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Abstract

The tree languages of tree-adjoining gram-
mars are precisely those of linear monadic
context-free tree grammars. Unlike the
original proof, we present a direct trans-
formation of a tree-adjoining grammar into
an equivalent linear monadic context-free
tree grammar.

1 Introduction

Tree-adjoining grammars (tag) are tree-generating
systems which enjoy widespread use in natural lan-
guage processing to model syntactic phenomena
which can not be adequately described by context-
free grammars. In contrast, context-free tree gram-
mars (cftg) were investigated in the field of formal
tree languages, and there is arguably more insight
on their tree languages than on those of tag: to
name just a few results, they were characterized by
least fixed points (Engelfriet and Schmidt, 1977),
in Chomsky-Schützenberger-like theorems (Arnold
and Dauchet, 1977; Kanazawa, 2013), or by push-
down machines (Guessarian, 1983). Moreover, var-
ious syntactic restrictions of cftg have been investi-
gated (Leguy, 1981; Fujiyoshi and Kasai, 2000).

Kepser and Rogers (2011) proved that the tree
languages of tag are precisely those of linear
monadic cftg (lm-cftg), and hence, the established
results about cftg can also be applied to tag. How-
ever, this proof rests upon a number of intermediate
normal forms. In particular, in the construction of
a lm-cftg G from a tag H, three steps are involved:
first, a footed cftg G′ is read off from H, then G′

is turned into a spinal-formed cftg G′′, and finally
a result by Fujiyoshi and Kasai (2000) on spinal-
formed cftg is applied to obtain G from G′′.

Therefore the relationship between H and its
equivalent cftg G is not immediately apparent, as
all involved constructions must be understood and
reenacted to obtainH. Moreover, much of the struc-

ture of H is altered along the way to G. In the fol-
lowing, we describe an alternative direct construc-
tion of an equivalent linear monadic cftg G′ from
H. We argue that G′ resembles H very closely.

After introducing some preliminary notions in
Section 2, we will describe our construction and
prove its correctness in Section 3. Section 4 illus-
trates the construction in an example, and contrasts
it to the construction of Kepser and Rogers.

2 Preliminaries

The set of nonnegative integers is N, and B is the
set of truth values {f, t}. The power set of a set
A is 2A. Denote, for n ∈ N, the sets of variables
{x1, . . . , xn} and {y1, . . . , yn} by Xn, resp. Yn.
An alphabet is a finite nonempty set.

We will briefly introduce the notation used for
trees and their operations; for a thorough introduc-
tion to tree languages refer to Gécseg and Steinby
(1984); see also Fülöp and Vogler (2009) for a no-
tation that is closer to ours. Contrary to custom, we
consider unranked trees, but the number of children
of a node will be bounded by a constant χ. Thus,
there is no impact on the power of the employed
formalisms.

So assume some global constant χ ∈ N, and let
the alphabet C consist of the three symbols ‘(’, ‘)’,
and ‘,’. Let Σ be an alphabet, and let V be a set,
both disjoint from C. The set UΣ(V ) of trees (in-
dexed by V ) is the smallest set U ⊆ (Σ ∪ V ∪ C)∗

such that V ⊆ U and for each 0 ≤ k ≤ χ, σ ∈ Σ,
and ξ1, . . . , ξk ∈ U , also σ(ξ1, . . . , ξk) ∈ U . Given
W ⊆ V , a tree ξ ∈ UΣ(V ) is linear (nondeleting)
in W if every element of W appears at most (at
least) once in ξ. Henceforth, Σ denotes an alpha-
bet; when not mentioned, the number k (of chil-
dren of a node) will be quantified implicitly by
k ∈ {0, . . . , χ}. We write UΣ for UΣ(∅).

Let ξ, ζ ∈ UΣ(V ) for some set V. We denote
the set of positions of ξ by pos(ξ) ⊆ N∗. Let w ∈
pos(ξ). The result of replacing the subtree of ξ atw



by ζ is written ξ[ζ]w. Finally, let v1, . . . , vk ∈ V be
pairwise distinct, and η1, . . . , ηk ∈ UΣ(V ). Denote
by ξ[v1/η1, . . . , vk/ηk] the result of substituting
every occurrence of vi in ξ with ηi, for 1 ≤ i ≤ k.

We recall one-state top-down tree transducers
(td-tt1), cf. Engelfriet (1975). Let ∆ be an alphabet.
A td-tt1 ρ from UΣ to U∆ is given by a finite set of
rules of the form ∗(σ(x1, . . . , xk)) → ξ, where ∗
is the sole state of ρ, σ ∈ Σ, and ξ ∈ U∆(∗(Xk)),
with ∗(Xk) = {∗(xi) | xi ∈ Xk}. The tree trans-
formation of ρ is given by term rewriting, it is a
function UΣ → 2U∆ (or a partial function UΣ →
U∆ if ρ is deterministic), and also denoted by ρ.

A context-free tree grammar (cftg) over Σ is a
tuple G = (N,Σ, S, P ) such that Σ and N are dis-
joint alphabets, S ∈ N, and P is a finite set of pro-
ductions of the form A(y1, . . . , yk)→ ξ for some
A ∈ N, and ξ ∈ UN∪Σ(Yk). Such a production is
linear (nondeleting) if ξ is linear (nondeleting) in
Yk. We call a cftg G linear (resp. nondeleting) if
every production of G is so, and G is monadic if
the only variable occurring in its productions is y1.
In this case, y1 is written as y. A lm-cftg is a linear
and monadic cftg. Let G = (N,Σ, S, P ) be a cftg.
Given ζ1, ζ2 ∈ UN∪Σ, we write ζ1 ⇒G ζ2 if there
are A(y1, . . . , yk) → ξ is in P, ξ1, . . . , ξk ∈ UΣ,
and w ∈ pos(ζ1) such that ζ1|w = A(ξ1, . . . , ξk)
and ζ2 = ζ1[ξ[y1/ξ1, . . . , yk/ξk]]w. This corre-
sponds to the second-order substitution of the oc-
currence of A at w by ξ. The tree language of G,
denoted L(G), is the set {ξ ∈ UΣ | S ⇒∗G ξ}.

Let Z be a finite set. The set of tag labels
is Λ = {〈σ, V, c, f〉 | σ ∈ Σ, V ⊆ Z, c, f ∈ B}.
This notation is similar to the one of Kepser and
Rogers (2011): in 〈σ, V, c, f〉, σ is the label, V the
selective adjunction constraint, and c the obligatory
adjunction constraint. The information whether
〈σ, V, c, f〉 labels a foot node is stored in f . It is a
foot label if f = t, and we say that it is operative
(resp. terminable) if V 6= ∅ (resp. c = f). Let U
denote the set of all ξ ∈ UΛ with no occurrence of a
foot label. Moreover, let U∗ be the set of all ξ ∈ UΛ

with exactly one occurrence of a foot label, such
that this occurrence is a leaf of ξ. In this situation
ξ can be decomposed into a unique ξ̃ ∈ UΛ(X1)
with no occurrence of a foot label and exactly one
occurrence of x1, as well as a 〈σ, V, c, t〉 ∈ Λ such
that ξ = ξ̃[〈σ, V, c, t〉]. We will use this notation in
the sequel.

A (non-strict) tree-adjoining grammar (nstag)1

1A tag is non-strict if certain restrictions on its adjoining

is a tuple H = (Σ, Z,E, I, ν) such that Z is a fi-
nite set (of names), E is a finite subset of U∗ (of
elementary trees), I is a finite subset of U (of initial
trees), and ν : E → Z is a bijection.

Let ζ1, ζ2 ∈ U, and H be an nstag. We write
ζ1 ⇒H ζ2 if there are w ∈ pos(ζ1) and e =
ẽ[〈τ, V ′, c′, t〉] ∈ E such that ζ2 is the result of
adjoining the elementary tree e at the node w of
ζ1 – i.e., we have ζ1|w = 〈σ, V, c, f〉(ξ1, . . . , ξk)
for some 〈σ, V, c, f〉 ∈ Λ with ν(e) ∈ V , and
ζ2 = ζ1[ẽ[〈τ, V ′, c′, f〉(ξ1, . . . , ξk)]]w. The tree
language of H, denoted by L(H), is the set of all
ξ ∈ UΣ such that there are an i ∈ I and a ζ ∈ U
that contains only terminable nodes, with i⇒∗G ζ,
and ξ = π4

1(ζ), the node-wise projection of ζ to the
node label.

3 Main Construction

We will now describe our method to construct an
equivalent lm-cftg G from a given nstag H. As
noted by Kepser and Rogers, the main obstacle in
simulating nstag by lm-cftg is the fact that in a
derivation step of H, an arbitrary number of trees
can be adjoined to the foot node of an elementary
tree, while lm-cftg only allow the substitution of
one tree for the variable y in the right-hand side of
a production. Consider the derivation of H that is
portrayed in Fig. 1. This derivation takes place at an
adjunction site labeled F with child trees ξ1, . . . , ξk.
In each step of the derivation, an adjunction site is
chosen, and an elementary tree is adjoined at that
site. In particular, if the adjunction operations up
to that point contributed foot nodes that are oper-
ative, the respective adjunction site may again be
the direct parent node of the trees ξ1, . . . , ξk. In
a successful derivation, however, eventually some
elementary tree must contribute a terminable foot
node, say some σ ∈ Λ as in Fig. 1, which is not
subject to any further adjunction operations, and
becomes the parent node of ξ1, . . . , ξk.

In our construction of G, we model the above by
guessing for every adjunction site F of a sentential
form ζ the terminal σ the children ξ1, . . . , ξk of F
will eventually end up with as a parent label. We
then replace the k trees ξ1, . . . , ξk in ζ by the tree
σ(ξ1, . . . , ξk). Of course, in the ensuing derivation
of G, this guess must be checked for correctness,
so we encode the guess into a respective nonter-
minal LF, σM of G, and propagate the information

operation are omitted, cf. Kepser and Rogers (2011). Our
definition of nstag differs from ibid. in allowing initial trees
without foot node. Clearly this difference is purely syntactical.
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Figure 1: A derivation in H and its simulation in G.

during the course of the derivation. If σ is eventu-
ally adjoined as foot node, the guess was correct.
As σ was already produced, we “cut out” the foot
node of such elementary trees (as in Fig. 1) in the
corresponding production of G, replacing it by y.

Theorem 1. For every nstag H, there is a lm-cftg
G such that L(G) = L(H).

Proof. LetH = (Σ, Z,E, I, ν) be an nstag, and let
N = {S} ∪ {Lσ, V, c, τM | σ, τ ∈ Σ, V ⊆ Z, c ∈
B}. Let ρ : UΛ → 2UN∪Σ be a (nondeterministic)
td-tt1 with the rules ∗(〈σ, V, c, f〉(x1, . . . , xk))→
Lσ, V, c, δM(δ(∗(x1), . . . , ∗(xk))) for every V ⊆ Z,
σ, δ ∈ Σ, and c ∈ B. Further, for every τ ∈ Σ,
let ρτ : UΛ → 2UN∪Σ(Y1) be a td-tt1 that has ev-
ery rule of ρ, as well as the rule ∗(〈σ, V, c, t〉)→
Lσ, V, c, τM(y) for every V ⊆ Z, σ ∈ Σ, and c ∈ B.

Construct the cftg G = (N,Σ, S, P ), where
(i) for every i ∈ I and i′ ∈ ρ(i), the production
S → i′ is in P ; (ii) for every 〈σ, V, c, f〉 ∈ Λ,
τ ∈ Σ, e ∈ ν−1(V ), and e′ ∈ ρτ (e), we have that
Lσ, V, c, τM(y)→ e′ is in P ; and (iii) for every σ ∈
Σ and V ⊆ Z, P contains Lσ, V, f, σM(y)→ y.

We will demonstrate that L(G) = L(H).
To show that L(H) ⊆ L(G), we first prove that

for every n ∈ N, i ∈ I , ζ ∈ U, and ζ ′ ∈ ρ(ζ), when-
ever i⇒n

H ζ, then also S ⇒∗G ζ ′. The proof is by
induction on n. If n = 0, then ζ = i, thus by def-
inition S ⇒G ζ ′. So assume there is η ∈ U such
that i ⇒n

H η ⇒H ζ. Thus there are κ ∈ UΛ(X1)
linear and nondeleting in X1, ζ1, . . . , ζk ∈ U, some
〈σ, V, c, f〉 ∈ Λ, and e = ẽ[〈δ, V ′, c′, t〉] ∈ E such
that ν(e) ∈ V, η = κ[〈σ, V, c, f〉(ζ1, . . . , ζk)], and
ζ = κ[ẽ[〈δ, V ′, c′, f〉(ζ1, . . . , ζk)]]. As ζ ′ ∈ ρ(ζ),
there must be some κ′ ∈ ρ(κ) and ζ ′i ∈ ρ(ζi) for
1 ≤ i ≤ k, ẽ′ ∈ ρ(ẽ), and τ ∈ Σ such that ζ ′ =
κ′[ẽ′[Lδ, V ′, c′, τM(τ(ζ ′1, . . . , ζ

′
k))]]. Thus also η′ ∈

ρ(η), where η′ = κ′[Lσ, V, c, τM(τ(ζ ′1, . . . , ζ
′
k))].

By the induction hypothesis, S ⇒∗G η′. Further-
more, observe that ẽ′[Lσ, V ′, c′, τM(y)] ∈ ρτ (e),
hence by construction of G, there is the pro-
duction Lσ, V, c, τM(y)→ e′[Lσ, V ′, c′, τM(y)], and

therefore η′ ⇒G ζ
′.

Now, let ξ ∈ L(H). Thus there are i ∈ I and
ζ ∈ U such that i ⇒∗H ζ, π4

1(ζ) = ξ, and all
nodes of ζ are terminable. Consider the tree µ(ζ),
where µ : UΛ → UN∪Σ is a partial determinis-
tic td-tt1 with rules ∗(〈σ, V, f, f〉(x1, . . . , xk))→
Lσ, V, f, σM(σ(∗(x1), . . . , ∗(xk))) for every σ ∈ Σ,
and V ⊆ Z. It is easy to see that µ(ζ) ∈ ρ(ζ), thus
S ⇒∗G µ(ζ). Moreover, µ(ζ) ⇒∗G ξ, by produc-
tions of type (iii). Hence ξ ∈ L(G).

To show that L(G) ⊆ L(H), we prove that for
every n ∈ N and ζ ′ ∈ UN∪Σ, wheneverS ⇒n+1

G ζ ′

using only productions of type (i) or type (ii),
there exist i ∈ I and ζ ∈ U such that i ⇒n

H ζ
and ζ ′ ∈ ρ(ζ). The proof is by induction on n.
If n = 0, then S → ζ ′ is in P. By construction
there is an i ∈ I such that ζ ′ ∈ ρ(i), and thus
i ⇒0

H ζ with ζ = i. So assume that there is
some η′ ∈ UN∪Σ such that S ⇒n+1

G η′ ⇒G ζ
′ us-

ing only productions of type (i) and (ii). As the
last applied rule must be of type (ii), there are
κ′ ∈ UN∪Σ(X1) linear and non-deleting in X1, σ,
τ ∈ Σ, V ⊆ Z, ζ̄ ∈ UN∪Σ, and e′ ∈ UN∪Σ(Y1)
such that the production Lσ, V, c, τM(y) → e′ is
in P , η′ = κ′[Lσ, V, c, τM(ζ̄)], and ζ ′ = κ′[e′[ζ̄]].
By induction, there exist i ∈ I and η ∈ U such
that i ⇒n

H η and η′ ∈ ρ(η). Thus, there are
κ ∈ U(X1) linear and nondeleting in X1, ζ1,
. . . , ζk ∈ U and ζ ′1 ∈ ρ(ζ1), . . . , ζ ′k ∈ ρ(ζk)
such that η = κ[〈σ, V, c, f〉(ζ1, . . . , ζk)], κ′ ∈
ρ(κ), and ζ̄ = τ(ζ ′1, . . . , ζ

′
k). By construction,

there is e = ẽ[〈δ, V ′, c′, t〉] ∈ E such that e′ ∈
ρτ (e) and ν(e) ∈ V . Then also η ⇒H ζ,
where ζ = κ[ẽ[〈δ, V ′, c′, f〉(ζ1, . . . , ζk)]]. Thus,
i ⇒n

H η ⇒ ζ. As e′ ∈ ρτ (e), there is ẽ′ ∈
ρ(ẽ) such that e′ = ẽ′[Lδ, V ′, c′, τM(y)] and ζ ′ =
κ′[ẽ′[Lδ, V ′, c′, τM(τ(ζ ′1, . . . , ζ

′
k))]], thus ζ ′ ∈ ρ(ζ).

Let ξ ∈ L(G), i.e. ξ ∈ UΣ and S ⇒+
G ξ. Since

G is linear and nondeleting, we may assume that
there is ζ ′ ∈ UN∪Σ such that S ⇒+

G ζ
′ using only

productions of type (i) and (ii) and ζ ′ ⇒∗G ξ using
only productions of type (iii). Thus, every nontermi-



nal Lσ, V, c, τM occurring in ζ ′ needs to be such that
σ = τ and c = f. As shown above, there are i ∈ I
and ζ ∈ U such that i⇒∗H ζ and ζ ′ ∈ ρ(ζ). In fact,
ζ ′ = µ(ζ) and each node of ζ is terminable, with µ
as before. Obviously, ξ = π4

1(ζ) ∈ L(H).

4 Illustration

We will now illustrate our construction by a small
example, and contrast its result to the outcome of
the constructions applied by Kepser and Rogers.

LetZ = {1, 2}, Σ = {a, b}, and consider the set
of initial trees I = {〈b, {1, 2}, f, f〉} and the set of
elementary trees E that is displayed in Fig. 2.

The construction of Kepser and Rogers involves
the following steps: (a) A tag H is transformed
into an equivalent footed cftg G′. Then (b) G′ is
transformed into an equivalent spinal-formed cftg
G′′, (c) for which a normal form exists that is linear
and monadic, yielding the cftg G.2 Regarding (a),
footed cftg are the counterparts of tag in the world
of cftg: a cftg is footed if it is linear and each of
its productions’ right-hand sides ξ has a unique
node whose children are y1, . . . , yk, the variables
occurring in ξ. In fact, in the construction of G′

from H, these variables are just inserted below the
foot nodes of its elementary trees. Every tag label
becomes a nonterminal symbol.

As to (b), we briefly sketch the concept of a
spinal-formed cftg, which can be found in Fu-
jiyoshi and Kasai (2000). To every nonterminal
symbolA, we associate a nonnegative integer h(A),
called the head of A, such that h(A) ≤ χ. Such
an alphabet is said to be head-pointing. In every
production A(y1, . . . , yk)→ ξ of a spinal-formed
cftg, the variable yh(A) must occur exactly once
in ξ. The unique path from the root of ξ to yh(A)

is called the spine (of ξ). There is the additional
restriction for spinal-formed cftg that each variable
in Yk \ {yh(A)} occurs at least once in ξ, and only
as the child of some node on the spine. Further, if
some nonterminal B is located on the spine, then
its h(B)-th successor must be on the spine, too.
Thus, to transform G′ into a spinal-formed cftg
G′′, we create copies of each nonterminal (and its
productions) with different heads. Afterwards, the
nonterminals in the right-hand sides of productions
only need to be replaced by the respective copy.

2Formal definitions of these notions are omitted for brevity.
We hope the comparison of the respective results stands for
itself.

Pertaining to (c), Fujiyoshi and Kasai (2000)
present a method to transform any spinal-formed
cftg into a linear and monadic normal form. After
this transformation, the right-hand side of a produc-
tion is either a non-branching tree of monadic non-
terminals with leaf y, a single terminal, or of height
2. The crucial substeps involve replacing all sub-
trees beside the spine by new nullary nonterminals,
guessing an assignment for each variable except the
head variable, and finally, collapsing the leaves be-
side the spine into their neighboring nonterminals
on the spine. The nondeterministic choice for the
variables is propagated by extending the grammar’s
nonterminals. Applying (a)–(c) (and some simplifi-
cations) yields the lm-cftg G, whose productions
are displayed in Fig. 3.

In contrast, our construction vertically expands
every node of some initial or elementary tree by
guessing a nonterminal and a terminal as described
above. Thus, the overall structure of the trees is
maintained. The useful productions of the grammar
are depicted in Fig. 4. Obviously, our procedure
can be refined by translating tag nodes that are non-
operative and terminable just into terminals, thus
avoiding useless nonterminals and productions.



E =


〈a, ∅, f, f〉

〈a, ∅, f, f〉 〈a, {1, 2}, f, f〉

〈b, ∅, f, t〉 〈a, ∅, f, f〉

1:

,

〈a, ∅, f, f〉

〈b, ∅, f, f〉 〈a, {1, 2}, f, f〉

〈b, ∅, f, t〉 〈b, ∅, f, f〉

2:


Figure 2: Elementary trees and their names indicated to their left.

S →

〈a, ay〉

〈La, Z, fM, ya〉

b

+

〈a, by〉

〈La, Z, fM, yb〉

b

+ b 〈α, βy〉(y)→
α

β y 〈α, yβ〉(y)→
α

y β

〈La, Z, fM, yγ〉 (y)→

〈a, ay〉

〈La, Z, fM, ya〉

〈b, yγ〉
y

+

〈a, by〉

〈La, Z, fM, yb〉

〈b, yγ〉
y

+
〈a, yγ〉
y

Figure 3: The lm-cftg obtained through the construction of Kepser and Rogers, where α, β, γ ∈ {a, b}.

S →
Lb, Z, f, bM

b
+

Lb, Z, f, aM

a
Lβ, V, f, βM(y)→ y

Lα,Z, f, γM(y)→

La, ∅, f, aM

a

Lβ, ∅, f, βM

β

La, Z, f, bM

b

Lb, ∅, f, γM

y

Lβ, ∅, f, βM

β

+

La, ∅, f, aM

a

Lβ, ∅, f, βM

β

La, Z, f, aM

a

Lb, ∅, f, γM

y

Lβ, ∅, f, βM

β

Figure 4: The lm-cftg obtained through our construction, where α, β, γ ∈ {a, b} and V ⊆ Z.
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