and human scores, Callison-Burch et al.
(2006) had only empirically meta-evaluated a sce-
nario where low BLEU score does not necessary
result in a poor human judgement score. In this pa-
per, we demonstrate a real-world example of ma-
chine translation that yielded high automatic eval-
uation scores but failed to obtain a good score on
manual evaluation in an MT shared task submis-
sion.

2 BLEU

Papineni et al. (2002) originally define BLEU
n-gram precision pn by summing the n-gram
matches for every hypothesis sentence S in the test
corpus C:

pn =

∑
S∈C

∑
ngram∈S Countmatched(ngram)∑

S∈C
∑

ngram∈S Count(ngram)
(1)

BLEU is a precision based metric; to emulate
recall, the brevity penalty (BP) is introduced to
compensate for the possibility of high precision
translation that are too short. The BP is calculated
as:

1Meta-evaluation refers to the measurement of the Pear-
son correlation R2 between an automatic evaluation metrics
and human judgment scores. More recently, meta-evaluation
involves the calculation using other correlation measures
such as the Spearman’s rank correlation ρ (Callison-Burch
et al., 2007) or the Kendall’s Tau τ (Stanojević et al., 2015;
Graham et al., 2015)
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BP =

{
1 if c > r

e1−r/c if c ≤ r
(2)

where c and r respectively refers to the length of
the hypothesis translations and the reference trans-
lations. The resulting system BLEU score is cal-
culated as follows:

BLEU = BP × exp(
N∑

n=1

wn log pn) (3)

where n refers to the orders of n-gram consid-
ered for pn and wn refers to the weights assigned
for the n-gram precisions; in practice, the weights
are uniformly distributed.

A BLEU score can range from 0 to 1 and the
closer to 1 indicates that a hypothesis translation
is closer to the reference translation2.

Traditionally, BLEU scores has showed high
correlation with human judgements and is still
used as the de facto standard automatic evalua-
tion metric for major machine translation shared
tasks. And BLEU continues to show high correla-
tions primarily for n-gram-based machine transla-
tion systems (Bojar et al., 2015; Nakazawa et al.,
2014).

However, the fallacy of BLEU-human correla-
tions can be easily highlighted with the following
example:

Source:
이러한작용을발휘하기위해서는,각각 0.005％
이상함유하는것이바람직하다.

Hypothesis:
このような作用を発揮するためには、夫々
０．００５％以上含有することが好ましい。

Baseline:
こ の よ う な 作 用 を 発 揮 す る た め に
は、それぞれ ０．００５％以上含有す
ることが好ましい。

Reference:
このような作用を発揮させるためには、夫々
０．００５％以上含有させることが好まし
い。

2Alternatively, researchers would choose to inflate the
BLEU score to a range between 0 to 100 to improve read-
ability of the scores without the decimal prefix.

Source/Reference English Gloss:
“So as to achieve the reaction, it is preferable that
it contains more 0.005% of each [chemical]”

The unigram, bigram, trigrams and fourgrams
(p1, p2, p3, p4) precision of the hypothesis trans-
lation are 90.0, 78.9, 66.7 and 52.9 respectively.
The pn score for the hypothesis sentence precision
score for the reference is 70.75. When consider-
ing the brevity penalty of 0.905, the overall BLEU
is 64.03. Comparatively, the n-gram precisions
for the baseline translations are p1=84.2, p2=66.7,
p3=47.1 and p4=25.0 and the overall BLEU is
43.29 with a BP of 0.854. In this respect, one
would consider the baseline translation inferior to
the hypothesis with a >10 BLEU difference. How-
ever, there is only a subtle difference between the
hypothesis and the baseline translation (それぞ
れvs夫々).

This is an actual example from the 2nd Work-
shop on Asian Translation (WAT 2015) MT shared
task evaluation, and five crowd-sourced evaluators
consider the baseline translation a better transla-
tion. For this particular example, the human eval-
uators preferred the natural translation from Ko-
rean 각각 gaggag to Japanese それぞれ sore-
zore instead of the patent document usage of夫々
sorezore, bothそれぞれ and夫々 can be loosely
translated as ’respectively’ or ’(for) each’ in En-
glish.

The big difference in BLEU for a single lexi-
cal difference in translation is due to the geometric
averaged scores for the individual n-gram preci-
sions. It assumes the independence of n-gram pre-
cisions and accentuates the precision disparity by
involving the single lexical difference in all pos-
sible n-grams that capture the particular position
in the sentence. This is clearly indicated by the
growing precision difference in the higher order
n-grams.

2.1 RIBES

Another failure of BLEU is the lack of explicit
consideration for reordering. Callison-Burch et
al. (2006) highlighted that since BLEU only takes
reordering into account by rewarding the higher
n-gram orders, freely permuted unigrams and bi-
grams matches are able to sustain a high BLEU
score with little penalty caused by tri/fourgram
mismatches. To overcome reordering, the RIBES

75



score was introduced by adding a rank correlation
coefficient3 prior to unigram matches without the
need for higher order n-gram matches (Isozaki et
al., 2010).

Let us consider another example:

Source:
T용융(DSC) = 89.9℃; T결정화(DSC) = 72℃(
5℃/분에서DSC로측정) .

Hypothesis:
Ｔｍｅｌｔ（ＤＳＣ）＝７２℃（５℃／分
でＤＳＣ測定（ＤＳＣ）＝89 . 9 結晶化度
（Ｔ）。

Baseline:
Ｔ溶融（ＤＳＣ）＝８９. ９℃；Ｔ結晶化
（ＤＳＣ）＝７２℃（５℃／分でＤＳＣで測
定）。

Reference:
Ｔｍｅｌｔ（ＤＳＣ）＝８９．９℃；Ｔｃｒ
ｙｓｔ（ＤＳＣ）＝７２℃（５℃／分でＤＳ
Ｃを用いて測定）。

Source/Reference English Gloss:
Tmelt (DSC) = 8 9. 9 ◦C; Tcryst (DSC) = 7 ◦C
(measured using DSC at 5 ◦C / min)

The example above shows the marginal effec-
tiveness of RIBES when penalizing wrongly or-
dered phrases in the hypothesis. The baseline
translation accurately translates the meaning of the
sentence with a minor partial translation of the
technical variables (i.e. Tmelt ->Ｔ溶融 and T결
정화 ->Ｔ結晶化. However, the hypothesis trans-
lation made serious adequacy errors when invert-
ing the values of the technical variables but the
hypothesis translation was minimally penalized in
RIBES and also BLEU.

The RIBES score for the hypothesis and base-
line translations are 94.04 and 86.33 respectively
whereas their BLEU scores are 53.3 and 58.8. In
the WAT 2015 evaluation, five evaluators unani-
mously voted in favor for the baseline translation.
Although the RIBES score presents a wider differ-
ence between the hypothesis and baseline transla-
tion than BLEU, it is insufficient to account for the
arrant error that the hypothesis translation made.

3normalized Kendall τ of all n-gram pairs between the
hypothesis and reference translations

2.2 Other Shades of BLEU / RIBES

It is worth noting that there are other auto-
matic MT evaluation metrics that depend on the
same precision-based score with primary differ-
ences in how the Countmatch(ngram) is measured;
Giménez and Màrquez (2007) described other lin-
guistics features that one could match in place
of surface n-grams, such as lexicalized syntactic
parse features, semantic entities and roles anno-
tations, etc. As such, the modified BLEU-like
metrics can present other aspects of syntactic flu-
ency and semantic adequacy complementary to the
string-based BLEU.

A different approach to improve upon the
BLEU scores is to allow paraphrases or
gappy variants and replace the proportion of
Countmatch(ngram) / Count(ngram) by a lexical
similarity measure. Banerjee and Lavie (2005)
introduced the METEOR metric that allows hy-
potheses’ n-grams to match paraphrases and stems
instead of just the surface strings. Lin and Och
(2004) presented the ROUGE-S metrics that uses
skip-grams matches. More recently, pre-trained
regression models based on semantic textual
similarity and neural network-based similarity
measures trained on skip-grams are applied to
replace the n-gram matching (Vela and Tan, 2015;
Gupta et al., 2015).

While enriching the surface n-gram matching
allows the automatic evaluation metric to han-
dle variant translations, it does not resolves the
“prominent crudeness" of BLEU (Callison-Burch,
2006) involving (i) the omission of content-
bearing materials not being penalized, and (ii)
the inability to calculate recall despite the brevity
penalty.

3 Experimental Setup

We describe our system submission4 to the WAT
2015 shared task (Nakazawa et al., 2015) for Ko-
rean to Japanese patent translation.5.

The Japan Patent Office (JPO) Patent Corpus
is the official resource provided for the shared
task. The training dataset is made up of 1 million
sentences (250k each from the chemistry, elec-
tricity, mechanical engineering and physics do-

4Our Team ID in WAT 2015 is Sense
5Although, we have also participated in the English-

Japanese-Chinese scientific text translation subtask using the
ASPEC corpus, our results have been presented in Tan and
Bond (2014) and Tan et al. (2015)
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Parameters Organizers Ours
Input document length 40 80
Korean tokenizer MeCab KoNLPy
Japanese tokenizer Juman MeCab
LM n-gram order 5 5
Distortion limit 0 20
Quantized & binarized LM no yes
devtest.txt in LM no yes
Binarized phrase tables no yes
MERT runs 1 2

Table 1: Differences between Organizer’s and our Phrase-based SMT system

mains). Two development datasets6 and one test
set each comprises 2000 sentences with 500 sen-
tences from each of the training domains. The
Korean and Japanese texts were tokenized using
KoNLPy (Park and Cho, 2014) and MeCab (Kudo
et al., 2004) respectively.

We used the phrase-based SMT implemented in
the Moses toolkit (Koehn et al., 2003; Koehn et
al., 2007) with the following vanilla Moses exper-
imental settings:

• MGIZA++ implementation of IBM word
alignment model 4 with grow-diagonal-
final-and heuristics for word alignment and
phrase-extraction (Och and Ney, 2003;
Koehn et al., 2003; Gao and Vogel,
2008)(Koehn et al., 2003; Och and Ney,
2003; Gao and Vogel, 2008)

• Bi-directional lexicalized reordering model
that considers monotone, swap and discontin-
uous orientations (Koehn, 2005; Galley and
Manning, 2008)

• To minimize the computing load on the trans-
lation model, we compressed the phrase-
table and lexical reordering model (Junczys-
Dowmunt, 2012)

• Language modeling is trained using KenLM
using 5-grams, with modified Kneser-Ney
smoothing (Heafield, 2011; Kneser and Ney,
1995; Chen and Goodman, 1998). The lan-
guage model is quantized to reduce filesize
and improve querying speed (Heafield et al.,
2013; Whittaker and Raj, 2001).

• Minimum Error Rate Training (MERT) (Och,
2003) to tune the decoding parameters.

6dev.txt and devtest.txt

3.1 Human Evaluation

The human judgment scores for the WAT eval-
uations were acquired using the Lancers crowd-
sourcing platform (WAT, 2014). Human evalua-
tors were randomly assigned documents from the
test set. They were shown the source document,
the hypothesis translation and a baseline transla-
tion generated by the baseline phrase-based MT
system.

3.1.1 Baseline System

Human evaluations were conducted as pairwise
comparisons between translations from our sys-
tem and the WAT organizers’ phrase-based statis-
tical MT baseline system. Table 1 highlights the
parameter differences between the organizers and
our phrase-based SMT system.

3.1.2 Pairwise Comparison

The human judgment scores for the WAT evalua-
tions were acquired using the Lancers crowdsourc-
ing platform. Human evaluators were randomly
assigned documents from the test set. They were
shown the source document, the hypothesis trans-
lation and a baseline translation generated by the
phrase-based MT system. Five evaluators were
asked to judge each document.

The crowdsourced evaluators were non-experts,
thus their judgements were not necessary precise,
especially for patent translations. The evaluators
were asked to judge whether the hypothesis or the
baseline translation was better, or they were tied.
The translation that was judged better constituted
a win and the other a loss. For each, the majority
vote between the five evaluators for the hypoth-
esis decided whether the hypothesis won, lost or
tied the baseline. The final human judgment score,
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HUMAN, is calculated as follows:

HUMAN = 100× W − L

W + L+ T
(4)

By definition, the HUMAN score ranges from
−100 to +100, where higher is better.

4 Results

Moses’ default parameter tuning method, MERT,
is non-deterministic, and hence it is advisable
to tune the phrase-based model more than once
(Clark et al. 2011). We repeated the tuning
step and submitted the system translations that
achieved the higher BLEU score for manual eval-
uation.

As a sanity check we also replicated the orga-
nizers’ baseline system and submitted it for man-
ual evaluation. We expect this system to score
close to zero. We submitted a total of three sets of
output to the WAT 2015 shared task, two of which
underwent manual evaluation.

Systems RIBES BLEU HUMAN
Organizers’
PBMT baseline 94.13 69.22 0.0
Our replica
baseline 94.29 70.23 +3.50
Ours (MERT 1) 95.03 84.26 -
Ours (MERT 2) 95.15 85.23 -17.75

Table 2: BLEU and HUMAN scores for WAT
2015

Table 2 presents the BLEU scores achieved by
our phrase-based MT system in contrast to the or-
ganizers’ baseline phrase-based system. The dif-
ference in BLEU between the organizers’ system
and ours may be due to our inclusion of the second
development set in building our language model
and the inclusion of more training data by allowing
a maximum of 80 tokens per document as com-
pared to 40 (see Table 1).

Another major difference is the high distortion
limit we have set as compared to the organizers’
monotonic system, it is possible that the high dis-
tortion limit compensates for the long distance
word alignments that might have been penalized
by the phrasal and reordering probabilities which
results in the higher RIBES and BLEU score.7

7In our submission Byte2String refers to the encod-
ing problem we encountered when tokenizing the Korean
text with MeCab causing our system to read Korean byte-

However, the puzzling fact is that our system
being 15 BLEU points better than the organizers’
baseline begets a terribly low human judgement
score. We discuss this next.

5 Segment Level Meta-Evaluation

We perform a segment level meta-evaluation by
calculating the BLEU and RIBES score differ-
ence for each hypothesis-baseline translation. Fig-
ures 1 and 2 show the correlations of the BLEU
and RIBES score difference against the positive
and negative human judgements score for every
sentence.

Figure 1 presents the considerable incongruity
between our system’s high BLEU improvements
(>+60 BLEU) being rated marginally better than
the baseline translation, indicated by the orange
and blue bubbles on the top right corner. There
were even translations from our system with >+40
BLEU improvements that tied with the organizer’s
baseline translations, indicated by the grey bub-
bles at around the +40 BLEU and +5 RIBES re-
gion. Except for the a portion of segments that
scored worse than the baseline system (lower right
part of the graph where BLEU and RIBES falls
below 0), the overall trend in Figure 1 presents
the conventional wisdom that the BLEU improve-
ments from our systems reflects positive human
judgement scores.

However, Figure 2 presents the awkward dis-
parity where many segments with BLEU improve-
ments were rated strongly as poorer translations
when compared against the baseline. Also, many
segments with high BLEU improvements were
tied with the baseline translations, indicated by the
grey bubbles across the positive BLEU scores.

As shown in the examples in Section 2, a num-
ber of prominent factors contribute to these dispar-
ity in high BLEU / RIBES improvements and low
HUMAN judgement scores:

• Minor lexical differences causing a huge dif-
ference in n-gram precision

• Crowd-sourced vs. expert preferences on ter-
minology, especially for patents

code instead of Unicode. But the decoder could still output
Unicode since our Japanese data was successfully tokenized
using MeCab, we submitted this output under the submis-
sion name Byte2String; the Byte2String submission
is not reported in this paper. Later we rectified the encoding
problem by using KoNLPy and re-ran the alignment, phrase
extraction, MERT and decoding, hence the submission name,
Unicode2String, i.e. the system reported in Table 2.
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Figure 1: Correlation between BLEU, RIBES differences and Positive HUMAN Judgements (HUMAN
Scores of 0, +1, +2, +3, +4 and +5 represented by the colored bubbles: grey, orange, blue, green, red and
purple; larger area means more segments with the respective HUMAN Scores)

Figure 2: Correlation between BLEU, RIBES differences and Negative HUMAN Judgements (HUMAN
Scores of 0, -1, -2, -3, -4 and -5 represented by the colored bubbles: grey, orange, blue, green, red and
purple; larger area means more segments with the respective HUMAN Scores)

• Minor MT evaluation metric differences not
reflecting major translation inadequacy

Each of these failures contributes to an in-
creased amount of disparity between the auto-
matic translation metric improvements and human
judgement scores.

6 Conclusion

In this paper we have demonstrated a real-world
case where high BLEU and RIBES scores do
not correlate with better human judgement. Us-
ing our system’s submission for the WAT 2015
patent shared task, we presented several factors
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that might contribute to the poor correlation, and
also performed a segment level meta-evaluation
to identify segments where our system’s high
BLEU / RIBES improvements were deemed sub-
stantially worse than the baseline translations. We
hope our results and analysis will lead to improve-
ments in automatic translation evaluation metrics.
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